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Abstract—A self tuning PID control strategy using reinforcement 

learning is proposed in this paper to deal with the control of wind 
energy conversion systems (WECS). Actor-Critic learning is used to 
tune PID parameters in an adaptive way by taking advantage of the 
model-free and on-line learning properties of reinforcement learning 
effectively. In order to reduce the demand of storage space and to 
improve the learning efficiency, a single RBF neural network is used 
to approximate the policy function of Actor and the value function of 
Critic simultaneously. The inputs of RBF network are the system 
error, as well as the first and the second-order differences of error. 
The Actor can realize the mapping from the system state to PID 
parameters, while the Critic evaluates the outputs of the Actor and 
produces TD error. Based on TD error performance index and 
gradient descent method, the updating rules of RBF kernel function 
and network weights were given. Simulation results show that the 
proposed controller is efficient for WECS and it is perfectly 
adaptable and strongly robust, which is better than that of a 
conventional PID controller. 
 

Keywords—Wind energy conversion systems, reinforcement 
learning; Actor-Critic learning; adaptive PID control; RBF network.  

I. INTRODUCTION 
S a result of increasing environmental concerns, the 
impact of conventional electricity generation on the 

environment is being minimized and efforts are made to 
generate electricity from renewable sources. The main 
advantages of electricity generation from renewable sources 
are the absence of harmful emissions and the infinite 
availability of the prime mover that is converted into 
electricity. One way of generating electricity from renewable 
sources is to use wind turbines that convert the energy 
contained in flowing air into electricity. Various 
electromechanical schemes for generating electricity from the 
wind have been suggested, but the main drawback is that the 
resulting system is highly nonlinear, and thus a nonlinear 
control strategy is required to place the system in its optimal 
generation point.   

Different intelligent approaches have successfully been 
applied to identify and nonlinearly control the WECS and 
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other plants. For instance, Kanellos and Hatziargyriou [1], 
Yong-tong and Cheng-zhi [2] and Zhao-da et al [3] have 
suggested neural networks as powerful building blocks for 
nonlinear control strategies. The most famous topologies for 
this purpose are multilayer perceptron (MLP) and radial basis 
function (RBF) networks [4]. Mayosky and Cancelo [5] 
proposed a neural-network-based structure for Wind turbine 
control that consists of two combined control actions, a 
supervisory control and an RBF network-based adaptive 
controller.  Sedighizadeh et al [6,7,8] suggested an adaptive 
controller using neural network frame Morlet wavelets 
together with an adaptive PI controller using RASP1 wavenets 
for Wind turbine control. 

In this paper, the reinforcement learning is used to design of 
controller. This learning method unlike supervised learning of 
neural network adopts a ‘trial and error’ mechanism existing 
in human and animal learning. This method emphasizes that 
an agent can learn to obtain a goal from interactions with the 
environment. At first, a reinforcement learning agent exploits 
the environment actively and then evaluates the exploitation 
results, based on which controller is modified. It can realize 
unsupervised on-line learning without a system model [9-10]. 
Actor-Critic learning proposed by Barto et al is one of the 
most important reinforcement learning methods, which 
provides a working method of finding the optimal action and 
the expected value simultaneously [11]. Actor-Critic learning 
is widely used in artificial intelligence, robot planning and 
control, optimization and scheduling fields. Based on this 
analysis, in this paper a new adaptive PID controller based on 
reinforcement learning for WECS control is proposed. PID 
parameters are tuned on-line and adaptively by using the 
Actor-Critic learning method, which can solve the deficiency 
of realizing effective control for complex and time-varying 
systems by conventional PID controllers. 

The next section presents details of the wind energy 
conversion system in this simulation. Section III describes the 
adaptive network algorithmic implementation. Then, the 
section IV introduces controller design steps. After that, the 
section V presents the simulation results and finally, the 
section VI explains conclusion.  
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II. WIND ENERGY CONVERSION SYSTEMS 

A. Wind Turbine Characteristics 
Before discussing the application of wind turbines for the 

generation of electrical power, the particular aerodynamic 
characteristics of windmills need to be analyzed.  Here the 
most common type of wind turbine, that is, the horizontal-axis 
type, is considered. The output mechanical power available 
from a wind turbine is [5]. 

AVCP p
3)(5.0 ωρ=                                 (1) 

Where ρ is the air density, A is the area swept by the blades, 
and ωV is the wind speed. pC is called the “power 
coefficient,” and is given as a nonlinear function of the 
parameter λ  

ωωλ VR /=                                          (2) 

Where R  is the radius of the turbine and ω  is the rotational 
speed. Usually PC is approximated as 32 γλβλαλ ++=PC , where 

βα ,  and γ are constructive parameters for a given turbine.  

