
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:8, 2007

380

 

 

 
Mehmet Tahir Sandıkkaya, and Bülent Örencik 

 
 
 
Abstract—Many electronic voting systems, classified mainly 

as homomorphic cryptography based, mix-net based and blind 
signature based, appear after the eighties when zero knowledge 
proofs were introduced. The common ground for all these three 
systems is that none of them works without real time cryptologic 
calculations that should be held on a server. As far as known, the 
agent-based approach has not been used in a secure electronic 
voting system. In this study, an agent-based electronic voting 
schema, which does not contain real time calculations on the server 
side, is proposed. Conventional cryptologic methods are used in 
the proposed schema and some of the requirements of an electronic 
voting system are constructed within the schema. The schema 
seems quite secure if the used cryptologic methods and agents are 
secure. In this paper, proposed schema will be explained and 
compared with already known electronic voting systems. 
 

Keywords—Electronic voting, E-voting, Mobile software 
agents, Offline electronic voting. 

I.  INTRODUCTION 
OTING is one of the basic elements of the current 
republics. Due to the conveniences they will bring, it 

can be foreseen that electronic voting systems will be a 
requested element of democracy in the future. Electronic 
voting systems are designed to offer better performance and 
economy than the conventional ones. Speed and simplicity 
of tallying are other advantages [1]. Trustworthiness is 
another topic, and could be widely argued socially. 
However, it can be said that a system which doesn't get 
involved with the human factor is reasonably more secure. 
We can suppose electronic voting systems where security of 
the system is proved technically are more secure than 
conventional voting systems. In this paper, electronic voting 
refers to a voting system where authorized individuals cast 
their votes through a large-scale communication system and 
the agent refers to a software object executing a set of 
operations due to definitions set by a user or another 
software object. 

Current electronic voting systems can be classified in 
three basic approaches: homomorphic cryptography based 
[4, 11-14], blind signature based [15-22] and mix-net based 
[5-10]. In homomorphic cryptography based systems, 
generally, encrypted ballots of each voter added into the 
same data package and decrypted as a whole using a master 
key that is different than any of the voters' key. Yet, this   

Manuscript received September 15, 2005. This work was supported by 
the Advanced Technologies Program of the Istanbul Technical University. 

M. T. Sandıkkaya is with the Informatics Institute of Istanbul Technical 
University, Istanbul, 34469 Turkey (e-mail: tahir@be.itu.edu.tr). 

B. Örencik is with the Computer Engineering Department, Electrical and 
Electronics Faculty of Istanbul Technical University Istanbul, 34469 
Turkey (e-mail: orencik@cs.itu.edu.tr). 

 
 
explanation can vary due to cryptographic algorithms used. 
In blind signature based systems, each voter blinded his/her 
ballot before the ballot had been signed by an authority, 
then sent the signed ballots to a collective pool that 
undertake tallying after unblinding them. Mix-net based 
systems composed of several hosts queued in an array. In 
these systems, each host in the array receive a group of 
encrypted ballots as input and while producing a 
permutation of the ballots as output, partially decrypting 
them; where at the end of the array, ballots are totally 
decrypted. 

As far as known, use of agent-based approach in 
electronic voting systems is not examined yet. Agent-based 
approach has many advantages over its conventional 
counterparts. Agents can be customized just before the 
election and the authority can gain required control over 
voter's computer to execute a fair election. For example, all 
communication of the voter's computer can be interrupted 
during the voting phase to prevent any kind of trojan horses 
or remote control of the computers. In a large scale election, 
individual voters can not be trusted. Fortunately, agent-
based approach can eliminate this problem by standardizing 
voters' behaviors. Any other unsigned voting interface might 
be altered to cast unfair votes. Also, agents reside on the 
voters' computers during the voting phase only which makes 
them more resistive to be altered. Consequently, agent-
based approach may be the answer for an election system 
that voters can cast votes at home without any officer 
supervising the procedure with thoroughly analyzed security 
mechanisms. 

