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Abstract—For over a decade, the Pulse Coupled Neural Network 

(PCNN) based algorithms have been successfully used in image 
interpretation applications including image segmentation.   There are 
several versions of the PCNN based image segmentation methods, 
and the segmentation accuracy of all of them is very sensitive to the 
values of the network parameters.  Most methods treat PCNN 
parameters like linking coefficient and primary firing threshold as 
global parameters, and determine them by trial-and-error.  The 
automatic determination of appropriate values for linking coefficient, 
and primary firing threshold is a challenging problem and deserves 
further research. This paper presents a method for obtaining global as 
well as local values for the linking coefficient and the primary firing 
threshold for neurons directly from the image statistics. Extensive 
simulation results show that the proposed approach achieves 
excellent segmentation accuracy comparable to the best accuracy 
obtainable by trial-and-error for a variety of images. 
 

Keywords—Automatic Selection of PCNN Parameters, Image 
Segmentation, Neural Networks, Pulse Coupled Neural Network  

I. INTRODUCTION 

HE single layered Pulse Coupled Neural Network (PCNN) 
is a laterally connected two-dimensional array of artificial 

neurons known as Pulse Coupled Neurons (PCN).  Though 
Eckhorn did not refer to his neuron model as PCN, the 
artificial neuron model (Eckhorn’s neuron) developed by him 
based on the study of the visual cortex of cats is the first PCN 
model [1].  By using a laterally connected recurrent network 
of Eckhorn’s neurons, he was successful in emulating some of 
the neuro-physiological phenomena observed in cat’s visual 
cortex.  Ranganath, Kuntimad and Johnson modified 
Eckhorn’s model for image processing applications including 
image segmentation, smoothing and object detection. They 
called the simplified model the pulse coupled neuron [2].  
Both neuron models are being used for image segmentation. 

Though there are several PCNN based image segmentation 
methods, even today, the single-burst algorithm developed by 
Kuntimad and Ranganath in 1999 is considered a classic 
algorithm [3]-[4].  The segmentation accuracy of the single-
burst PCNN algorithm has been compared with those of other 
widely used segmentation methods by segmenting several 
images consisting of two regions, object and background, in 
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which intensity ranges of object and background regions 
overlap significantly. The segmentation result of the PCNN 
based algorithm was found to be consistently better than the 
segmentation results obtained by optimal thresholding, region 
growing, split-and merge, and probabilistic relaxation 
algorithms [3].  It has been proved that the single-burst PCNN 
can segment a two-region image perfectly even if the two 
intensity ranges overlap significantly when there exist linking 
coefficient and linking radius values for which two 
inequalities involving linking coefficient, linking radius, 
object pixel intensity range, and background pixel intensity 
range are consistent [4].  However, no method has been 
suggested for the automatic determination of the two 
parameters from image statistics.  Karvonen used the PCNN 
to segment Baltic sea ice Synthetic Aperture Radar (SAR) 
images [5].  He estimated the Gaussian probability density 
function that best represented the histogram of each region, 
and calculated the primary firing threshold and the linking 
coefficient for each region.  Though his approach may have 
suited to segment Baltic ice SAR images it is not expected to 
give satisfactory result when region pixel intensity distribution 
can not be approximated by a Gaussian probability density 
function.  In many cases, the image or region histogram may 
not even be bi-modal.  Therefore, automatic determination of 
primary firing thresholds and the corresponding linking 
coefficient values is still an open problem.   The PCNN based 
image segmentation process can be viewed as a region 
growing method where seed pixels are identified by the 
neurons that fire during primary firing, and the region 
growing is accomplished by capturing spatially connected 
neighboring neurons through secondary firing.  Stewart et. al. 
have used PCNN to develop a seeded region growing method 
in which seed locations are internally generated [6].  They 
have avoided the difficulty of choosing optimal value for the 
linking coefficient for each region by gradually incrementing 
the value of the linking coefficient to grow the region in 
multiple steps.  The process terminates when at least one of 
the three termination conditions they have specified is 
satisfied.      

