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Abstract—In this work, a radial basis function (RBF) neural 

network is developed for the identification of hyperbolic distributed 
parameter systems (DPSs). This empirical model is based only on 
process input-output data and used for the estimation of the 
controlled variables at specific locations, without the need of online 
solution of partial differential equations (PDEs). The nonlinear model 
that is obtained is suitably transformed to a nonlinear state space 
formulation that also takes into account the model mismatch. A 
stable robust control law is implemented for the attenuation of 
external disturbances. The proposed identification and control 
methodology is applied on a long duct, a common component of 
thermal systems, for a flow based control of temperature distribution. 
The closed loop performance is significantly improved in comparison 
to existing control methodologies. 
 

Keywords—Hyperbolic Distributed Parameter Systems, Radial 
Basis Function Neural Networks, H∞ control, Thermal systems.  

I. INTRODUCTION 
N DPS, inputs, outputs as well as parameters may change 
temporally and spatially due to diffusion, convection and/or 

conduction phenomena. These systems are mathematical 
described by sets of PDE, where time and spatial coordinates 
are the independent variables. DPSs are quite common in 
industries (heat exchangers, tubular reactors, fluidized beds 
and crystallizers). For example, long ducts for fluid transport 
are key components in many highly utilized industrial thermal 
systems, where they are often used in tandem with other major 
components such as, for example, heat exchangers. The 
energy conservation law in such a system is mathematically 
described by a PDE from which the temperature (the 
dependent variable) can be determined as a function of both 
time and space. If negligible diffusive phenomena and 
constant fluid velocity throughout the duct are assumed, the 
resulting PDE is one-dimensional and also belongs to a 
particular class of distributed parameter systems, known as 
hyperbolic DPSs.  

Control of DPSs has attracted a lot of research during the 
last years. However, most methodologies focus on parabolic 
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systems, since they can be sufficiently described by finite 
order approximations. Contrary to that, in hyperbolic systems 
all the eigenmodes of the corresponding spatial differential 
operator are of the same level of energy and so an infinite 
order model is necessary to accurately describe the system 
dynamics. References [1]-[2] proposed a methodology to 
model and control hyperbolic systems based on the 
combination of the method of characteristics and the sliding 
mode techniques. Reference [3] introduced the concept of 
characteristic index for the synthesis of states and output 
feedback controllers. Robust schemes to overcome model 
uncertainties and unmodeled dynamics have also been 
proposed in [4]-[5]. Reference [6] used the numerical solution 
of the Lagrangian form of the PDE in a long duct to analyze 
the stability of a proportional-integral (PI) controller for the 
flow-based control of the outlet temperature. Feedback and 
robust control laws that are based on the method of 
characteristics were also proposed in [7]. Nonlinear controller 
was used in [8] to control hot spot temperature in plug flow 
reactor. Finally, model predictive control methodologies have 
also been proposed for hyperbolic DPSs in a number of 
publications [9]-[11].  

All the aforementioned control techniques in some way 
presuppose that the PDEs are known or known subject to 
uncertainties [4], [5]. If we suppose that no knowledge of the 
PDEs exists but only input-output data are available to derive 
a control law, then the identification of the system is firstly 
required. Among other non linear empirical modeling 
methodologies, neural networks have also been used for the 
identification of DPSs in a number of references [12]-[14].  

In this work, we implement a RBF neural network for the 
identification of first order hyperbolic DPSs. Additionally, we 
utilize an H∞ controller of proved robust stability that is 
available in literature [15]-[17]. More analytically, an affine 
RBF neural network is firstly developed, based purely on 
experimental data, according to the training method described 
in [18]. This neural network can predict the process output 
variables at different locations of the DPS, if it is supplied 
with a number of input past values and the location the 
prediction is required. Afterwards, the empirical model is 
transformed to a nonlinear state space representation, by 
considering temperature at specific locations as well as past 
values of velocity as state variables. In this representation the 
unmodeled dynamic behavior is also included as an additional 
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bounded term. This new representation allows the 
straightforward implementation of the robust H∞ control 
configuration [15]-[17] that ensures stability. The overall 
proposed methodology is used for the identification and 
control of the temperature distribution along a duct (key 
component of thermal systems), when the fluid velocity is 
considered as the manipulated variable. The performance of 
the neural network identification method is tested over a 
number of validation data and through step tests with 
encouraging results. The same disturbance attenuation 
examples used in [6] are also used in this work in order to test 
the control configuration. The advantages of the proposed 
methodology are that no discretization is performed online, 
since the model can estimate temperature at any location and 
that stability is ensured in a region of the origin. 

