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Abstract—Modern low earth orbit (LEO) satellites that require 
multi-mission flexibility are highly likely to be repositioned between 
different operational orbits. While executing this process the satellite 
may experience high levels of vibration and environmental hazards, 
exposing the deployed solar panel to dangerous stress levels, fatigue 
and space debris, hence it is desirable to retract the solar
satellite repositioning to avoid damage or failure. 
A novel concept of deployable/retractable hybrid solar array 

system composed of both rigid and flexible solar panels arranged 
within a petal formation, aimed to provide a greater power to v
ratio while dramatically reducing mass and cost is proposed.

 

Keywords—Deployable Solar Panel, Satellite, Retractable Solar 
Panel, Hybrid Solar Panel. 

I. INTRODUCTION 

VER the last four decades satellite solar array systems 

have evolved from body-mounted panels supplying a 

total power output of less than 1 watt, to a multi

deployable system supplying a total power output of over 

75kW [1]. The constant demand of satellite power growth has 

been driven by the evolution of technology, culture, and 

science. Furthermore due to the diverse range of satellite 

missions and environments, a large variety of rigid and 

flexible solar array configurations, 

mechanisms have been designed and employed on 

and current satellites [1]. 

Taking advantage of the new lightweight technology in 

solar panels [2], a mechanical system composed of both rigid 

and flexible solar panels arranged within a petal formation is 

proposed to yield a stowed to deployment area ratio up to at 

least 1:7, which improves the power density dramatically.

The system consists of five subsystems, the outer ones 

based on a novel eight-petal configuration that provides a 

large surface and supports the flexible solar panels. A single 

cable and spool based hinge mechanism was desi

synchronously deploy/retract the panels in a safe, simple and 

efficient manner, while the mass compared to the previous 

systems is considerably reduced. The system was 

simulated and tested using the CAD package Solidworks

and a half system prototype was fabricated. 

The relevant challenge to assure a smooth movement is 

resolved by a proper minimization of the gearing system

optimization of the resistive inertial loads

micro-controller system. 
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II. DESIGN 

The present design status outlines the requirements, 
geometry and operation of the solar panel’s structural platform 
and deployment/retraction mechanism
specification is: 
• Lightweight, strong, reliable and durable

• Stowed to deployed area better 

• Protect the solar panel by any damage when stowed

• Use of material space qualified

• Endure high stress and fatigue

• Low power, low mass and energy efficient
 

 

Fig. 1 Fully Deployed Configuration

 

The overall configuration of the deployed 
system is illustrated in Fig. 1. It is notable the wide area 
obtained with combining the rigid and the flexible solar 
panels. 
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A. Structural Platform 

A purposely designed solar array structural platform is 
required to create a secure and reliable framework, providing 
strength, protection and mounting points for the relevant solar 
cells and subsystems. Furthermore, the structural platform 
determines the stowed and deployed panel architecture
crucial the mechanism travels between the deployment and the 
stowed status.  
Rigid panel solar arrays are most commonly made from a 

lightweight aluminium honeycomb core, which are hinged 
together and deployed via a pulley based system or a 
pantograph structure. Considering high efficienc
junction solar cells (MJ), rigid platforms have the advantage 
of a high areal power density (W/m2). On the other hand, the 
disadvantages include a high specific mass (kg/m2), high 
specific cost ($/W) and a low specific power (W/ kg). These 
characteristics are desirable for when a low power supply is 
required. Due to the high areal power density a compact solar 
array can be designed allowing for a decrease in dep
volume, weight and cost [1], [4]-[20]. 
Flexible planar arrays are most commonly m

lightweight composite structure consisting of graphite fiber 
reinforced plastic (GFRP), which is either rolled or folded out 
via a series of rigid deployable booms. Flexible planar arrays 
film platforms have the advantage of a low specific cost 
($/W), low specific mass (kg/m2) and a high specific power 
(W/ kg). On the other hand, the system has a lower power 
density (W/m2) than rigid systems; hence a larger panel area 
is required. These characteristics are extremely desirable for 
high power supply applications, where the reduced mass of the 
solar blanket outweighs the heavy deployment mechanisms. 
Due to the thinness and flexibility of the solar cells the array 
can be folded into a compact volume for launch
Fig. 2 compares the various component masses upon the 

rigid and flexible structural platform systems. Rigid structural 
platforms generally have a much heavier solar panel substrate 
and overall system mass than flexible arrays. However, 
flexible planar solar arrays require a heavie
mechanism [42]-[69]. 
 

