
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

892

   

Adaptive Neural Network Control of Autonomous 
Underwater Vehicles 

 
Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi 

  
Abstract—An adaptive neural network controller for 

autonomous underwater vehicles (AUVs) is presented in this paper. 
The AUV model is highly nonlinear because of many factors, such as 
hydrodynamic drag, damping, and lift forces, Coriolis and centripetal 
forces, gravity and buoyancy forces, as well as forces from thruster. 
In this regards, a nonlinear neural network is used to approximate the 
nonlinear uncertainties of AUV dynamics, thus overcoming some 
limitations of conventional controllers and ensure good performance. 
The uniform ultimate boundedness of AUV tracking errors and the 
stability of the proposed control system are guaranteed based on 
Lyapunov theory. Numerical simulation studies for motion control of 
an AUV are performed to demonstrate the effectiveness of the 
proposed controller. 

Keywords—Autonomous Underwater Vehicle (AUV), Neural 
Network Controller,  Composite Adaptation. 

I. INTRODUCTION  

N the last 3 decades, autonomous underwater vehicle 
(AUV) has become a research topic in the field of robotics 

because of the commercial and military potential and the 
technological challenge in developing them [1], [2]. Because 
of the non-linearity and the unpredictable operating 
environment of the AUV, many design parameters must be 
considered during the design of AUV control system. Indeed, 
the high frequency oscillating movement can seriously affect 
on the performance of sensors, especially optical and 
acoustical sensors.  

In brief, the main factors that make the control of AUVs 
difficult are: (1) the highly nonlinear, time-varying dynamic 
behavior of the AUVs; (2) uncertainties in hydrodynamic 
coefficients; (3) disturbances by ocean currents [3]. To remedy 
these aforementioned problems and enhance the AUV 
performance along with strengthen robustness, adaptability 
and autonomy; it is necessary that the motion control system 
has the ability of learning and self-adaptation.  
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Several control approaches have been applied, such as 
sliding control [4, 5], nonlinear control [6], adaptive control 
[7], and fuzzy control [8, 9]. 

The capability of neural networks for function 
approximation, classification, and their ability to deal with 
uncertainties and parameter variations [10, 11] make them a 
valuable choice for use in control of the AUVs. Xiao et al. 
[12] proposed a novel motion controller based on parallel 
neural network for the 

AUV, which can enhance the training speed of neural 
network. It is shown that parallel neural network can be 
utilized for the establishment of highly reliable and robust  

control systems for the AUV. In [13], a neural network 
adaptive controller with a linearly parameterized neural 
network (LPNN) is introduced to approximate the nonlinear 
uncertainties of AUV dynamics. In this approach, the basis 
function vector of LPNN is built according to the physical 
properties of the AUV. Moreover, a sliding mode control 
structure is used to remedy the effects of network 
reconstruction errors and disturbances in AUV dynamics. The 
method in [14] developed a fuzzy neural network controller 
with a novel immune particle swarm optimization (IPSO) 
algorithm based on immune theory and nonlinear decreasing 
inertia weight (NDIW) strategy to adapt the controller 
parameters. According to the restraint factor and NDIW 
strategy, IPSO algorithm can effectively prevents premature 
convergence and keeps balance between global and local 
searching ability.  

In this paper, a novel control structure, with composite 
adaptation low, for autonomous underwater vehicles (AUVs) 
is proposed. In this regard, a stable adaptive controller is 
developed to approximate unknown nonlinear functions in the 
AUV dynamics; hence overcoming some limitation of 
conventional controllers such as PID/PD controller and 
improve AUV tracking performance. This controller can 
easily reject disturbance and robust to dynamic exchange in 
AUV dynamics during movement in unpredictable operating 
environment. 

The rest of this paper organized as follows. Section ΙΙ 
describes the uncertain nonlinear model of the AUV's 
dynamic. In Section ΙΙΙ we describe the structure of stable 
adaptive controller with composite adaptation low. In Section 
ΙV shows the simulation results. And finally, Section V draws 
conclusions and sum up the whole paper. 

 
II. AUV DYNAMIC MODEL 

   The dynamic model of an AUV is introduced in this section. 
This AUV model is useful for both formulating control 
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algorithms and simulations. The AUV dynamic model, which 
presented in this section, is based on the underwater robotic 
models proposed by Fossen [15] and Yuh [16]. 