Current approaches to electronic voting systems require 
one or more servers that have to calculate cryptologic 
algorithms for authorization, encryption, etc. Cryptographic 
calculations and the network load are generally the 
bottleneck of these systems. Using agent-based approach, a 
significant part of the cryptographic calculations can be run 
on the voters' computers instead of servers. Also, the 
number of network transactions is less than conventional 
algorithms as the agents conduct their data together with 
them. Unfortunately, this advantage of less transactions 
might be lost if the size of the agents increase. 

II.  REQUIREMENTS OF ELECTRONIC VOTING SYSTEMS 
 Report of the National Workshop on Internet Voting [2] 
describes the requirements of electronic voting systems 
clearly. Seven of these requirements consider security 
issues, while the others consider economic or social issues. 
The seven requirements are as follows: 

• Eligibility and Authentication—only authorized voters 
should be able to vote; 

V 

Agent-Based Offline Electronic Voting 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:8, 2007

381

 

 

• Uniqueness—no voter should be able to vote more 
than one time; 

• Accuracy—election systems should record the votes 
correctly; 

• Integrity—votes should not be able to be modified, 
forged, or deleted without detection; 

• Verifiability and Auditability—it should be possible to 
verify that all votes have been correctly accounted for 
in the final election tally, and there should be reliable 
and demonstrably authentic election records; 

• Reliability—election systems should work robustly, 
without loss of any votes, even in the face of numerous 
failures, including failures of voting machines and total 
loss of Internet communication; 

• Secrecy and Non-Coercibility—no one should be able 
to determine how any individual voted, and voters 
should not be able to prove how they voted (which 
would facilitate vote selling or coercion). 

III.  PROPOSED SCHEMA 

A.  Preliminaries 
We propose an agent-based offline electronic voting 

system. The voting system consists of three phases and three 
parties. The phases are registration, vote casting and 
tallying. An optional vote changing phase can be added after 
the vote casting phase. The parties are the authority, the 
voter and the tallying pool. Each phase in the schema affects 
the following phases, so security issues of each phase have 
to be ensured. Fortunately, any security leakage that does 
not reveal the private key of the authority or the pool affects 
only the related voter, not the system. 

In the registration phase, each individual voter has to be 
registered as an authorized voter. During registration, voters 
can be identified by officers or by biologic methods like 
fingerprints; voters' keys can be stored in smart cards or 
memory sticks, etc. Independent of the method used, we 
assume that each individual voter receive his/her unique key 
pair and any other data needed. It is clear that the security of 
the key pair is up to the voter if there is not any integrated 
hardware or password protection for the keys. 

In the vote casting phase, each individual voter receive 
two agents, interact with the agents then send them back. 
One of the agents authorizes the voter on the authority side 
where the other carries the vote to the pool. 

In the tallying phase, votes in the pool are decrypted and 
counted. At the same time, the private key of the pool and 
the ballots are announced so that everybody can audit 
whether the tally is correct. 

The authority is the party that stores each individual 
voter's public keys. The authority also has its own key pairs 
and the public keys of the pool. One of the authority's key 
pair is used for creating votes and the other is used for 
changing votes due to voter's will. The authority stores two 
boolean arrays for voters. The voter is marked after 
receiving the agents in the first array. Second array is used 
to count the successful vote castings for each voter. 
 The pool is the party that receives ballots and the 
encrypted votes inside them. It is also the party does 
tallying. For the sake of trustworthiness, the pool can be 
expanded into several independent hosts, each have their 

own key pairs. Still, we assume a single fair host manages 
the pool party for simplicity. 

The voter interacts with two agents: the register agent and 
the ballot agent. The register agent authorizes the user and 
ensures the authority whether the voter casts a valid vote. 
Register agent carries the one of the private keys of the 
authority and the public key(s) of the pool. The register 
agent can not predict the vote casted where the ballot agent 
stores and carries the vote to the pool and can not predict 
who the vote caster is. 

Finally, used cryptologic methods, random number 
generators and the agent frameworks are assumed to be 
secure till the end of the paragraphs detailing the work flow. 