A few researchers have used the PCNN with the original 
Eckhorn’s neuron model to segment images [7]-[9].  Note that 
Eckhorn’s neuron consists of a feeding receptive field, a 
linking receptive field, and a spike or pulse generator.  The 
spike generator has one leaky integrator, the output of which 
is the threshold signal.  The feeding and linking receptive 
fields have several leaky integrators.  Each leaky integrator 
has two parameters, amplitude and decay time constant.  Even 
if we assume that all leaky integrators in each receptive field 
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are identical, there are six parameters.  The linking coefficient 
is the seventh parameter.  It is obvious that selection of 
appropriate values for these parameters is a challenging 
problem.  Usually these parameter values are determined by 
trial-and-error.  Also, when Eckhorn’s model is used a neuron 
is allowed to pulse more than once during the segmentation 
process.  Ma et. al. have allowed the pulsing activity to 
continue for a large number of iterations (a few thousand).  At 
the end of every iteration, the entropy of the segmented image 
is computed.  The segmented image of the iteration at which 
the entropy attains its maximum value is taken as the final 
result.  Based on the experiments conducted, they claim that 
as entropy increases the details in the segmented image 
increase [7].  Ma, Liu, and Qian have also suggested that a 
possible way for automating the selection of the segmentation 
result is by selecting the result of the iteration for which the 
discrepancy between the input image and the segmented 
image as measured by the cross-entropy is minimum [8].   

As the accuracy of a PCNN based image segmentation 
algorithm is very sensitive and depends on the values of the 
PCNN parameters, it is important to develop a method for the 
automatic determination of appropriate values for all PCNN 
parameters based on image statistics.  This paper presents a 
method for computing the linking coefficient and the primary 
firing threshold directly from the image histogram.  The 
approach can be used to obtain global as well as adaptive local 
values for both parameters.    

The PCNN based single-burst image segmentation 
algorithm is briefly described in Section II.   An analysis of 
the single-burst segmentation algorithm and the role played by 
the linking coefficient and the primary firing threshold are 
given in Section III.  Two methods for the determination of 
values for the linking coefficient and primary firing threshold 
are given in Sections IV and V.  Section VI presents 
simulation results.  Finally, discussion and conclusions are 
given in Section VII. 

II.   PCNN BASED SINGLE-BURST IMAGE 
SEGMENTATION ALGORITHM 

This section briefly describes the N X N laterally connected 
single-layer PCNN operating in single-burst mode that was 
developed by Kuntimad and Ranganath to segment an N × N 
image [3]-[4].  There is one-to-one correspondence between 
image pixels and PCNN neurons. The neuron Ni,,j 
corresponding to pixel (i, j) consists of a feeding input Xi,,j 
(intensity of image pixel (i, j)), a linking receptive field which 
gathers linking input Li,j(t) from its 8-neighbors, and a pulse 
generator as shown in Fig. 1.  The internal activity of Ni,,j is 
computed by combining the feeding and linking inputs as  

Ui,j (t) = Xi,j (1 + β Li,j (t))   (1) 
where,  β > 0 is a global parameter known as the linking 
coefficient.  When Ui,j (t) > θi,j (t), the neuron Ni,j fires (Yi,j (t) 
= 1) and sends linking input to each of its 8-neighbors 
through a linking leaky integrator (LLI), and also charges the 
threshold signal generator to a very high value θmax  to ensure 
that Ni,j will not fire again in the current pulsing cycle [3].  All 
leaky integrators are considered identical with an impulse 
response of V e-t/τ where V is the amplitude and τ is the decay 

time constant.  One may prefer to use unit linking and avoid 
the use of leaky integrators in the linking receptive field.   

Consider an image of two regions, object and background.  
Assume that the object is brighter than the background.  Let 
(Bmin, Bmax) and (Omin, Omax) be intensity ranges of the 
background and object pixels.  If Bmax > Omin then the two 
intensity ranges overlap, and perfect segmentation becomes 
difficult to achieve.  In fact, the number of pixels incorrectly 
assigned increases as the extent of the overlap increases.   