The rest of the paper is synthesized as follows: In section II, 
the structure of the RBF neural network is described and in 
section III the development of a state–space representation is 
analyzed. The nonlinear robust control law for temperature 
and the thermal system that will be used as test example are 
presented in sections IV and V respectively. The efficiency of 
the RBF identification method and the performance of the 
controller are examined in section VI and finally, the 
conclusions of this work are summarized in the last section of 
the paper.   

II.  RBF NEURAL NETWORK FOR DPSS 
RBF neural networks have been widely used for the 

simulation and control of nonlinear processes. In order to 
describe a process using a neural network, a number of input-
output data should be collected using appropriate sampling 
interval ts. These data are then involved in the training 
procedure in order to determine the neural network 
parameters. RBF networks consist of three layers, namely the 
input layer, the hidden layer and the output layer. Training of 
an RBF network actually means the determination of the 
number of nodes in the hidden layer, the hidden node centers 
and the output weights, so that the deviation between the 
predicted and the true values of the output variables over the 
set of  the available data be minimal. The produced network is 
validated using a similar set of input-output data that is not 
involved during the training procedure.  

The training method used in this work is based on the fuzzy 
partition of the input space, which is produced by defining a 
number of triangular fuzzy sets on the domain of each input 
variable. The centers of these fuzzy sets form a 
multidimensional grid on the input space. A rigorous selection 
algorithm chooses the most appropriate knots of the grid, 
which are then used as the hidden node centers in the 
produced RBF network model. The so called fuzzy means 
training method does not need the number of centers to be 
fixed before the execution of the method. Due to the fact that 
it is a one-pass algorithm, it is extremely fast even in the case 
of a large database of input-output training data. One 
additional advantage is that the utilized training algorithm 

needs only one tuning parameter, namely the number of fuzzy 
sets that are utilized to partition each input dimension. The 
fuzzy means training methodology is described in details in 
[18]. 

The simulation and control of DPSs requires two 
modifications of the structure of classical RBF networks. 
Firstly, the network should be able to estimate the dynamic 
behavior of controlled variables at any spatial point along the 
duct. Secondly, to be able to guarantee robust stability (See 
section IV), the nonlinear model should have an affine 
structure. To achieve these properties, two different vectors 
are considered to be the neural network inputs. The first input 
is an m×1 vector that contains the most recent value of the 
manipulated variables, while the second vector contains 
another m·(np-1) past values of process inputs and the location 
that the estimation of its outputs is required. Fig. 1 presents 
the aforementioned structure of the proposed RBF network. 
More analytically the first and the second inputs would be:   
 

( ) ( ) ( ) ( )1 21 1 1 ... 1
T

mt u t u t u t⎡ ⎤− = − − −⎣ ⎦u  (1) 

( ) ( ) ( )1, 2  ... 
TT T

j jt x t t np x⎡ ⎤− = − −⎣ ⎦U u u  (2) 
 

where, ( )1iu t −  i=1,…,m is the deviation from steady state for 

the ith input at time level t-1, jx  j=1,…, ns is the location of 
the jth sensor and ns the total number of sensors. The second 
input vector is filtered in the hidden layer according to the 
following equation: 
 

( ) ( )( )2

2
1, 1,c j j cz t x f t x− = − −U c  (3) 

 

where cz  is the response of the cth node, f is the Gaussian 
function, cc is the center of the cth node (of dimension m·(np-
1)+1) and C is the total number of hidden nodes. The 
responses of the hidden nodes and the first input are then 
weighted, also adding a bias, to give the estimation of the n 
controlled variables (also deviation from steady state) at the 
current time-level and at the specific spatial point  

( ) ( ) ( )1, ,, , ... ,j j jRBF RBF n RBFt x y t x y t x
∧ ∧ ∧⎡ ⎤= ⎢ ⎥⎣ ⎦
y  as follows: 

( ) ( ) ( )1 1 2
1

, 1 1,
C

j c c j CRBF
c

t x t z t x
∧

+ +
=

= ⋅ − + ⋅ − +∑y w u w w  (4) 

 