B.  Workflow 
1.  Registration Phase 
It is assumed that each voter registers through authorized 

offices. A key pair belongs to the voter and the public key 
of the authority is delivered to the voter. Public key of the 
voter is stored in the authority's computer. 
 

2.  Offline Encrypting and Signing 
The authority injects the public key(s) of the pool(s) and 

the private key of the authority which one is for vote 
creating into each register agent, encrypting the agents using 
a session key and finally encrypts the session key and signs 
the package with the related voter's public key. At the same 
time, the pool(s) signs the ballot agent using its private key. 
 

3.  Vote Casting 
Vote casting consists of nine steps: 

1. The voter sends a message combined of two parts 
to the authority to trigger the voting process. 
Voters identification number encrypted with 
authority's public key and concatenated to the 
identification number that is encrypted with voter's 
own private key to form the message. 

2. The authority decrypts the first part of the 
incoming message using its private key, then 
decrypts the second part using voter's public key. If 
two parts of the message are same and meaningful, 
it searches for the voter's identity in the arrays of 
the registered voters. If the voter has not been 
registered, process canceled. 

3. The authority searches for the voter's identity in the 
array of vote casted voters. If the voter has not 
already casted a vote, the register agent is sent to 
the voter as it is. 

4. The voter decrypts the register agent appropriately 
and activates it. Register agent sends a message to 
the pool to receive the ballot agent and after a 
successful transaction activates the ballot agent. 

5. The ballot agent asks the voter to cast a vote. The 
vote is concatenated with a random number, 
blinded [3] and sent to the register agent. 

6. After signing the blinded vote with the authority's 
private key and sending it to the ballot agent, the 
register agent terminates itself. 

7. The ballot agent unblinds the data to obtain the 
signed vote, digests the signed vote and encrypts 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:8, 2007

382

 

 

the signed vote with the pool's public key. The 
ballot agent stores the digest in the voter's 
computer and sends the signed vote to the pool. 
After acknowledging that the vote was casted, 
terminates itself. 

8. The voter created a message combined of two 
parts; voter's identification number encrypted with 
authority's public key and an acknowledgment 
message encrypted with voter's private key. 

9. The authority marks the voter's identity in the array 
of vote casted voters. 

 
4.  Vote Changing 
In the proposed schema each voter can change his/her 

voting strategy till the end of the election. The authority has 
another private key for this process which will be mentioned 
as "alternative private key" in the rest of the paper. A 
second public key has no use for the voter, so schema 
assumes that the voter has only the first public key of the 
authority. 

1. The voter sends a message combined of two parts 
to the authority to trigger the voting process. 
Voters identification number encrypted with 
authority's public key and concatenated to the 
identification number that is encrypted with voter's 
own private key to form the message. The 
identification number is salted before the 
encryption. 

2. The authority decrypts the first part of the 
incoming message using its private key, then 
decrypts the second part using voter's public key. If 
two parts of the message are same and meaningful, 
it searches for the voter's identity in the arrays of 
the registered voters. If the voter has not been 
registered, process canceled. 

3. The authority searches for the voter's identity in the 
array of vote casted voters. If the voter has already 
casted a vote, a new register agent is created and 
sent to the voter. This version of register agent 
includes the alternative private key of the 
authority. 

4. The voter decrypts the register agent appropriately 
and activates it. Register agent sends a message to 
the pool to receive the ballot agent and after a 
successful transaction activates the ballot agent. 

5. The ballot agent asks the voter to cast a vote. The 
vote is concatenated with a random number, 
blinded [3] and sent to the register agent. 

6. After signing the blinded vote with the authority's 
alternative private key and sending it to the ballot 
agent, the register agent terminates itself. 

7. The ballot agent unblinds the data to obtain the 
signed vote, digests the signed vote, concatenates 
the previous vote's digest and encrypts the whole 
message with the pool's public key. The ballot 
agent stores the new digest in the voter's computer 
when erasing the old one. After sending the new 
vote and acknowledging that the vote was casted, 
terminates itself. 