 
Fig. 1  The Pulse Coupled Neuron Model 

 
However, it has been shown that PCNN segments such 

images perfectly if the following two inequalities are satisfied 
[4]. 
1) The neurons corresponding to the object pixels with 

intensity Omax pulse naturally (primary pulsing without 
the help of linking input) at time t = T(Omax) where 
T(Omax ) is the time required for the threshold signals to 
decay from their maximum value of θmax to Omax.  

2) During secondary firing due to fast linking, all object 
neurons for which the following inequality is true are 
captured. 

Xi,j (1 + β Li,j (T(Omax)) ≥ Omax  (2) 
 

         In the above inequality, β is the linking coefficient,  
        Li,j (T(Omax)) is the total linking input received by Ni,j  
        from its 8-neighbors, and Xi,j is the intensity of pixel (i, 
j)  
        which is the feeding input to Ni,j.   
3)  Similarly, during secondary firing, all background 

neurons for which the following inequality is not true are 
also captured. 

Xp,q (1 + β Lp.q (T(Omax)) <  Omax   (3) 
 

If it is possible to find a value of β for which the inequality 
(2) is true for all object neurons and the inequality (3) is true 
for all background neurons, then only the object neurons can 
be made to pulse together at T(Omax) and thus leading to 
perfect segmentation of the input.  When perfect segmentation 
is not possible the goal is to capture maximum number of 
object neurons and minimum number of background neurons 
as possible.   
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III. ANALYSIS OF PCNN BASED IMAGE SEGMENTATION 
ALGORITHM 

 It is obvious that inequalities (2) and (3) impose opposing 
conditions on β.  Inequality (2) specifies the lower bound (β1), 
and inequality (3) specifies the upper bound (β2) for β.   The 
value of β1 increases as the intensity ratio Omax/Omin 
increases, and the value of β2 decreases as the ratio 
Omax/Bmax decreases.   Any image for which β1 > β2 perfect 
segmentation is not possible.  Preprocessing the input image 
or enhancing the neuron model that effectively reduces β1 and 
increases β2 improves segmentation accuracy.  Smoothing the 
image compresses the dynamic range of each region and also 
reduces the extent of intensity range overlap of regions.  The 
net effect is a reduction in the value of β1 and an increase in 
the value of β2 as desired [3].  Kuntimad achieved 
improvement in segmentation accuracy by delaying the 
primary firing to a value below Omax.  This was 
accomplished by allowing the inactive neurons in the linking 
receptive field to send inhibitory linking inputs [4].  The 
approach is not biologically plausible, and also may not 
always improve segmentation. Note that delaying the primary 
firing to a value below Omax decreases values of both β1 and 
β2.  This is beneficial only if the benefit of the reduction in the 
value of β1 is relatively more than the harm caused by the 
reduction in the value of β2.  Also, he has not addressed the 
problem of determining the value of the threshold or intensity 
at which primary firing must begin. 

Therefore, associated with the above approach, there are 
three major problems or issues which should be solved to 
further improve the segmentation accuracy of the PCNN 
approach.  
1) The accuracy of the PCNN based algorithms is very 

sensitive to the values assigned to linking coefficient and 
linking neighborhood radius.  Almost always the linking 
radius is fixed at 1.5.  Each neuron receives linking input 
from its 8-neighbours.  Previous experience with PCNN 
shows that a small change in the value of β changes the 
segmentation result significantly. Therefore, it is 
important to develop a quantitative approach to 
determine a suitable value of β rather than determine its 
value by trial-and-error approach.  To the best of our 
knowledge the determination of the optimal or near 
optimal value for the linking coefficient β directly from 
the image is still an open problem that needs to be 
solved. 