 
Fig. 1 Power coefficient pC versus turbine speed [5] 

Fig. 1 shows typical pC  versus turbine speed curves, with 

ωV  as a parameter.  It can be seen that maxPC , the maximum 
value for PC , is a constant for a given turbine.  That value, 
when replaced in (1), gives the maximum output power for a 
given wind speed.  This corresponds to the optimal 
relationship optλ  between ω  and ωV . The torque developed 

by the windmill is:  

22)(5.0 RV
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=                            (3) 

Fig. 2 shows the torque/speed curves of a typical wind 
turbine, with ωV as a parameter. Note that maximum generated 
power ( maxPC ) points do not coincide with maximum 
developed torque points. 

Superimposed to those curves is the curve of maxPC .  It 
can be seen that the maximum pC  (and thus the maximum 

generated power), and the maximum torque are not obtained 
at the same speed.  Optimal performance is achieved when the 
turbine operates at the maxPC  condition.  This will be the 
control objective in the present paper. 

B. Induction Generators and Slip Power Recovery 
As wind technology progresses, an increasing number of 

variable speed WECS schemes are proposed. An interesting 
configuration among them is the one that uses grid-connected 
double-output induction generator (DOIG) with slip energy 
recovery in rotor, shown in Fig. 3 [8]. 

 
Fig. 2 Torque/speed curves (solid) of a typical wind turbine.  The 

curve of maxPC  is also plotted (dotted) [5] 

 

Slip power is injected to the AC line using a combination of 
rectifier and inverter known as a static Kramer drive [5].  
Changes on the firing angle of the inverter can control the 
operation point of the generator, in order to develop a resistant 
torque that places the turbine in its optimum (maximum 
generation) point. 

Normally commutated inverter in DOIG’s demands some 
reactive power. In addition, it recovers active slip power to the 
supply. Consequently, the absorbed reactive power by whole 
system raises leading to a lower power factor of the drive. 
Also, a rather large low-order harmonics is injected to the 
supply. The power factor of a converter can be improved 
using a forced commutation method. The amplitude of the 
harmonics can also be reduced [8]. The pulse width 
modulation (PWM) technique is one of the most effective 
methods in achieving the above goals. This method of 
improving the power factor eliminates the low-order 
harmonics. However, the amplitude of the high-order 
harmonics is increased, which can be easily filtered. To obtain 
a convenient performance, a current source type six valve 
converters from sinusoidal pulse width modulation (SPWM) 
techniques controls with three-mode switching signals is used 
[8].  

In the SPWM technique, by changing the index modulation 
(m), the pulse width and the mean value of the inverter 
voltage are varied, thus the torque generated by DOIG is 
controlled. The torque developed by the generator/Kramer 
drive combination is [14] 
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Fig. 3 Basic Power Circuit of a DOIG 
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and       

sR : Stator resistance; lsL : Stator dispersion inductance; 

lrL : Rotor dispersion inductance; 

sω : Synchronous pulsation; sΩ  : Synchronous machine 
rotational speed; m: index modulation   (All values referred to 
the rotor side). 

C. Turbine/Generator Model 
The dominant dynamics of the whole system (turbine plus 

generator) are those related to the total moment of inertia.  
Thus ignoring torsion in the shaft, generator’s electric 
dynamics, and other higher order effects, the approximate 
system’s dynamic model is 

),(),( mTVTJ gl ωωω ω −=•                            (6) 

Where J  is the total moment of inertia.  Regarding (3) and 
(4), system’s model becomes 

),())((5.0(1 22 mTRV
C

J g
P ωπ

λ
ρω ω −=•                (7) 

Where eqR depends nonlinearly on the index modulation 

according to (5). PC , λ , and ωV also depend on ω in a 
nonlinear way (2).  Moreover, it is well known that certain 
generator parameters, such as wound resistance, are strongly 
dependent on factors such as temperature and aging.  Thus a 
nonlinear adaptive control strategy seems very attractive.  Its 
objective is to place the turbine in its maximum generation 
point, in despite of wind gusts and generator’s parameter 
changes.  Thus the proposed control strategy, which consists 

of changing m  to produce a generator’s torque settles the 
turbine on the optω , )(optlT  point [5]. The general form of 

(7) is ),( mh ωω =• , where h  is a nonlinear function 
accounting for the turbine and generator characteristics.   

III. ADAPTIVE PID CONTROLLER BASED ON REINFORCEMENT 
LEARNING 

A. Controller Architecture 
The structure of an adaptive PID controller based on Actor-

Critic learning is illustrated in Fig. 4. It is based on the design 
idea of the incremental PID controller described by Eq. (8). 
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Where Ttetetetxtxtxtx )](),(),([)](),(),([)( 2
321 ΔΔ== ; 

)()()( tytyte d −= , )1()()( −−=Δ tetete  

and )2()1(2)()(2 −+−−=Δ tetetete  represent the system 
output error, the first-order difference of error and the second-
order difference of error respectively; 

)](),(),([)( tktktktK DPI=  is a vector of PID parameters. 
 