8. The voter created a message combined of two 

parts; voter's identification number encrypted with 
authority's public key and an acknowledgment 
message encrypted with voter's private key. 
Acknowledgment message is salted before 
encryption. 

9. The authority adds another mark to the voter's 
identity in the array of vote casted voters. 

 
5.  Offline Tallying 
After the vote casting phase finished, the pool filters the 

stored messages to capture the valid votes. The process is as 
follows: All packages including the original votes and the 
changed votes are decrypted using pool's private key. If 
there are more than one host in the pool side, all of the hosts 
have to join a coalition to decrypt the packages. The pool 
digests all votes and checks if the digests that was once 
concatenated to the changed votes are really mapping a 
vote. If this is the case, mapped votes are deleted; if not, the 
vote with the fake digest is deleted. At the end of this 
process, there must be only valid votes and valid digests 
which are mapping the votes in the pool. 

All of the valid votes are decrypted appropriately using 
authority's public key (or alternative public key if the vote is 
changed) to read the plain text votes. At the same time, a 
table of valid digests published. 

C. Security Issues 
Seven requirements of a trustworthy electronic voting 

schema are ensured as follows: 
• Eligibility and authentication is ensured during the 

registration phase by officers or biologic 
authentication methods. During the vote casting or 
vote changing phase, it is not possible to activate 
an instance of the register agent if the voter is not 
authorized. 

• Uniqueness is ensured by the pool during the 
tallying phase. The pool accepts only the original 
votes or the votes which was fairly changed by the 
voter. 

• Accuracy is ensured by the pool during the tallying 
phase. It can be ensured that a vote is stored 
correctly if the pool stores a digest mapping the 
vote. 

• Deleted or added votes can be detected simply 
counting the vote casters in the authority and the 
votes in the pool. Any modification can be detected 
by the digests. Therefore, it has to be ensured if the 
digests are altered. If there is more than one host in 
the pool side, one fair party is enough to detect the 
modification. Finally, the voter can check if the 
digest of his/her vote is in the final tally. 

• Verifiability and Auditability is ensured by the 
pool and the voter. Each voter can check if the 
digest of his/her vote is in the final tally. A fair 
independent court make the pool host(s) announce 
their private key(s) for re- tallying. 

• Reliability is ensured by the agent-based approach. 
As the vote casting and tallying is executed 
independent of each other, any temporary 
connection problem during the vote casting or 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:8, 2007

383

 

 

tallying phase will not affect the whole system. 
• Secrecy and Non-coercibility is ensured by the 

ballot agent as it creates random numbers and 
concatenates them to the votes. No one could claim 
that he/she has been created that precise number. 

Some other security issues have to be discussed except 
these requirements; agent security problems, secrecy 
problems and DOS attacks make the whole schema suffer. 
Fortunately, there are some methods to resist. 

By salting the messages in the first and eighth step of the 
vote changing phase and sending the identification number 
after encrypting with voter's private key in the first step of 
the vote casting phase, the schema resists against replay 
attacks which can pave the way for denial of service. 
(Salting is a technique that adds some random bits after the 
original message. It is useful when there is a possibility of 
sending the same message more than once.) 
 To keep the voting strategy of a voter secret, blinding 
method is used in the vote casting and vote changing 
phases. Blinding can easily achieved for an RSA encryption 
schema by executing the following algorithm: A random 
blinding factor b  created and the number )(mod. nbvx e=  
is calculated using authority's public key and the vote, x  is 
sent to the register agent. Register agent calculates the 
number )(mod nxy d=  and sent it back to the ballot agent. 
Ballot agent unblinds the number by calculating 

vnbyz == )(mod/ . 
Using more than one host in the pool side makes the 

schema resist against secrecy problems caused by traffic 
analysis. As the votes are encrypted in a known order using 
hosts' public keys, the hosts can behave just like a mix-net 
during the tallying phase. Performance drawbacks of mix-
net approach are relatively unimportant as the tallying phase 
is executed offline. 