2) It is very beneficial if one can delay primary firing to an 
appropriate intensity level between Omax and Bmax, say 
PFT. This effectively reduces the lower bound for β 

which is desirable.  Also, prevents stray bright pixels 
from triggering primary firing leading to unacceptable 
segmentation result.   At the same time, PFT must be 
large enough to prevent brighter background neurons 
from firing with object neurons in large numbers. 
Therefore, there is a need to develop a method to 
determine an appropriate value for the primary firing 
threshold PFT from the image itself. 

3) Because of non-uniform illumination, varying object-
background intensity contrast or differing noise levels, it 

may not be practical to use global values for PFT and β.  
In other words, it is desirable to make both parameters 
local and assign values based on local image intensity 
attributes.  In the limiting case, each neuron can have its 
own parameter values.  A good compromise is to 
partition the image into subimages and assign 
appropriate parameter values to each subimage.    

IV.   GLOBAL LINKING COEFFICIENT AND PRIMARY 
FIRING THRESHOLD 

Now consider the segmentation of an image with two 
regions, object and background.  Assume that intensity ranges 
of object pixels and background pixels overlap considerably.  
The goal is to find near optimal values for PFT and β so that 
the PCNN produces good segmentation result.  The method 
for computing global PFT and β directly from the image 
statistics is described below. 
1) For the image to be segmented, threshold T which 

roughly segments the image into two regions (object and 
background) is determined.  The threshold T may be 
obtained using the basic iterative method, Otsu’s method 
which maximizes inter-class variance or by locating the 
valley of the histogram if the histogram is bimodal.  The 
intensity mean mO and standard deviation σO of object 
pixels are approximated using image pixels with 
intensity greater than T.  Similarly, the intensity mean mB 
and standard deviation σB of background pixels are 
approximated using image pixels with intensity less than 
or equal to T.   

2) The primary firing threshold PFT should be greater than 
T to prevent bright noisy background pixels from firing 
during the primary firing.  Thus, PFT is computed as  

PFT = (mO + k1 σO)      (4) 
where, k is a constant greater than zero.  Typically, k1 is 
in the range [1, 2]. 

3) The linking coefficients β should be computed such that 
the following inequality is true for all object neurons. 

Omin (1 + β L1 (t))  ≥  PFT    (5) 
The minimum object intensity Omin is not known and is 
roughly taken as (T – k2 σO).  It is reasonable to expect 
more object neurons than background neurons in the 8-
neighborhood of an object neuron.  Therefore, assuming 
unity linking, the minimum value of LI (t) for an object 
neuron may be taken as 5.  Therefore, the linking 
coefficient β is computed as 

β = (PFT / (T – k2 σO) -1)/5   (6) 
Usually, k2 is a positive number in the range [0.5, 1.0]. 

V.  ADAPTIVE LINKING COEFFICIENTS AND PRIMARY 
FIRING THRESHOLDS 

Often, it is not practical to use a global value for the linking 
coefficient or the primary firing threshold.  This could happen 
due to a variety of reasons such as non-uniform illumination, 
varying contrast between object and background regions, and 
noise characteristics as described below.  
1) Consider two areas of object (background) whose 

intensities would approximately be the same under 
uniform illumination.  If the illumination is not uniform 
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then object (background) pixels in the area where 
illumination is relatively higher will be significantly 
brighter than the object (background) pixels in the area 
where illumination is lower.  Non-uniform illumination, 
in general, expands the object and background intensity 
ranges. 

2) The contrast between object and background pixels as 
measured by intensity difference also changes as 
illumination changes.  Thus, the non-uniform 
illumination increases the extent by which object and 
background intensity ranges overlap. 

3) The standard deviation of pixel intensity may not be 
uniform throughout the image due to shadows (non-
uniform illumination) and varying noise characteristics.    

As a result, values of parameters suitable for one part of the 
image may not be suitable for other parts.  In such cases, it is 
necessary to adapt parameter values to match the local image 
properties.  As an extreme case, one may wish to compute 
values of β and PFT for each neuron.  The development of an 
approach to accomplish this task is challenging and has not 
been done so far.   In this section, two methods for computing 
β and PFT for individual neurons are described.   The first 
method consists of the following steps. 
1) The image to be segmented is partitioned into (K × L) 

non-overlapping subimages or blocks. 
2) The global values of the linking coefficient and the 

primary firing threshold are computed for each block as 
described in Section IV.  Let βG[i, j]  and PFTG [i, j] be 
the  linking coefficient and the  primary firing threshold 
for the block BLK[i, j].   