)(ty

)(tu

)(tuΔ

1−Z

)(tV

)(tK ′

)(tr

)(tx

)(tK

)(tr

)(te

)( 1−tu

)(tTDδ

 
Fig. 4 Self-adaptive PID controller based on reinforcement learning 

 
In Fig. 4, )(ty and )(tyd are the desired and the actual 

system outputs respectively. The error )(te  is converted into a 
system state vector )(tx  by a state converter, which is needed 
by the Actor-Critic learning part. There are three essential 
components of an Actor-Critic learning architecture, including 
an Actor, a Critic and a stochastic action modifier (SAM). The 
Actor is used to estimate a policy function and realizes the 
mapping from the current system state vector to the 
recommended PID parameters )](),(),([)( tktktktK DPI ′′′=′  
that will not participate in the design of the PID controller 
directly. The SAM is used to generate stochastically the actual 
PID parameters )(tK  according to the recommended PID 
parameters )(tK ′ suggested by the Actor and the estimated 
signal )(tV  from the Critic. The Critic receives a system state 
vector and an external reinforcement signal (i.e., immediate 
reward) )(tr from the environment and produces a TD error 
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(i.e., internal reinforcement signal) )(tTDδ  and an estimated 
value function )(tV . )(tTDδ is provided for the Actor and the 
Critic directly and is viewed as an important basis for 
updating parameters of the Actor and the Critic. )(tV is send 
to the SAM and is used to modify the output of the Actor. The 
effect of the system error and the change rate of error on 
control performance must be considered simultaneously 
during the design of the external reinforcement signal )(tr . 
Therefore, )(tr is defined as 

)()()( trtrtr ece βα +=                                  (9) 
Where α  and β  are weighted coefficients, 
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and ε is a tolerant error band. 
 

B. Actor-Critic Learning based on RBF Network 
The RBF network is a kind of multi-layer feed forward 

neural network. It has the characteristics of a simple structure, 
strong global approximation ability and a quick and easy 
training algorithm [12]. On the other hand, the inputs of the 
Actor and the Critic are both the same state vector derived 
from the environment and their small difference is the 
difference in their outputs. Therefore, there is only one RBF 
network, as shown in Fig. 5. It is used to implement the policy 
function learning of the Actor and the value function learning 
of the Critic simultaneously. That is, the Actor and the Critic 
can share the input and the hidden layers of the RBF network. 
This working manner can decrease the demand for storage 
space and avoid the repeated computation for the outputs of 
the hidden units in order to improve the learning efficiency. 
The definite meaning of each layer is described as follows: 
 

)(tK P′

)(tK D′

)(tK I′
Actot

Critic

)(te

)(teΔ

)(te2Δ

)(tV

)(t1Φ

)(tiΦ

)(thΦ

mjw

jv

 
Fig. 5 Actor-Critic learning based on RBF network 

 
Layer 1: input layer. Each unit in this layer denotes a system 
state variable ix  where i  is an input variable index. Input 

vector 3)( Rtx ∈  is transmitted to the next layer directly. 
 
Layer 2: hidden layer. The kernel function of the hidden unit 
of RBF network is adopted as a Gaussian function. The output 

of the j th hidden unit is 

hj
t
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t
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j
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where [ ]Tjjjj 321 ,, μμμμ =  and jσ are the center vector and 

the width scalar of the j th hidden unit respectively, h the 
number of hidden units.  
Layer 3:  output layer. The layer is made up of an Actor part 
and a Critic part. The m th output of the Actor part, )(tKm′  
and the value function of the Critic part, )(tV are calculated as 

 ∑
=
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where mjw  denotes the weight between the j th hidden unit 

and the m th Actor unit, and jv  denotes the weight between 

the j th hidden unit and the single Critic unit. 
In order to solve the dilemma of ‘exploration’ and 
‘exploitation’, the output of the Actor part does not pass to the 
PID controller directly. A Gaussian noise term kη is added to 
the recommended PID parameters )(tK ′ coming from the 
Actor [9], consequently the actual PID parameters )(tK  are 
modified as Eq. (13). The magnitude of the Gaussian noise 
depends on )(tV . If )(tV is large, kη is small, and vice versa. 

 ))(,0()()( tTKtK Vk ση+′=                        (13) 

Where
))(2exp(1

1)(
tV

tV +
=σ  

The feature of Actor-Critic learning is that the Actor learns the 
policy function and the Critic learns the value function using 
the TD method simultaneously [12]. The TD error )(tTDδ  is 
calculated by the temporal difference of the value function 
between successive states in the state transition. 