In the above equation wc+1, c=1,…,C is the n×1 weight 
corresponding to the response of the cth node, w1 is the n×m 
weight of the most recent value of fluid velocity and wC+2 is a 
n×1 bias. These weights are calculated by solving a 
constrained least squares problem that makes sure that for zero 
inputs, the outputs’ deviation from steady state will also be 
zero. From Eqs. (1)-(4), it becomes clear that the controlled 
variables estimation at one location does not depend on their 
estimated values at other locations, as it happens in a model 
based on finite differences. This allows treating the distributed 
system as a lumped one, and applying existing robust control 
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methodologies that take into account the existing model 
mismatch.  
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Fig. 1 The RBF neural network architecture for distributed parameter 

system identification 

III. STATES SPACE REPRESENTATION OF THE RBF MODEL 
In this section a states space representation of the system is 

derived based on the previously described neural network. 
The required form of the states space system, in order to apply 
an existing robust control methodology [15], is: 
 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )1 2 31t t t t t t+ = + +s f s f s u f s d   (5) 

( ) ( )( )
( )

1 t
t

t

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

h s
ψ

u
 (6) 

where ( )ts  is the vector of states at time level t, 

( )( ) ( )( ) ( )( ) ( )( )1 2 3, , ,t t t tf s f s f s h s  are continuous nonlinear 

functions of states with ( )1 =f 0 0  and ( ) =h 0 0 , ( )tu  is the 

vector of m manipulated variables, ( )td  is the model 

mismatch and ( )tψ are the controlled variables.  

Such a model can be developed if outputs ( )1, jt x+y  at 

locations xj, j=1,…, ns and the np-1 past values of each input 
(deviations from steady state) are chosen as state variables: 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1 1

, ... , 1 ... 1

... ...

TT T T T
ns

T

n ns n ns n ns m np

t t x t x t t np

s t s t s t s t⋅ ⋅ + ⋅ + ⋅ −

⎡ ⎤= − − +⎣ ⎦

⎡ ⎤= ⎣ ⎦

s y y u u
 (7) 

 
From Eq. (7) the number of states is equal to n·ns+m·(np-

1), namely the number of locations where estimations of 
process outputs are required plus np minus one past values of 
each of the m inputs. At the next time level t+1 the state vector 
is given by Eq. (8) since there is a mismatch ( ), jt xd , j=1,..., 

ns between the neural network estimation and the actual 
process outputs. In Eqs. that follow the symbol I denotes the 
identity matrix and 0 the zeros matrix of proper dimensions. 

( )

( )

( )
( )
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( )
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s t
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=
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⋅
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⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
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⎣ ⎦

∑

∑

w w

w w

0

y
w

y I
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u
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M

( )

( )

1,

,n ns

ns

t x

t x⋅

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

d

d
M  (8) 

Consequently:  

( )( )

( )( ) ( )( )
( )

( )( ) ( )( )

( )

( ) ( )

1 22

1 , 1 2, 1 1
1 1

1 22

1 , 2, 1 1
1 1 1

1

2

exp

exp

0

m npC

c n ns i c i c Cc m np
c i

npC

c n ns i c i ns c Cc m np
c i

n ns m

n ns m np

s t c x c

s t c x ct

s t

s t

σ

σ

⋅ −

+ ⋅ + +⋅ − +
= =

−

+ ⋅ + +⋅ − +
= =

⋅ + +

⋅ + ⋅ −

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎜ ⎟⋅ − − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎝ ⎠⎢
⎢
⎢ ⎛ ⎞⎛ ⎞⎢ ⋅ − − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎢= ⎝ ⎠⎝ ⎠⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

∑ ∑

∑ ∑

w w

w wf s

M

M

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (9) 

 

( )( ) ( )2 2 1 1 2...
T

T T
m m m npt × −

⎡ ⎤= = ⎣ ⎦f s F w w I 0  (10) ( )( )
( )

3 3
1

n ns

m np n ns
t ⋅

− × ⋅

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦

I
f s F 0  (11) 
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( )( ) ( )

( ) ( ) ( )
( ) ( )1

1 1
1 1 1

n ns n ns m np

m np n ns m np m np

t t t
⋅ ⋅ × ⋅ −

⋅ − × ⋅ ⋅ − × ⋅ −

⎡ ⎤
⎢ ⎥= = ⋅
⎢ ⎥⎣ ⎦

I 0
h s s H s

0 0
 (12) 

 
The system of Eqs. (8)-(12) now has the required form of (5), 
(6). The condition ( )1 =f 0 0  is ensured by using the 
constrained least squares method to determine the output 
weights during the neural network training procedure. From 
(12), it is also valid that ( ) =h 0 0 . The linearization of 

( )( )1 tf s  will give the square matrix, 
( )1

1

=

∂
=

∂
s 0

f s
F

s
. 