3) If necessary, the possibility of abrupt change of 
parameter values between adjacent blocks is avoided by 
using interpolation in two steps.  For example, consider 
the computation of the primary firing threshold for 
neurons in BLK[i, j].  In the first step, for all neurons in 
D columns on either side of the boundary between 
adjacent blocks BLK[i, j-1] and BLK[i, j], the primary 
firing threshold is modified to change linearly along the 
rows from PFTG [i, j-1]  to PFTG [i, j].   In the second 
step, for all neurons in D rows on either side of the 
boundary between blocks BLK[i-1, j] and BLK[i, j] the 
primary firing threshold is further modified to change 
linearly along the columns from  the modified value in 
BLK[i-1, j]  to the modified value in BLK[i, j].   A 
similar process is used to assign linking coefficient 
values to individual neurons. 

 
 The second method consists of the following steps. 

1)  The image to be segmented is divided into (K × K) 
overlapping subimages or blocks. For adjacent blocks 
BLK[i-1, j] and BLK[i, j], the bottom 50% of the rows 
in BLK[i-1, j]  are same as the top 50% of the rows in 
BLK[i,  j].  Similarly, for  adjacent blocks BLK[i, j] 
and BLK[i,  j+1], the right 50% of the columns in 
BLK[i, j]  are same as  the left 50% of the columns in 
BLK[i, j]. 

2)   The global values of the linking coefficient and the 
primary  firing threshold are computed for each block as 
described in  Section III.   Let βG [i, j]  and PFTG [i, j] 

be the  linking coefficient and the  primary firing 
threshold for the block BLK[i, j].   

3)   Because of the overlapping partitioning, a neuron 
belongs  to 1, 2 or 4 blocks depending on its location in 
the PCNN.   Most neurons belong to 4 blocks.  
Therefore, the parameter  value for a neuron is 
computed as the weighted sum of  values of all blocks to 
which the neuron belongs.   The value  of each weight is 
in the range [0, 1] and the sum of all  weights associated 
with a neuron is 1.  The value of the  weight that 
multiplies the global parameter of a block is  inversely 
proportional to the distance of the neuron from the 
center of the block.  

VI.   SIMULATION RESULTS 
This section presents simulation results that validate the 

concepts and algorithms described in detail in the previous 
sections.   
 
A.  The PCNN based image segmentation algorithm is able to 
segment an image perfectly even when object and background 
intensity ranges overlap significantly if inequalities (2) and 
(3) are true.  
 

Fig. 2 (a) shows a two-region image for which Omin = 120, 
Omax =  200, Bmin = 40, and Bmax = 140.   When this image 
is applied as input to the PCNN for segmentation, all neurons 
corresponding to pixels with intensity 200 fire first (primary 
firing), and then initiate secondary firing.  Inequality (2) 
establishes the lower limit for the value of β. The value of β 
must be large enough to capture object neurons corresponding 
to pixels of intensity 120 even when the linking inputs 
received by them are at their minimum values.  Therefore,  

 

       
    (a)           (b) 

        
    (c)          (d) 

 
Fig. 2 Illustration of perfect image segmentation using PCNN. (a)  