Probably, the most problematic and important issue is the 
agent security. As we mentioned before, leakage of 
authority's private key is lethal for the security of the 
schema; even the software agents will not let people execute 
themselves unauthorized. It might be possible to create valid 
votes using authority's private key and sending them to the 
hosts at the pool side. However, detecting the surplus votes 
is easy by comparing the number of votes in the pool and 
the number of vote casted voters in the authority; it is not 
possible to find which votes are fake, causes a confused 
crowd. Fortunately, Hohl proposes a solution [23] against 
data leakage from an agent which can be used together with 
other methods [24] which protect agents against 
misbehaving agent frameworks. Hohl's method is messing 
up the code and data of the agent while keeping its functions 
unchanged till its expiration time. This method can be safely 
used in our schema as an election continues at most a few 
hours. Furthermore, it is possible to deliver fair frameworks 
to voters during the registration phase. Agents can check 
whether the frameworks are modified or not by digesting 
the framework codes before activating. It is also possible to 
inject a random number into voter frameworks during 
registration phase which makes each framework's digest 
unique, so register agents check each voter's framework 
independently. 

IV.  CONCLUSIONS AND FUTURE WORK 
Many electronic voting systems ensure the required 

security issues using many network transactions and 
cryptologic calculations. On the contrary, using agents, we 
observe that some security mechanisms and cryptologic 
calculations can be transferred into the voter's computer 
reducing the load on the servers during a large-scale 
election. Moreover, offline calculations make the schema 
attractive and eliminate the necessity of expensive servers. 
If the servers are distributed homogeneously, each server 
can act mostly as a file server instead of executing 
cryptologic calculations. Another advantage of using agent-
based approach is the flexibility. Each computer can be 
customized and supervised remotely and any modification 
in the voting system can be transferred to all of the 
computers easily with the help of agents. 

Such a schema with 1000 voters and a single host at the 
pool side can easily realized using Java language. In the 
simulation, 1024 bit RSA keys used for asymmetric 
cryptography, 168 bit TripleDES keys used for symmetric 
cryptography, SHA1 is used for digesting and Java provided 
SecureRandom class used for random number generation. In 
the simulation, generation of a register agent takes between 
2000 and 2500 milliseconds with a mean value of 2322 
milliseconds and tallying of a vote takes between 170 and 
470 milliseconds with a mean of 236 milliseconds on an 
ordinary computer which has 1000 Mhz of CPU speed and 
512 MBytes of RAM. Extrapolating the results to a ten 
million voter scenario, calculations during the registration 
takes about 5 hours and tallying takes about 40 minutes with 
1000 ordinary computers. It have to be noted that adding 
new hosts to the pool side affects the tallying time linearly. 
Therefore, 10 independent hosts at the pool side makes the 
tallying time about 400 minutes, means nearly 7 hours. 

In the future, agent-based approach can be adapted on 
other electronic voting schemas. Using homomorphic 
cryptography in an agent-based electronic voting approach 
might be a better way of voter secrecy.  

REFERENCES   
[1] Ku, Ho, "An e-Voting schema against Bribe and Coercion," in 

Prooceedings of the 2004 IEEE International Conference on e-
Technology, e-Commerce and e-Service, Taipei, 2004. 

[2] "Report of the National Workshop on Internet Voting: Issues and 
Research Agenda," Internet Policy Institute, Maryland, 2001. 

[3] M. Stadler, J.M. Piveteau, and J. Carmenisch, "Fair blind signatures," 
Advances in Cryptology - Eurocrypt '95, St.Malo, 1995, pp. 209-219. 

[4] Benaloh. "Verifiable Secret-Ballot Elections," Ph.D. Thesis, Yale 
University, New Haven, 1996. 

[5] D. Chaum. "Untraceable Electronic Mail, Return Addresses, and 
Digital Pseudonyms," Communications of the ACM, vol. 24, no. 2, 
1981, pp. 84-88. 

[6] M. Abe, F. Hoshino. "Remarks on Mix-Networks Based on 
Permutation Networks," presented at the PKC 2001, Cheju Island, 
Korea. 

[7] D. Boneh, P. Golle. "Almost Entirely Correct Mixing With 
Applications to Voting," presented at the 9th ACM-CCS Conference, 
Washington, USA, 2002. 