The dynamic model, which is derived from the Newton-
Euler motion equation, is given by, 
 

τ=+++ GvvDvvCvM )()(&     (1) 

 
where M  is a mass and inertia matrices, )(vC is a Coriolis 

and centripetal terms matrices, )(vD  is a hydrodynamic 

damping matrices, G  is the gravitational and buoyancy 
vector, τ

 

is the external force and torque input vector, and v  
is the velocity state vector. Note that in equation (1), 
environmental forces do not take into account. 
 

A. Mass and Inertia Matrices  

  

66×ℜ∈M  consists of both a rigid body mass and inertia, 
66×ℜ∈RBM , and a hydrodynamic added mass, 66×ℜ∈AM . 

given by, 
 

ARB MMM +=     (2) 

 

B. Coriolis and Centripetal Matrices 

  

66)( ×ℜ∈vC , like the mass matrices consists of two 

matrices, 66)( ×ℜ∈vCRB  and 66)( ×ℜ∈vCA , which can be 

expressed as, 
)()()( vCvCvC ARB +=     (3) 

 
)(vCRB is the rigid body Coriolis and centripetal matrices 

induced by RBM , while )(vCA

 

is a Coriolis-like matrices 

induced by AM  . 

C. Hydrodynamic Damping Matrices 

  The hydrodynamic damping matrices represents the drag and 
lift forces acting on a moving underwater vehicle. 
Nevertheless, for a low-speed underwater vehicle, the lift 
forces are negligible when compared to the drag forces. These 
drag forces can be separated into two different terms 
composed of a linear and quadratic term [17], given by, 
 

}{)( vDDdiagvD QL +=     (4) 

 

where 66×ℜ∈LD is the linear damping term, while

 66×ℜ∈QD  is the  quadratic damping term. 

D. Gravitational and Buoyancy Vector  

The gravitational and buoyancy vector, 16×ℜ∈G , is 
defined as, 





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×+×
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=
CCBB

CB

frfr

ff
G     (5) 

where Bf  and Cf  are the buoyant force vector and the 

gravitational force vector, respectively. Moreover, Br  is the 

centre of buoyancy and Cr  is the centre of gravity or mass in 

frame {B}. 

E. Forces and Torque Vector  

The external force and torque vector produced by the 
thrusters can be expressed as, 
 

LU=τ     (6) 
 
where L  is a mapping matrices and U  is a thrust vector.U  is 
the vector of thrusts produced by the vehicle’s thrusters, 
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The number of thrust values in U  is related to the number 
of thrusters on the vehicle. The mapping matricesL  is 
essentially a 6 × n matrices that uses U  to find the overall 
forces and moments acting on the vehicle. 

III.  NEURAL NETWORK CONTROL STRUCTURE 

The AUV dynamic in (1) can be rewritten as 

 ττ =++++ dGqqDqqCqM &&&&&& )()(    (8) 

where M , )(vC , )(vD and G are introduced in pervious 

section. Moreover, q is the configuration and dτ  represents 

environmental forces and/or disturbances. To make the AUV 

follow a prescribed desired trajectory , we define the 

tracking error  and filtered tracking error  by 

 
eerqqe d Λ+=−= &,                                        (9) 

with  a positive definite design parameter matrices. 
The AUV dynamics are expressed in terms of the filtered error 
as 
 

 ττ −++−= dxfCrrM )(&                        (10) 

where the unknown nonlinear function of AUV dynamic is 
given by  
 

GqqDeqqC

eqqMxf

d

d

++Λ+
+Λ+=

&&&&

&&&

)())((

))(()(
           (11) 

One may define .A general sort of 

approximation- based controller is based on  
                            

                     
 (12) 

with an estimate of , an outer 

PD tracking loop, and  an auxiliary signal to maintain 

robustness in the face of environmental forces, disturbances 
and modeling error [10]. The multi-loop control structure 
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implied by this structure is shown in fig. 2. Employing   this 
controller, the closed-loop error dynamics are  
 

       )(
~

tfrKCrrM dv υτ +++−−=&                               
 (13) 

where the function approximation error is defined as 

                                                                        (14) 

 
According to the universal approximation property of NN, if 
the  provides a basis, then a smooth function  from 

to  can be approximated on a compact set of 
, by 

                              (15) 

 
for some ideal weights and thresholds and some number of 
hidden layer neurons .In fact, for any choice of a positive 

number , one can find a feed forward NN such that 

                                        (16) 

for all  in  [10]. 
The One–layer functional-link neural network (FLNN) 
structure is shown in fig. 1. 
 