 )()1()()( tVtVtrtTD −++= γδ                       (14) 
Where )(tr  is the external reinforcement reward signal, 

10 << γ denotes the discount factor that is used to determine 
the proportion of the delay to the future rewards. The TD error 
indicates, in fact, the goodness of the actual action. Therefore, 
the performance index function of system learning can be 
defined as follows. 

)(
2
1)( 2 ttE TDδ=                                     (15) 

Based on the TD error performance index, the weights of 
Actor and Critic are updated according to the following 
equations through a gradient descent method and a chain rule. 
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Where Aα  and Cα  are learning rates of Actor and Critic 
respectively. 
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Because the Actor and the Critic share the input and the 
hidden layers of RBF network, the centers and the widths of 
hidden units need to be updated only once according to the 
following rules. 

)(

)()(
)()()()()1( 2 t

ttx
ttvttt

j

iji
jjTDijij σ

μ
δημμ μ

−
Φ+=+         (18) 

)(

)()(
)()()()()1( 3

2

t

ttx
ttvttt

j

j
jjTDjj σ

μ
δησσ σ

−
Φ+=+        (19)  

Where μμ  and σμ  are learning rates of center and width 
respectively. 

IV. CONTROLLER DESIGN STEPS  
The overall block diagram of controller is illustrated in fig. 

6. The whole design steps of the proposed adaptive PID 
controller can be described as follows. 
Step 1.  Initializing parameters of Actor-Critic learning 
controller, including )0(mjw , 

)0(jv , )0(ijμ , )0(jσ , μμ , σμ , Cα , Aα , γ , ε ,α  and β . 

Step2. Detecting the actual system output )(ty , calculating the 
system error )(te , constituting system state 

variables )(te , )(teΔ and )(2 teΔ . 
Step3. Receiving an immediate reward )(tr  from Eq.(9).  
Step4.  Calculating the Actor output )(tK′ and the Critic value 
function )(tV  from Eq. (11) and Eq.(12) at time t  respectively. 
Step5.  Calculating the actual PID parameters )(tK  from Eq. 
(13) and consequently calculating the control output of PID 
controller )(tu  from Eq. (8). 
Step 6.  Applying )(tu  to the controlled plant and observing 
the system output )1( +ty  and the immediate reward )1( +tr  at 
the next sampling time. 
Step 7.  Calculating the Actor output )1( +′ tK  and the Critic 
value function )1( +tV  from Eq. (11) and Eq. (12) at time 
respectively. 
Step 8.  Calculating the TD error )(tTDδ from Eq. (8). 
Step9.  Updating the weights of the Actor and the Critic from 
Eq. (16) and Eq. (17) respectively. 
Step10.  Updating the centers and the widths of RBF kernel 
functions according to Eq. (18) and Eq. (19) respectively. 
Step11. Judging whether the control process is finished 
or not. If not, then )1( +← tt and turn to Step2. 
 

 
 

Fig. 6 Overall Controller block diagram 

V. SIMULATION RESULTS  
Fig. 4 depicts the block diagram of the adaptive PID 

Controller Based on Reinforcement Learning for WECS 
control, while the dynamic of WECS is described by Eq. (7). 
For this case study, the desired signal )(tyd is optimal rotor 
speed optω , actual output )(ty is rotor speedω  and control 

signal )(tu is index modulation (m).  The optimum shaft 
rotational speed optω  is obtained, for each wind speed ωV , 
and used as a reference for the closed loop.  Note that wind 
speed acts also as a perturbation on the turbine’s model. We 
applied the proposed adaptive PID controller and the 
conventional PID controller to track the optimal rotor speed 
signal. Sampling period sTs 0015.0=  during the simulation. 
PID parameters of the conventional PID controller are set off-
line as 15=Pk , 35=Ik and 10=Dk  through the use of the 
Ziegler-Nichols tuning rule. The corresponding parameters for 
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the adaptive PID controller are set as follows, 67.0=α , 
47.0=β , 014.0=ε , 92.0=γ , 017.0=Aα , 

014.0=Cα , 032.0=μη   and 018.0=ση . The detailed 
simulation results are shown in Fig. 7. The Simulation results 
indicate that the proposed adaptive PID controller exhibits 
perfect control performance and adapts to the changes of 
parameters of the WECS. Therefore, it has the characteristics 
of being strongly robust and adaptable. 
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Fig. 7 Simulation Results 

 

VI. CONCLUSION 
Simulation results indicate that the proposed adaptive PID 

controller can realize stable tracking control for WECS. It is 
strongly robust for system disturbances, which is better than 
that of a conventional PID controller.  
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