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Abstract—This paper employs a new approach to regulate the 

blood glucose level of type I diabetic patient under an intensive 
insulin treatment. The closed-loop control scheme incorporates 
expert knowledge about treatment by using reinforcement learning 
theory to maintain the normoglycemic average of 80 mg/dl and the 
normal condition for free plasma insulin concentration in severe 
initial state. The insulin delivery rate is obtained off-line by using Q-
learning algorithm, without requiring an explicit model of the 
environment dynamics. The implementation of the insulin delivery 
rate, therefore, requires simple function evaluation and minimal 
online computations. Controller performance is assessed in terms of 
its ability to reject the effect of meal disturbance and to overcome the 
variability in the glucose-insulin dynamics from patient to patient. 
Computer simulations are used to evaluate the effectiveness of the 
proposed technique and to show its superiority in controlling 
hyperglycemia over other existing algorithms. 
 

Keywords—Insulin Delivery rate, Q-learning algorithm, 
Reinforcement learning, Type I diabetes.  

I. INTRODUCTION 
UMAN bodies need to maintain glucose concentration 
level in a narrow range 70-110 mg/dl. If one’s glucose 

concentration level is significantly out of the normal range, 
this person is considered to have the plasma glucose problem: 
Hyperglycemia or hypoglycaemia.  

Diabetes mellitus is a disease in glucose-insulin endocrine 
metabolic system, in which the pancreas either does not 
release insulin or does not properly use insulin to uptake 
glucose in the plasma, which is referred as hyperglycemia [1]. 
The two types of diabetes are Type I and Type II. In this paper 
the focus is on type I diabetes. In Type I diabetes, the body’s 
immune system destroys pancreatic beta cells, and the patient 
is totally dependent on an external source of insulin to be 
infused at an appropriate rate to maintain the blood glucose 
concentration.  

When a normal person is subjected to a glucose meal, the 
glucose concentration in plasma increases from basal value 
and so the pancreatic β-cells secrete insulin. The insulin in 
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plasma is hereby increased, and the glucose uptake in muscles, 
liver, and tissues is raised by the remote insulin in action. This 
lowers the glucose concentration in plasma, implying the β-
cells to secrete less insulin, from which a feedback effect 
arises [2]. But, in type I diabetic patients whose pancreas does 
not release insulin, blood glucose level remains in much more 
than basal value for long period of time. When glucose level 
remains high for extended periods of time the patient is at risk 
for neuropathy, nephropathy, blindness, and other long-term 
vascular complications. However, the result of the Diabetes 
Control and Complications Trial (DCCT) showed that an 
intensive insulin therapy can reduce the risk of developing 
complications [3]. Consequently, an intensive therapy is 
encouraged for type I diabetic patients prescribed by a 
continuous subcutaneous insulin infusion pump.  
Control strategies of diabetes treatment can be categorized as 
open loop control, semi closed-loop, and closed-loop control. 
Current treatment methods utilizing open loop control in 
which physicians inject a pre determined dose of insulin 
subcutaneously based on three or four time daily glucose 
measurements, usually by an invasive method of finger prick. 
This method not only is painful and inconvenient but also 
unreliable because of approximation involved in type and the 
amount of insulin delivered. In semi closed-loop control 
insulin infusion rate adjust according to intermittent blood 
glucose readings. This technique is sub-optimal and unable to 
accomplish the aforementioned normalization and also 
suffered from long sampling time problem of missing fast or 
inter-sample disturbances. However, closed-loop control 
method which acts as an artificial pancreas is the most 
effective way of diabetes treatment and could improve the 
quality of life and life expectancy of patients [4]. Ultimately, a 
true artificial pancreas is a closed-loop device that enables a 
person with diabetes to maintain normal glucose levels by 
providing the right amount of insulin at the right time, just as 
the pancreas does in non-diabetic individuals [5].  