Two-region image with additive 
 

    Gaussian noise with mean 0 and standard deviation 20. (b)  Image 
histogram.  (c)  Result of segmenting the image in (a) using Otsu’s 
optimal thresholding method.  (d)  Result of segmenting the image in 
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(a) using PCNN. 
assuming that all object neurons get linking input from at least 5 

out of 8 neighbors, the lower limit for β is (200/120 – 1) /5 = 
2/15.   The value of β must be small enough to not to capture 
background neurons corresponding to pixels of intensity 140 
even when the linking inputs received by them from 
neighboring object neuron are at their maximum values.  
Inequality (3) establishes the upper limit for the value of β.  
Therefore, assuming that all background neurons get linking 
input from at most 3 out of 8 neighbors, the upper limit for β 
is (200/140 – 1) /3 = 1/7.  As the upper limit is greater than 
the lower limit, the PCNN gives perfect result if PFT = 200 
and 1/7 >  β  > 2/15.  The segmentation result obtained with 
PFT = 200 and β = 0.14 is shown in Fig. 2 (d).  For 
comparison purpose, segmentation result obtained from 
Otsu’s optimal thresholding method is shown in Fig. 2 (c). 
 
B.  If one or two of inequalities (2) and (3) are not true then 
perfect segmentation is not possible.  However, the accuracy 
of the PCNN based image segmentation algorithm can be 
greatly improved by delaying the primary firing threshold 
(PFT) to an appropriate value between Bmax and Omax. 
     

The image in Fig 3 (a) is similar to the image in Fig. 2 (a) in 
content.  However, contrast between object and background is 
poor and the noise level is high (Standard Deviation = 40).  
For the image in Fig. 3(a), Omin = 20, Omax =  200, Bmin = 
1, and Bmax = 80.   It is not possible to find a value of β for 
which inequalities (2) and (3) are both true, and therefore  

           
(a)           (b) 

         
(c)           (d) 

 
Fig.  3  Effect of delaying the primary firing threshold on 

segmentation accuracy.  (a)   Two-region image with additive 
Gaussian noise of mean 0 and standard deviation 40.  (b)  Result of 

segmenting the image in (a) using Otsu’s optimal thresholding 
method.  (c)  Result of segmenting the image in (a) using PCNN with 

Omax = 200 as the primary firing threshold.  (d)  Result of 
segmenting the image in (a) using PCNN with PFT = 190 as the 

primary firing threshold. 
 
perfect segmentation is not achievable.  As there is significant 
overlap between object and background intensity ranges, this 

is not an easy image to segment.  This is illustrated by the 
poor quality of the segmentation result obtained by Otsu’s 
optimal thresholding algorithm shown in Fig 3 (b).  Even 
under these adverse conditions, the PCNN gives remarkably 
better result compared to Otsu’s method as shown in Fig 3 (c).  
The value of β was varied by trial-and-error to obtain the best 
result (judged by visual inspection).    In Section III, it is 
stated that it is possible to obtain significantly better results by 
delaying the primary firing to an appropriate intensity level 
(PFT) less than Omax.  The result in Fig 3 (d) is obtained by 
setting PFT to 190.  Once again the value of β is obtained by 
trial-and-error. 
 
C.  If the intensity characteristics of an image vary 
significantly across the image then improved segmentation 
result may be obtained by using adaptive local parameters 
instead of using a single set of global parameters.   
 

The image is Fig 4 (a) is obtained by modifying the image 
in Fig 2(a) to achieve the effect of non-uniform illumination.   
The illumination of the image in Fig. 4 (a) increases linearly 
from left to right.  Note the difference in the histograms in Fig 
2 (b) and Fig. 4 (b).  The image has changed for worse as far 
segmentation is concerned.  As Omin = 84, Omax =  214, 
Bmin = 20, and Bmax = 177, it is not possible to find a value 
of β for which inequalities (2) and (3) are both true, and 
therefore perfect segmentation is not achievable for all values 
of the primary firing threshold.  However, the PCNN produces 
better result than most other methods if β and PFT are set to 
proper values.  The result in Fig 4 (c) is obtained by setting β 
and PFT to 0.30 and 200, respectively.  These values are 
obtained by trial-and-error.  In order to illustrate that the use 
of adaptive parameters improves segmentation accuracy, the 
image in Fig 4 (a) is split into two blocks of size 256×128 
 

         
    (a)            (b) 

          
(c)            (d) 