[8] J. Furukawa, K. Sako. "An Efficient schema for Proving a Shuffle," 
presented at the CRYPTO 2001, Santa Barbara, USA. 

[9] P. Golle et al., "Optimistic mixing for Exit-Polls," presented at the 
Asiacrypt 2002, Queenstown, New Zealand. 

[10] M. Jakobsson, A. Juels, R.L. Rivest. "Making Mix Nets Robust for 
Electronic Voting by Randomized Partial Checking," presented at the 
USENIX Security Symposium, San Francisco, USA, 2002. 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:8, 2007

384

 

 

[11] O. Baudron et al., "Practical Multi-Candidate Election system," 
presented at the PODC 2001, Rhode Island, USA. 

[12] R. Cramer et al., "A Secure and Optimally Efficient Multi-
AuthorityElection schema," presented at the Eurocrypt 1997, 
Konstanz, Germany. 

[13] P. Fouque et al., "Sharing Decryption in the Context of Voting or 
Lotteries," presented at the Financial Cryptography 2000, Anguilla, 
British West Indies. 

[14] B. Schoenmakers. "A Simple Publicly Verifiable Secret Sharing 
schema and its Applications to Electronic Voting," presented at the 
Crypto 1999, Santa Barbara, USA. 

[15] G. Dini, "A Secure and available electronic voting service for a large-
scale distributed system," Future Generation Computer Systems, vol. 
19, 2002, pp. 69-85. 

[16] C.-C. Chang, W.-B. Wu. "A secure voting system on a public 
network," Networks, vol. 29, no. 2, 1997, pp. 81-87. 

[17] D. Chaum. "Elections with unconditionally secrets ballots and 
disruption equivalent to breaking RSA," Proceedings of Eurocrypt'88, 
Davos, Switzerland, 1988, pp. 177-182. 

[18] J.D. Cohen, M.J. Fischer. "A robust and verifiable cryptographically 
secure election schema," Proceedings of the 26th IEEE Annual 
Symposium on Foundations of Computer Science, 1985, pp. 372-382. 

[19] K.R. Iverson, "A cryptographic schema for computerized general 
elections," Proceeding of Advances in Cryptology— CRYPTO '91, 
Santa Barbara, USA, 1991, pp. 405-119. 

[20] H. Nurmi, A. Salomaa, L. Santean, "Secret ballot elections in 
computer networks," Computer Security, vol. 10, no.6, 1991, pp. 553- 
560. 

[21] R.S.-N.A. Baraani-Dastjerdi, J. Pieprzyk, "Secure voting protocol 
using threshold schemas," Proceedings of the 11th IEEE Annual 
Computer Security Applications Conference, New Orleans, USA, 
1995, pp. 143-148. 

[22] C. Boyd, "A new multiple keys cipher and an improved voting 
schema," Proceedings of Advances in Cryptology—
EUROCRYPT'89, Hounthalen, Belgium, 1989, pp. 617-625. 

[23] F. Hohl, "Time Limited Blackbox Security: Protecting Mobile Agents 
From Malicious Hosts," Lecture Notes in Computer Science, vol. 
1419, 1998, pp. 92-113. 

[24] A. Wagner, "Implementing Mobile Agent Security In An Untrusted 
Computing Environment," Proceedings of the 8th International 
Conference on Telecommunications, Zagreb, 2005, pp. 591-594. 

 
Mehmet T. Sandıkkaya born in Ankara, 1979. Sandıkkaya obtained his 
B.Sc. degree from the Electrical Engineering Department of Istanbul 
Technical University, Istanbul, Turkey in 2002. 
 He was with Aselsan in 2000 and with IBM in 2001 as a Trainee. He is 
working as a Research Assistant since 2002 with Informatics Institute of 
Istanbul Technical University, Istanbul, Turkey. 
 Eng. Sandıkkaya is a student member of IEEE since 2000 and the chair 
of IEEE Power Engineering Society Student Branch Chapter at Istanbul 
Technical University since 2004. 