In the near term, we expect artificial pancreases to be 
external devices comprises of insulin pumps, already widely 
available; continuous glucose monitors (CGMs), which are 
coming on the market now and an appropriate control 
algorithm. Figure 1 shows the block diagram of a closed-loop 
control system of diabetic patients. In this system, the control 
algorithm would calculate optimal insulin delivery rate 
designed to keep the patient under metabolic control, and a 
signal would drive a mechanical pump to deliver the desired 
amount of insulin.  

Agent-based Simulation for Blood Glucose 
Control in Diabetic Patients 

Sh. Yasini, M. B. Naghibi-Sistani, A. Karimpour 

H 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:9, 2009

229

 

 

 

 
Fig. 1 Closed-loop control of diabetic patient 

 
Since recent advances have made available programmable 

and variable-rate infusion pumps, the feedback control system 
mimics the normal function of a pancreas more closely. 
However, creating a device which would accurately replace 
multiple insulin injections per day for a long period of life is 
not an easy task. It should be made from biocompatible 
materials and as small as possible. Four major sites for 
invasive insulin delivery are subcutaneous, intramascular, 
intravenous, and intrperitoneal [6]. The subcutaneous site is 
the simplest and safest in long term but the absorption of   
insulin from subcutaneous tissue is delayed. The intramascular 
site is usually preferred for people affected by brittle diabetes 
who have a subcutaneous barrier to insulin absorption. The 
intravenous has rapid delivery with negligible dead-time. The 
main problem of this approach is presence of the intravenous 
lines which may not be suitable for some patients. 
Intraperitoneal is the most physiological insulin delivery, 
though the major disadvantage is its difficult access. The 
recent advances have brought in non-ivasive modes of insulin 
delivery such as transdermal and oral [7]-[8]. These modes are 
not painful like the invasive modes but have problems such as 
low skin permeability in transdermal mode and issues 
concerned with the oral bioavailability for the oral mode. 

Continuous glucose monitors are devices that provide 
continuous “real time” readings and data about trends in 
glucose levels. Blood glucose monitoring devices are 
classified as invasive, minimally invasive, and non-invasive. 
Fully invasive systems can be either beside clinical devices or 
self-monitoring meters. Such system allows continuous 
monitoring, therefore increasing the amount of clinical 
information. System which puncture the skin are still standard 
techniques for home monitoring reading glucose concentration 
through electrochemical or optical disposable strips for finger 
prik blood samples [9]. Efforts have been made to reduce the 
level of invasiveness by decreasing the blood sample volume 
to a few microliters, and measuring areas of the body less 
sensitive to pain than fingertrips such as forearm, upper arm, 
or thigh. Minimally invasive measurements sample the 
interstitial fluid with subcutaneous sensors [10]. Even in this 
method the discomfort causes difficulties to the patient’s 
therapy. Therefore, researches group are working to develop 
non-invasive glucose control devices [11].  

In testing the performance of the control algorithm a virtual 
patient need to be implemented using an appropriate 
mathematical model. During the last decades, many 
mathematical models have been derived to describe dynamics 

of glucose-insulin regulatory system [12]-[14]. These models 
have ranged from linear to nonlinear with increasing the levels 
of complexity [15]. Since, the parameters of these models are 
in general time-varying, even for a patient under a constant 
treatment and environment conditions. Therefore, employed 
controller in closed-loop system should be robust to 
parameters variations in model and physical disturbances like 
food intake. 

With the availability of these mathematical models different 
algorithms based on control theory have been developed to 
control the blood glucose level in people with diabetes. Some 
of these algorithms include proportional-integral-derivative 
(PID) [16], [17] and proportional-derivative (PD) [18], that 
need a linearized model for the design, as well as H∞ control 
technique. If linear models are employed for the patients, 
control algorithm like H∞ control can guarantee some level of 
performance but full robustness can not be achieved via this 
algorithms. However, as far as linear control algorithms are 
concerned, H∞ control offers a promising result in maintaining 
blood glucose regulation in diabetic patients. Some interesting 
result of this method can be found in [19]-[20]. Also optimal 
control algorithms are applied for blood glucose regulation in 
semi closed-loop control system [22], [23]. But, the important 
point in most of these researches is that proposed controller 
has been designed with regard to mathematical model as a 
crisp model, and uncertainty in the model parameters has been 
not considered. Therefore, although these methods, would 
offer good responses in simulations, it is likely that they 
would not be successful in practice and failed while applying 
to an actual patient. On the other hand, biomedical systems are 
inherently complex and nonlinear, and are often correlated 
with imprecision and model parameter variations. 
Consequently, conventional control techniques can prove 
insufficient for controlling such systems. 