Fig. 2 Primary Structural Platform Retraction Sequence [1]
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Once flexible solar cells reach a higher efficiency, and 
greater progress is made into lighter deployment mechanisms, 
flexible solar arrays will dominate the s
market. However, a more current solution would incorporate a 
hybrid design, combining the advantages of the rigid array’s 
structural integrity as well as the flexible array’s compact
stowage volumes and lower mass
In Fig. 3 it is shown the aperture mechanism with the details 

the novel deployable/retractable structural platform. It 
incorporates both rigid and flexible panels arranged within 
three distinct sections to form an efficient, effective and 
reliable lightweight solar panel structure that proposes to 
increase the power density dramatically
the system is mirrored around the centre axis of panel 1 and 
the deployment/retraction of each side is could be independent 
or synchronized with the other sectio
The primary structural platform consists of panels 1, 2 and 

3, which could be made with a corrosive resistant, lightweight 
aluminium honeycomb sheet with a carbon 
[73]. The panels are hinged adjacently to neighbouring panels 
and follow a concertina style deployment/retraction sequence 
[73], which consequently constructs the backbone of the 
complete solar panel system. The bottom of panel 1 is 
mounted to the satellite and upon retraction panel 2 folds flush 
upon the topside of panel 1, a
underside of panel 2, as shown in Fig. 2.
 

Fig. 2 Primary Structural Platform Retraction Sequence

The secondary structural platform contains an array of eight 

smaller ‘petal’ panels (labelled

upon panel 3 in an overlapping circular staircase pattern. Like 

the primary structure, the panels 

aluminium honeycomb sheet with a carbon fibre shell. Upon 

retraction the petals of panel 4 push and slide over the top of 

each other, retracting as a unit until flush against the topsid

panel 3, as shown in Fig. 3. 

demonstrates the properties of the design solution based on a 

petal structure. 

The tertiary structural platform entails four flexible panels, 

which are made from a super tough, exceptionally lightweight 

open weave fabric called Vectran that remains very flexible 

within a very cold environment as in the space. The flexible 

Once flexible solar cells reach a higher efficiency, and 
greater progress is made into lighter deployment mechanisms, 
flexible solar arrays will dominate the satellite solar array 
market. However, a more current solution would incorporate a 
hybrid design, combining the advantages of the rigid array’s 
structural integrity as well as the flexible array’s compact 
stowage volumes and lower mass [70], [71]. 

it is shown the aperture mechanism with the details 
the novel deployable/retractable structural platform. It 
incorporates both rigid and flexible panels arranged within 
three distinct sections to form an efficient, effective and 

panel structure that proposes to 
e the power density dramatically. The architecture of 

the system is mirrored around the centre axis of panel 1 and 
the deployment/retraction of each side is could be independent 
or synchronized with the other section. 
The primary structural platform consists of panels 1, 2 and 

3, which could be made with a corrosive resistant, lightweight 
aluminium honeycomb sheet with a carbon fibre shell [72], 
]. The panels are hinged adjacently to neighbouring panels 

a concertina style deployment/retraction sequence 
], which consequently constructs the backbone of the 

complete solar panel system. The bottom of panel 1 is 
mounted to the satellite and upon retraction panel 2 folds flush 
upon the topside of panel 1, and panel 3 folds flush upon the 
underside of panel 2, as shown in Fig. 2. 

 

Primary Structural Platform Retraction Sequence 

 

The secondary structural platform contains an array of eight 

labelled 4 and 5), which are hinged 

on panel 3 in an overlapping circular staircase pattern. Like 

the primary structure, the panels could be made of an 

aluminium honeycomb sheet with a carbon fibre shell. Upon 

retraction the petals of panel 4 push and slide over the top of 

ting as a unit until flush against the topside of 

 The sequence of folding clearly 

demonstrates the properties of the design solution based on a 

The tertiary structural platform entails four flexible panels, 

ch are made from a super tough, exceptionally lightweight 

open weave fabric called Vectran that remains very flexible 

within a very cold environment as in the space. The flexible 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:1, 2015

159

 

panels are fixed and tensioned between the edge of panel 4 

and the stowage cover. Upon retraction the flexible panels are 

simultaneously rolled into the flexible stowage cover as the 

structural platform is retracted. Table I illustrates a possible 

design of a very compact stowed vs. deployed structural 

platform. 
 

Fig. 3 Secondary Structural Platform Retraction Sequence
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Structural Platform Retraction Sequence 

TABLE
STRUCTURAL PLATFORM 

Panel Quantity 

Panel 1 1 

Panel 2 2 

Panel 3 3 

Panel 4 4 

Panel 5 12 

Flexible Panel 4 

Deployed Total 26 

Stowed Total 26 

B. Deployment/ Retraction Mechanism

A solar panel’s deployment mechanism has to efficiently 
control and synchronize the movement of the structural 
platform between the stowed an
simplistic, lightweight and minimalistic spool and cable based 
hinge mechanism, which controls both the deployment and 
retraction of the entire system with two cables is proposed. 
 

Fig. 4 Detail of the Hinge Mechanism 

 
 

TABLE I 
LATFORM TEXT DESIGN 

Total Area (m2) Mass (kg) 

0.149 0.1043 

0.124 0.0868 

0.129 0.0903 

0.082 0.0574 

0.228 0.1596 

0.263 0.0263 

0.976 0.5247 

0.149 0.5247 

Deployment/ Retraction Mechanism 

A solar panel’s deployment mechanism has to efficiently 
control and synchronize the movement of the structural 
platform between the stowed and deployed configuration. A 
simplistic, lightweight and minimalistic spool and cable based 
hinge mechanism, which controls both the deployment and 
retraction of the entire system with two cables is proposed.  