IV. ROBUST H∞ CONTROL LAW 
The state space representation of the previous section 

allows the straightforward application of robust H∞ control, 
where the control law is expressed as follows [15]: 

 

( ) [ ] [ ] ( )( )1
2 3 1

T
m m n nst t−

× ⋅= − ⋅ ⋅ ⋅ ⋅u I 0 R F F P f s  (13) 
 
where P is a positive definite symmetric 
( ) ( )· ·( -1) · ·( -1)n ns m np n ns m np+ × +  square matrix that 
satisfies the following matrix inequality: 
 

[ ] [ ]1
1 1 1 1 1 1 2 1 2 1

TT T T −− + + − <P F PF H H F P F F R F F PF 0 (14) 

2 2 2 3
2

3 2 3 3

T T
m

T T
n nsγ ⋅

⎡ ⎤+
= ⎢ ⎥

−⎣ ⎦

F PF I F PF
R

F PF F PF I
 (15) 

 
and R is a (m+n·ns)×(m+n·ns) matrix. The control law of Eq. 
(13) guarantees that the closed loop system of (9)-(12) and 
(13) has a finite L2-gain ≤ γ in a neighborhood of the origin of 
the form { } { }T

a a rΩ = ≤ ⊆ Ω = ≤s s Ps s s  for every 

( ) { }2 22
1 1

1, ,n nst γ γ γ
⋅∈ = ∈ ≤ <d D d d ψ� .From that 

follows that the closed loop system is robustly stable in aΩ . 
Remark 1. Parameter γ1 can be determined from the input-

output data that are used for the validation of the neural 
network since ( )td  represents only the model mismatch. 

V.   APPLICATION IN THERMAL SYSTEMS 
Fig. 2 presents a thermal system which will be used to test 

the proposed control methodology. It is a one-dimensional 
long duct with circular cross section, being in an environment 
of constant ambient temperature. The temperature at the 
entrance of the duct is considered constant, as well as the heat 
transfer coefficient, the fluid properties and the geometry 
diameter of the duct. In addition, any diffusive phenomena are 
neglected. Under these assumptions, the temperature 
distribution depends only on the fluid velocity. Application of 
the energy conservation law in this system results in a first 
order hyperbolic partial differential equation. After 
appropriate nondimensionalization [6], a governing equation 

of the following form is obtained: 
 

( ) ( ) ( ) ( )
, ,

, 0
T t x T t x

v t T t x
t x

∂ ∂
+ + =

∂ ∂
 (16) 

0 x L≤ ≤  and 0t ≥ . 
 
where L is the length of the duct, x denotes the distance from 
the duct entrance, t denotes time, ( ),T t x  is the temperature 

and ( )v t  is constant value of the fluid velocity throughout the 

duct at time t. The boundary condition is ( ),0 1inT t T= = . In 
order to obtain the initial temperature steady state distribution 
Eq. (16) is solved using the finite differences method with 
suitably chosen spatial and temporal intervals, xΔ  and Δt 
respectively, so that the Courant-Friedrichs-Lévy stability 
condition ( ) 1tCFL v t x

Δ= ≤Δ  is satisfied. So, for 1v = , 

0.001tΔ =  and 0.01xΔ = , the numerical solution of Eq. (16) 
until t=3 gives the distribution depicted in Fig. 3.  
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Fig. 2 The schematic representation of a long duct with constant 

ambient temperature and variable fluid velocity 
 

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

duct length x

S
te

ad
y 

st
at

e 
te

m
pe

ra
tu

re
 T

ss
(x

)

 
Fig. 3 Temperature steady state distribution for v=1 

VI. SIMULATION RESULTS 

A.  Neural Network Training 
Eq. (16) is also used to obtain the training and the 

validation sets for the development of the neural network. A 
set of 3000 random velocity values in the interval 
0.9 1.1v≤ ≤  were produced and 3000×10 temperature values 
were collected at equidistant locations and with sampling time 

0.2st = . The last 100 input-output data were used for 
validation purposes, while the rest of them were used for 
training the network. Table I, presents the performance of the 
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produced neural network models with respect to the number 
of hidden nodes. Fig. 4 compares the true values with the 
corresponding predictions produced by the neural network 
consisting of 58 nodes. A step change of the manipulated 
variable was used to further test the accuracy of the model. 
The fluid velocity was increased from 1 to 1.05 and the RBF 
model predictions are compared with the true temperature in 
Fig. 5. Both final temperature distributions (after 2 time units) 
and the responses of the outlet temperature are depicted. The 
RBF model was again proved very accurate and will be used 
in the next paragraph for the calculation of the control law. 