The ultimate goal of this research is to develop a consistent, 
robust controller for safe, predictable regulation of blood 
glucose levels in diabetic patients. 

In control theory, reinforcement learning has emerged as a 
powerful tool to incorporate knowledge about the system for 
implementing an appropriate closed-loop control law without 
requiring an explicit model of the environment. This approach 
is based on trial and error search [24]. Thus, the agent can 
learn from its mistakes and adapt his intelligent treatments to 
uncertainty and variations in the environment.  

This work exploits agent-based simulation under Q-
learning algorithm to regulate the blood glucose level of type I 
diabetic patient around euglycemia. Insensitive to disturbance, 
accuracy, and robustness to uncertainty as well as appropriate 
settling time are main features of proposed algorithm. The text 
is organized as follows. The physiological model of glucose-
insulin regulatory system in type I diabetes mellitus patient is 
introduced in section 2. In section 3 some fundamentals on 
reinforcement learning are presented along with a description 
of the Q-learning algorithm. Simulation results and 
concluding remarks are included in sections 4 and 5, 
respectively. 
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II. GLUCOSE INSULIN REGULATORY SYSTEM DYNAMIC MODEL 
 

Complex models though are accurate for regimen 
evaluation but are generally unsuited for real-time control due 
to they need several time points of input to produce the insulin 
infusion profile. Additionally, they are not generic requiring 
the data of a specific patient and known glucose inputs. 
Against, simple models capture essential dynamics behaviors 
and provide a more suitable foundation for real-time control 
design.   

The aim of this paper is to develop a control technique 
based on a physiological model that capture the essential 
system dynamics, which do not require unavailable data, and 
are applicable to a wider variety of subjects. Simple models 
capture these essential dynamic behaviors, providing a more 
suitable model for real-time control design and analysis.  

Bergman’s minimal model has proposed as a powerful 
modeling approach to estimating the insulin sensitivity and the 
glucose effectiveness, which are very useful in the study of 
diabetes and is the most popularly used model in the literature 
which has the following advantages [25], [26]: 

• to be physiologically based, 
• having parameters that can be estimated with a 

reasonable precision, 
• parameters with values that are reasonable and have 

physiological interpretation, 
• best able to simulate the dynamics of the system with 

the smallest number of identifiable parameters 
The third-order model is comprised of a glucose 

compartment, G , a remote insulin compartment, X , and an 
insulin compartment, I . The remote insulin compartment 
mediates glucose uptake within the glucose space to the 
peripheral and hepatic tissues. The model equations are [25]: 

  
.
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Where t=0 is the glucose injection, + denotes positive 

reflection and:        
G(t): the plasma glucose concentration at time t (mg/dl), 

X(t): is the generalized insulin variable for the remote 
compartment (min-1), I(t): is the plasma insulin concentration 
at time t (μU/ml), Gb: is the basal preinjection value of plasma 
glucose (mg/dl), Ib: is the basal preinjection value of plasma 
insulin (μU/ml). p1: insulin independent rate constant of 
glucose rate uptake in muscles, liver and adipose tissue (min-

1), p2: the rate of decrease in tissue glucose uptake ability 
(min-1), p3: the insulin independent increase in glucose uptake 
ability in tissue per unit of insulin concentration above Ib (min-

2(µU/ml)), n: the first order decay rate for insulin in plasma 
(min-1), h: the threshold value of glucose above which the 
pancreatic β-cells release insulin, γ: the rate of the pancreatic 

β-cells’ release of insulin after the glucose injection and with 
glucose concentration above h [(μU/ml) min-2 (mg/dl)-1], G0: 
the theoretical glucose concentration in plasma (mg/dl) at time 
0, I0: the theoretical insulin concentration in plasma (μU/ml) at 
time 0. 