 
Fig. 4 Illustration of segmentation of an image with non-uniform 

illumination using PCNN. 
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 (a)   Two-region image with linearly increasing illumination from 
left to right, and additive Gaussian noise of mean 0 and standard 
deviation 20.  (b)  Image histogram.  (c)  Result of segmenting the 
image in (a) using PCNN with PFT = 200 and β = 0.30 .  (d)  Result 
of segmenting the image in (a) using PCNN with adaptive 
parameters. (vertically at the center) and each block is 
segmented independently.  The values of β and PFT for the 
left block are 0.28 and 165, respectively.  The values of β and 
PFT for the right block are 0.26 and 210, respectively.  The 
improved segmentation result obtained by using adaptive 
parameters is shown in Fig. 4 (d). 
 
D.  The values of β and PFT obtained using the methods 
proposed in Sections IV and V are able to produce near 
optimal segmentation results. 

Now consider the segmentation of the three images in Fig. 
2 (a), Fig. 3 (a), Fig. 4 (a) using the parameters values 
computed as described by the methods given in Sections IV 
and V.   The threshold T that roughly partitions the image in 
Fig. 2 (a) into object and background regions is computed 
using Otsu’s method and its value is 126.  The object’s mean 
intensity mO and standard deviation σO, approximated by the 
mean and standard deviation of all pixels with intensity 
greater than T, are 154.5 and 19.62, respectively.  Then, PFT 
(194) and β (0.17) are computed as (mO + 2 σO) and 0.2*[ 
PFT/(T - σO) – 1], respectively.  The segmentation result 
obtained using these values is shown in Fig. 5 (a).   
  

         
(a)           (b) 

 

        
(c)           (d) 

 
Fig.  5 Segmentation results using adaptive values of PFT and β 
calculated using the methods proposed in Sections IV and V.  (a)  

Result of segmenting the image in Fig. 2 (a) using global PFT and β.  
(b)  Result of segmenting the image in Fig. 3 (a) using global PFT 

and β.  (c)  Result of segmenting the image in Fig. 4 (a) using global 
PFT and β.  (d) Result of segmenting the image in Fig. 4 (a) using 

adaptive PFT and β. 
 

Otsu’s threshold, object’s mean intensity and standard 
deviation for the image in Fig. 3 (a) are 55, 81 and 20, 
respectively.   Therefore, PFT is 121 and β is 0.37.  The result 
of segmenting the image in 3 (a) is displayed in Fig. 5 (b).  A 

comparison of segmented images in Fig 5 (a) and Fig. 5 (b) 
with the images in Fig. 2 (d) and Fig. 3 (d) shows that the use 
of automated parameter values has produced segmentation 
results very similar to the best results obtained by trial-and-
error approach in both cases. 

When the image in 4 (a) is segmented using global PFT and 
β, the segmentation result obtained is not comparable to the 
result in Fig. 4 (c).  However, when the image is partitioned 
into two blocks vertically at the center and each block is 
independently segmented almost perfect segmentation is 
achieved.  Otsu’s threshold, object mean, standard deviation, 
PFT and β for the left block are 92, 121, 18, 160 and 0.23, 
respectively.   For the right block these numbers are 124, 149, 
19, 187 and 0.14.  The segmented image, shown in Fig. 5 (d), 
is comparable to the image in Fig. 4 (d) in quality. 
 
E.  In general, the segmentation accuracy is less sensitive to 
the variation in the value of k1 than it is to the variation in the 
value of β.  
 

The image in 2 (a) is segmented by varying the value of k1 

from 1 to 2 in steps of 0.1.   No noticeable difference is found 
in the final results obtained.  Several other images are then 
segmented by varying k1.  In all cases, simulation results 
indicate that the segmentation accuracy remains fairly 
insensitive to the value of k in the range [1, 2].  This is 
perhaps due to the fact that the values of PFT and β both 
increase or decrease together as k1 is increased or decreased, 
respectively.   
 
F.  If an image is highly noisy, in general, the segmentation 
accuracy can be improved by smoothing the image before 
segmentation. 
 