 

Hinge Mechanism for the Deployment Sequence 
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Both cables are fed through a series of spools throughout 
the primary and secondary structural platform. The paths taken 
by each cable respectively provide a clockwise or 
anticlockwise torque upon the hinge axel, which is dependent 
upon the cable tension. 
Upon deployment, the deployment cable is drawn into the 

drive mechanism and the retraction cable is drawn out. Once 
the torque applied upon the hinge overcomes panel inertia and 
frictional forces, adjacent panels fold from the stowed
deployed position. The retraction function is performed 
exactly replicating and reversing the deployment procedure.
locking block is positioned to prevent over rotation of the 
panels once the system is fully deployed/retracted. The cable 
system is driven using a lead screw mechanism. The 
deployment sequence is described in Fig. 4. 
The order of deployment/retraction of the primary and 

secondary structural platform is dependent upon the inertial 
and frictional forces acting upon each hinge. Consequ
the hinge experiencing the lowest inertial and frictional forces 
will be the first to deploy/retract until restrained in the desired 
position by the locking block. Once locked in place, the 
mechanisms will deploy/retract the remaining hinges in orde
of resistance until the desired task is complete. Therefore, the 
synchronization of the system is dictated via the resistive 
torque forces. To prevent an unwanted catastrophic collision 
between the left and right side of the solar panel system, the 
system architecture has been carefully designed to 
deploy/retract the structural platform in a reliable and safe 
sequence. This has been achieved by optimizing the inertial 
loads acting upon each hinge, and introducing additional 
frictional forces to prevent any unwanted movement. 
illustrates the position and operation of the deployment 
mechanism upon the system’s structural platform.
 

Fig. 6 Position of Hinges

 

Four deployment, D and retraction, R cables are necessary 

to efficiently and effectively control the movement of the full 

solar panel structural platform. The mechanisms operate 

simultaneously and share the load uniformly around the 

structural platform to prevent system damage. The 

deployment/retraction sequence is as follows: 

• The deployment cable is drawn in and the retraction cable 

is drawn out. Vice versa for retraction.

• The primary structural platform deploys/retracts.

• The secondary structural platform deploys/retracts.

• Concurrently, the tertiary structural platform 

deploys/retracts. 
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solar panel structural platform. The mechanisms operate 

simultaneously and share the load uniformly around the 

structural platform to prevent system damage. The 

deployment/retraction sequence is as follows:  
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The primary structural platform deploys/retracts. 

The secondary structural platform deploys/retracts. 

Concurrently, the tertiary structural platform 

III. DRIVE 

A motor-based drive system is required to draw
the deployment/retraction cables in/out in order to power
control and stabilise the solar array’s deployment/retraction 
mechanism. A simplistic, reliable and effective lead screw 
mechanism is proposed. 
As the motor rotates, the nut and carriage are moved along 

the lead screw, pulling or providing slack to either the 
deployment/retraction cable.
screw is used to guide the nut and carriage. 
the lead screw holds the cables at their current position, 
therefore, locking the structural platform in place. A micro
switch is fixed to the limits at either bracket to stop the solar 
array from over extending/retracting. Fig. 7 illustrates the 
chosen design. 
 

Fig. 7 Drive Mechanism

IV. 

A scaled down, half system prototype was constructed to 

test and analyse the performance of the

deployment/retraction systems.

a combination of Correx and aluminium

material for a full final prototype

successfully completed full deployment and retraction 

throughout the testing procedure

V.  CONCLUSION

The advanced structure of the presented solar panel system 
encapsulates a very high power to mass and power to volume 
ratio via the use of flexible solar panels, while eliminating the 
need for heavy and volume intensive deployment mechanisms. 
The simplistic lightweight spool and cable deployment/
retraction mechanism provides an effective deployment/
retraction method and further reduces the volume of the hybrid 
system.  
The proposed system due to an effective and reliable 

mechanism provides a large active surface, whilst being very 
compact. It could be extremely a
ground portable solar panel system.
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 TESTING 

A scaled down, half system prototype was constructed to 

performance of the primary and secondary 

deployment/retraction systems. The prototype was made from 

a combination of Correx and aluminium to mimic the real 

material for a full final prototype. The solar array system 

completed full deployment and retraction 

throughout the testing procedure effectively and efficiently. 

ONCLUSION 

of the presented solar panel system 
encapsulates a very high power to mass and power to volume 
ratio via the use of flexible solar panels, while eliminating the 
need for heavy and volume intensive deployment mechanisms. 
The simplistic lightweight spool and cable deployment/ 

ism provides an effective deployment/ 
retraction method and further reduces the volume of the hybrid 

The proposed system due to an effective and reliable 
mechanism provides a large active surface, whilst being very 
compact. It could be extremely advantageous for use as 
ground portable solar panel system. 
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