The term γ[G(t)-h]+ in the third equation of the model acts 
as an internal regulatory function that formulates the insulin 
secretion in the body, which does not exist in diabetic patients. 
The metabolic portrait of a single individual is then 
determined by the following parameters: 
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Where Imax is the maximum value of insulin in plasma. SI is 

measured in (µU/ml)-1 per minute. SG in min-1 and 1ϕ  in min-

1μU/ml per mg/dl. These factors are important indicatives of 
how glucose and insulin act inside that person’s body. 

The available clinical data indicates that the value of p1 
parameter for diabetic patient will be significantly reduced 
and it can be approximated as zero [23]. Model parameters 
and constants are adopted from [23], [26] are given in table 1. 
Note that these values were calculated for a person of average 
weight and vary from patient to patient which makes the 
design of controller a more challenging task.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
D(t) shows the meal glucose disturbance and can be 

modeled by decaying exponential function of the following 
form [23]: 

 
( ) exp( ), 0D t A Bt B= − >                                             (5) 

 
Where t is in min and D(t) is in (mg/dl/min). u(t) is the 

exogenous insulin infusion rate. The model is simple, yet 
accurately represents the essential dynamics of the human 

TABLE I 
MODEL PARAMETERS 

Parameter Value 

p1  0.0316 

p2 0.0107 

p3 5.3 × 10-6 

n 0.2640 

h 80.2576 

γ 0.0042 

Gb 70 

Ib 7 
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glucose-insulin regulatory system. The controller uses a 
feedback loop that employs the blood glucose level G, and its 
derivative (dG/dt), as sensor inputs, and the exogenous insulin 
infusion rate u(t) as the control output.  

III. INTRODUCTION TO REINFORCEMENT LEARNING THEORY 
AND Q-LEARNING ALGORITHM 

A. Reinforcement learning 
Many learning theories have been developed as a result of 

man’s effort to analyze the behavior of animals and artificial 
systems. Reinforcement Learning (RL) is one of them and 
focuses on the effect of rewards and punishments on subjects 
choices in their attempt to achieve a goal; it studies complex 
behaviors, where sometimes taking an unpleasant action may 
lead to a long term reward [24]. The basic elements of RL, 
are; 

• The learner or the decision maker, called the agent, 
• Everything it interacts with, called the environment. 

 
The learning process is described in figure 2. At each time 

step, t. the agent receives the state, xt, of its environment and 
selects an action, at, according to this perception and to its 
past experience. One time step later, in part as a consequence 
of its action, the agent receives a numerical reward, rt, and 
finds itself in a new state.  At each time step, the agent 
implement a mapping from state representation to 
probabilities of selection each possible action. The mapping is 
called the agent’s policy. 
 

 
 Fig. 2 The learning process of the agent through its interaction 

with the environment 
 

As it is obvious from the process described before, the two 
basic concepts behind RL are trial and error search, since the 
agent explores its environment and learns from its mistakes.   

 

B. Q-learning Algorithm 
Significant advance in the field of reinforcement learning is 

the Q-learning algorithm of Watkins, 1998 [27]. Its main 
advantages are that it can be used online without having an 
explicit model of the environment. 

As shown in figure 2, a numerical reward rt corresponds to 
each pair (xt,at). Therefore the reward is a function of the state 
received by the agent and the action it takes. The agent in Q-
learning keeps in memory a function Qt(xt,at) that represent 
the expected payoff it believes it will obtain by taking an 

action. The function of the expected reward is represented by 
a two-dimensional lookup table indexed by state-action pairs, 
whose elements are defined as Q-values.  