Fig. 6 (a) shows an image obtained with non-uniform 
illumination.  The illumination increases linearly from left to 
right.   The image is also corrupted with additive Gaussian 
noise (mean = 0 and standard deviation = 20).  It is obvious 
from the histogram that this is a difficult image to segment 
using any region thresholding method.  The image is  
 

       
    (a)            (b) 

         
    (c)           (d) 
 

Fig. 6  Effect of smoothing on the performance of PCNN.  
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 (a)  Noisy image obtained under non-uniform illumination.  (b)  
Image histogram.  (c)  Segmentation result without smoothing.  (d)  
Segmentation result with smoothing (Original image taken from 
Digital Image Processing, 3rd Edition,Rafael C. Gonzalez and 
Richard E. Woods). 
 
partitioned into (2 × 2) non-overlapping blocks (each block is 
a 150 × 200 subimage) and segmented by calculating PFT and  
β for each block as described in Section IV.  Because of 
relatively high noise several pixels were misclassified by the 
PCNN as shown in Fig. 6 (c).   Of course, the result is much 
better than what can be obtained by ant optimal thresholding 
method.  However, when smoothed image is applied as input 
the PCNN produced almost perfect segmentation result as 
shown in Fig. 6 (d).    
 
G.  If block approach is used for computing adaptive PFT and 
β then interpolation becomes a necessity when the value of a 
parameter changes significantly from one block to another. 
 

The yeast image in Fig. 7 (a) is partitioned into (4 × 4) 
blocks for the computation of adaptive parameters.  There is a 
significant difference between the values of PFT for the third 
and fourth blocks (59 and 35) in the first row.  If Interpolation 
is not used to make PFT change gradually from BLK [1, 3] to 
BLK [1, 4] then undesirable block effects appear in the 
segmented image.  Even after interpolation slight block effect 
can be seen in the top right corner of the segmented image in 
Fig. 7 (b).   
 

         
     (a)            (b) 
 
Fig. 7  Illustration of block effect.  (a) Input image. (b) Result of 
segmenting the image in (a) using PCNN (Original image courtesy of 
Professor Susan L. Forsburg, University of Southern California). 

VII. CONCLUSION 
The pulse coupled neural network operating in single-burst 

mode is capable of segmenting two-region images accurately 
under very adverse conditions as long as the linking 
coefficient and the primary firing threshold are set to 
appropriate values.  For years, the task of automatic 
computation of optimal or near optimal values for these two 
critical parameters has remained an elusive goal.  The major 
contribution of this paper is a quantitative approach for the 
automatic computation of the linking coefficient and the 
primary firing threshold directly from the image histogram.  It 
has been shown that the approach can be used for computing 
one set of global parameters for the entire image, or adaptive 
local parameters for each neuron without compromising image 

segmentation quality or accuracy.  Extensive simulation 
shows that the segmentation accuracy attained by using the 
automatically computed global parameters is comparable to 
the best results achieved by setting the parameter values by 
trial-and-error.  When an image requires adaptive local 
parameters, it is almost impossible to use trial-and-error 
approach.  On the contrary, the proposed approach partitions 
the image into overlapping or non-overlapping subimages or 
blocks, and computes the parameters for each subimage.  
Interpolation may be used to determine parameter values for 
individual neurons.    

For all images segmented object mean intensity plus twice 
the object intensity standard deviation is found to be a good 
value for the primary firing threshold.  The value of the 
linking coefficient obtained by estimating the minimum object 
pixel intensity as Otsu’s threshold minus object intensity 
standard deviation has given good results.  Background 
intensity mean and standard deviations are not at all used.  
Future research should focus on using these values in 
estimating PFT and β.   One possibility is to compute PFT and 
β for the image and its  inverted image and use the average 
values for segmenting the image.   

It is desirable to have the ability to determine automatically 
if the global parameters are sufficient or not to segment an 
image.  When there is a need to use adaptive local parameters, 
it should be possible to determine the number of blocks into 
which the image must be partitioned.  Future work should 
focus on automating the partitioning of the image to be 
segmented. 
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