B.  Performance of the Proposed Control Methodology 
The proposed controller is now tested in disturbance 

rejection test cases. Firstly, temperature is assumed to be 
measured in real time only at the outlet of the duct, in order to 
check the produced results against those in [6], where the 
same case has been examined. So, in the nonlinear 
configuration of Section IV, the values of ns=1 and x=1 were 
used. The fluid velocity was increased from 1 to 1.01. The 
desired steady state was that corresponding to v=1. Parameter 
γ1 was estimated from the data used to train the neural 
network. Table II gives the maximum obtained value of γ1 and 
also summarizes the rest of control law parameters. The 
matrix calculated from Eqs. (14)-(15) is:  
 

 1.0000    0.0000    0.0000    0.0000   -0.0000
 0.0000    0.5709    0.3826    0.0951   -0.0254
 0.0000    0.3826    0.3066    0.0914   -0.0223
 0.0000    0.0951    0.0914    0.0360   -0.0079
-0.0000   

=P

-0.0254   -0.0223   -0.0079   0.0018

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (17) 

 
Fig. 6 presents the temperature response and Fig. 7 depicts 

the control moves that were chosen by the controller to lead 
the system to the desired steady state. The results are 
significantly improved in comparison to those presented in [6] 
(for Ki=-1, Kp=1). Not only the time needed by the system to 
return to its initial steady state is substantially reduced (around 
three time units are required), but also the peak temperature 
value is much lower. An additional significant advantage of 
the proposed methodology is that the stability of the controller 
is ensured, by the described offline stabilization procedure. 
The same example was repeated by considering temperature at 
five locations [ ]0.2 0.4 0.6 0.8 1=x  as controlled 
variable. In this case ns= 5 and the number of states is equal 
to 9 (P is a 9×9 matrix). Fig. 8 depicts the performance of the 
system as far as the dynamic behavior of the outlet 
temperature is concerned and Fig. 9 shows the control moves. 
It can be noticed that the response is further improved in this 
case. Indeed the capability to estimate and control temperature 
in locations inside the duct accelerates the response at exit. 

 
 
 

 
 

TABLE I  
SUM OF SQUARE ERRORS BETWEEN PREDICTIONS AND REAL VALUES 

Number of fuzzy 
sets 

Number of hidden 
nodes C 

SSE calculated on 100 
examples 

3 5 9.681 10-4 
4 16 1.898 10-4 
5 30 3.915 10-5 
6 58 1.213 10-5 
7 93 1.001 10-5 

 
TABLE II 

CONTROL LAW PARAMETERS VALUES 
Control Law Parameters Values 
m 1 
n 1 
np 5 
vss 1 
max γ1 0.22 
γ2 2 
r  0.0224 
a  0.0006 
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Fig. 4 Actual values and predictions of the neural network model 
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Fig. 5 (a) The temperature distributions after 2 time units, (b) the 

outlet temperature responses to a velocity step change 
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Fig. 6 Outlet temperature response in the operating area around v=1 
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Fig. 7 Control moves in the operating area around v=1 

0 2 4 6 8 10
0.3696

0.3697

0.3698

0.3699

0.37

0.3701

0.3702

0.3703

0.3704

0.3705

0.3706

Te
m

pe
ra

tu
re

 T
(t,

1)

time t

outlet temperature
setpoint

 
Fig. 8 Outlet temperature response, considering temperature at x = 

[0.2 0.4 0.6 0.8 1] as controlled variables 
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Fig. 9 Control moves, considering temperature at x = [0.2 0.4 0.6 0.8 

1] as controlled variables 
 

VII.  CONCLUSION 
An alternative approach for modeling and control 

hyperbolic DPSs has been presented in this work. An affine 
RBF neural network model, based on input –output data, is 
proposed to identify the distributed system, avoiding the 
solution of the corresponding PDEs that are not always 
known. A state space representation of the RBF network is 
then obtained that allows the implementation of an H∞ control 
methodology. The proposed control takes into account the 
model mismatch and so can guarantee robust stability in a 
region of the original steady state. The proposed methodology 
is applied in a long duct, key component of many industrial 
thermal systems, and is proved to overcome delay effects and 
to improve the response of the outlet temperature by 
considering the temperature distribution along the duct. The 
control methodology could be easily extended to other DPSs 
of hyperbolic form, such as convection-reaction processes, by 
developing each time an adequate empirical model.  
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