The agent experience, concerning its interaction with the 
environment, consists of a sequence of distinct stages. Let 
X={x1,x2,…,xk} be the set of k possible states of the 
environment and A={a1,a2,…am} be the set of m possible 
actions the agent can take. In the nth episode, the agent: 

1. Observes its current state tx X∈ . 
2. Selects and performs an action ta A∈ using a policy. 
3. Observes the subsequent state 1tx X+ ∈ . 
4. Receives a numerical reward rt. 
5. Update its Q values according to: 

 
1 1 1( , ) (1 ) ( , ) [ ( )]t t t t t t tQ x a Q x a r V xα α γ− − += − + +                      (6) 

 
1 1( 1) max{ ( 1, )}t t

b
V x Q x b− −+ ≡ +                                        (7) 

Equation (6) denotes the best the agent thinks it can do in 
state xt. According to equation (7), only Q values 
corresponding to current state and last action chosen are 
updated. πn(x,a) is a learning rate in the range (0,1], that 
reflects the degree to which estimated Q values are updated by 
new data. α is learning rate in the range [0,1), that reflects the 
degree to which estimated Q values are updated by new data. γ 
is a discount factor in the range [0,1), representing the weight 
given to future reinforcements, the closer γ is to 1 the more 
important are distant payoffs, and, typically, the more difficult 
the optimization problem [24], [27]. 

 

C. Q-learning Implementation for blood Glucose 
regulation 

The purpose of applying Q-learning algorithm for diabetes 
control is to determine appropriate insulin infusion rate in 
order to stabilize blood glucose level of diabetic patient in a 
reasonable time interval. Q-learning algorithm application in 
developing diabetic patient glucose-insulin regulatory system 
requires the definition of the states of agent’s environment, 
the admissible actions, the returned reward and the followed 
policy.  

State Definition. Glucose-insulin regulatory system 
represents the environment in our simulation. Different 
glycemic ranges, which are clinically measured, describe the 
states of the environment. State 3 is the normoglycemic range 
of blood glucose concentration which is desired level. Other 
intervals are unfavorable states which takes the patient in 
hypo-hyperglycemia. Table 2 demonstrates the states of the 
environment. 

Action Definition.  In modeling glucose-insulin regulatory 
system, insulin infusion rates demonstrate actions. There are 
five alternative actions for the agent. He obtains the insulin 
infusion rate by multiplying previous action (at-1) to a constant 
number. The five actions we defined here are as follows: The 
agent can either raise the insulin infusion rate very much 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:9, 2009

232

 

 

(action 1: at-1 × 1.3), or increase it a bit (action 2: at-1 × 1.1), or 
even keep the same insulin delivery rate (action 3: at-1); 
finally, he can decrease the rate of insulin infusion (action 4: 
at-1 × 0.8), or decline it a bit (action 5: at-1 × 0.95). 

Reward Calculation. The reward is set equal to the 
difference of the glucose concentration from its target value of 
80 mg/dl. This value has been considered as a reference set 
point in normoglycemic range of blood glucose. The reward 
rt(x,a), for taking an action a, from state x, is given by the 
following equation. 
  

( , ) ( 80)tr x a G= − −                                                            (8) 
 

Where t is the time that agent receives his reward from the 
environment. 

Policy Description. One of the most important features in 
Q-learning algorithm is the balance between exploration and 
exploitation. Following a greedy policy constantly, the agent 
may not visit some states that could turn out to be more 
profitable. On the other hand, if the agent explores the 
environment, without exploiting his knowledge, he is not 
actually learning. Thus, the learning process evolves towards 
optimal solutions. In this paper, in order to achieve the goal 
for balance, ε-greedy selection is applied. ε-greedy is a 
variation of the aforementioned greedy policy. Instead of 
always taking the best action – as in greedy policy – there is 
small probability ε, the agent may select another action 
randomly.  

IV. SIMULATION RESULTS 
MATLAB is used to simulate the closed-loop system in 

order to show the validity of the proposed approach.  
To verify the physiological model, the controller output u(t) 

is set to zero and the response of a healthy person and diabetic 
patient is obtained to show the difference between their 
glucose regulatory systems. As it can be seen in figure 3, a 
healthy person’s blood glucose value is stabilized in normal 
value in spite of meal disturbance, but a patient’s glucose level 
remains in much more than basal value. 

 

 
Fig. 3 Healthy person and diabetic patient glucose regulatory system 

 
In second set of simulation the Q-learning algorithm is 

applied to nonlinear model of the patient. Figure 4 shows the 
result of simulation in off-line state for 4000 iterations. The 
following values are chosen for the parameters of the Q-
learning algorithm: α=0.5, γ=0.5. The probability ε is set 
ε=0.5, trying to achieve a good balance between exploration 
and exploitation. As shown in figure 4, after identifying the 
environment by the agent, model variables become firm in 
basal amounts and the Q-value is converges to a constant 
value. Since the controller implementation requires simple 
function evaluations, it is much easier to compute than solving 
an online optimization problem. 

In a last set of simulation, fixed Q is applied to the virtual 
patient and the response of a sick person is examined in an on-
line way. Severe initial state of the patient is corrected in spite 
of meal disturbance. In addition, to check the robustness of the 
controller to variations in model parameters three sets of 
parameters for three different patients have been used. It is 
obvious that the transient responses of different patients in the 
same controller are different, but in all three cases the plasma 
glucose and insulin level stabilizes in a reasonable time 
interval. Figure 5 shows the insulin and glucose profiles and 
the control function for the same three patients. As it can be 
seen, optimal insulin delivery rate remains feasible for all the 
values of uncertain parameters. 

The controller performs quite well and keeps the blood 
glucose level of patient around normal value. 

The values that have been used in implementing the model 
and its parameters are given in Table 3. 

 
 
 
 
 
 
 
 

TABLE II 
STATES OF THE ENVIRONMENT 

Clinical Description Glycemic Range 
(mg/dl) State No. 

Hyperglycemia G ≥ 150 1 

Slight Hyperglycemia 150 ≥ G ≥ 110 2 

Normoglycemia 110 ≥ G ≥ 70 3 

Slight Hypolycemia 40 ≥ G ≥ 70 4 

Hypoglycemia 40 ≥ G 5 
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Fig. 5 Closed-loop glucose regulatory system.(a) Plasma glucose concentration. (b) 
Plasma insulin concentration (c) Exogenous insulin infusion rate. 

 

 

 
 
 
Fig. 4  Glucose-insulin regulatory system with Q-learning algorithm in off-line state. (a) Plasma glucose 
concentration (b) Plasma insulin concentration (c) insulin infusion rate 
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V. CONCLUSION REMARKS AND FUTURE WORKS 

A. Conclusions 
Diabetes management is one of important issues in the field 

of human regulatory systems, which is discussed in recent 
years. In This work, a closed-loop control system based on 
reinforcement learning approach for deriving the explicit 
insulin delivery rate for type I diabetic patients has been 
proposed. In order to incorporate knowledge about patient 
treatment, the controller is designed using Q-learning scheme. 
It is important to mention that the control algorithm is essence 
model-free. The proposed controller can successfully tolerate 
patient variability and dynamic uncertainty while rapidly 
rejecting meal disturbances and tracking the constant glucose 
reference. Robustness was tested over a group of three 
patients with model parameters varying considerably from the 
averaged model. As shown in this paper, the Q-learning has 
the potential to synthesize knowledge to treat diseases. 
Employed control technique reported in this paper is expected 
to simplify insulin automatic injection mechanism and 
increase the quality of life, and life expectancy of diabetic 
patients. 

 

B. Future Works 
Future work is conducted to the employing of the dynamic 

programming analysis approach in designing a robust 
controller for blood glucose regulation in diabetic patients. It 
is also considered to compare the result obtained in this paper 
with some conventional approaches such as PID and H∞ 
controllers presented in other researches. In addition, the 
effect of measurement noise is to be assessed and attenuated. 
Finally, the inclusion of an exercise regime in the overall 
model of the Type I diabetic patients in order to have a more 
realistic simulation will be considered.  
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