 
Fig. 1 One –layer functional-link neural net 

 
   It has been shown that the sigmoid can form a basis set. In 
Sanner and Slotine [18] it was shown that redial basis 
functions can form a basis. Determining the number of hidden 
layer neuron required for good approximation in an open 
problem for general fully connected two-layer NN. If we want 
a good approximation for , the number of hidden layer 

neuron should be large enough. Extracting the NN weight-
tuning algorithm, some assumptions and lemmas are needed. 
These assumptions are true in every practical situation. 
 
Assumption 1: The desired trajectory is bounded so that 

                                (17) 

with  a known scalar bound. 

 
Suppose that a FLNN is used to approximate the nonlinear 

functions of the AUV model (11) according to (15), with 
the ideal approximating weights. The ideal weights are 

unknown and may even be non-unique. Assume they are 
constant and bounded so that  
                                 

                             
            (18) 

 with  known and  the Frobenius norm. 

Then, an estimate of is given by  

                                (19) 

with the actual values of the NN weights given by the 
tuning algorithm to be specified. Select the control input 

                           (20) 

The proposed NN control structure is shown in fig.2, where

, . 

 
Fig. 2 NN controller structure 

It is now necessary to show how to tune the NN weights 
on-line to ensure stable tracking. The tuning algorithm found 

will presumably modify the actual weights  so that they 

become close to ideal weights , which are unknown. For 
this purpose, define the weight deviations or weight estimation 
error as  

                                                                     

(21) 

Then, and the close loop 

filtered error dynamics (13) becomes 
 

υτεφ +++++−= )()(
~

)( d
T

v xWrKCrM &
                  

  (22) 

 Now we give a FLNN weight-tuning algorithm with 
composite adaptation low that guarantee the tracking stability 
of the closed loop system. It is required to demonstrate that the 
tracking error  is suitably small and that the FLNN 

weights remain bounded, for then the control is 

bounded. The resulting controller is given in below theorem. 
In this case, the tracking error does not go to zero with time, 
but is bounded by a small enough value. 
 

Theorem 
 Let the desired trajectory be bounded by as in 

Assuption1.Assume the ideal target NN weights are bounded 
by  as in (18) and the initial tracking error  is 
bounded. Let the estimate error bound  and the disturbance 

bound Bd be constants. Let the control input for the AUV 

model with 0=υ  be given by 
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Ŵ )(tτ

)(tqd Bq

BW )0(r

Nε



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

895

 

         

          
                          

  (23) 

with gain satisfying  

r

BN

b

d
K

)(
)(min

+
≥

ε
σ υ

             (24) 

Let NN weight tuning be given by 

WFrFW TT ~ˆ φφκφ −=&
                         (25) 

with any constant matrices  and a small scalar 
design parameter. Then the filtered tracking error and NN 

weight estimates are with practical bounds. 
Moreover, the tracking error may be kept as small as desired by 

increasing the gain . 

Proof 
Let the NN approximation property (15) hold for the 

function )(xf given in (11) with a given accuracy  for all 

x  in the compact set }|{
2xx bxxS <≡ with 

Bx qb >

.Define }|{ rr brrS <≡  and
rSr ∈)0( . 

Select the Lyapunov function candidate  
 

}
~~
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2

1 1WFWtrMrrL TT −+=             (26) 

 
Differentiating yields  

}
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Substituting from (25) yields 
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The skew symmetry property makes the second term zero. 

Using tuning rule (25) yields  

)(}
~~

{ d
TTTT rWWtrrKrL τεϕϕκυ ++−−=&    (29) 

 
Now, 

}
~~

{)()(
2

min WWtrdrrKL TT
BN ϕϕκεσ υ −++−≤&  (30) 

             
with )(min υσ K  the minimum singular value of υK . Since 

)( BN d+ε  is positive constant, 0<L&  if 

                             
2

min )(

)(
b

K

d
r BN ≡+>

υσ
ε

                                            (31)  

Thus,  is negative outside a compact set. Selecting the 
gain according to (24) ensure that the compact set defined by 

2br ≤  is contained in , so that approximation property 

holds throughout. This demonstrates the UUB of both r  and

F
W
~

. As a result, the AUV tracking error )(tr is bounded 

and continuity of all functions shows as well the boundedness 

of )(tr& . Boundedness of )(tr  guarantees the boundedness of 

)(te  and )(te& , therefore boundedness of desired trajectory in 

AUV dynamic shows q and q& are bounded. Moreover, W
~

is 

bounded and therefore Ŵ  and f̂ are bounded. 

Note that NN control with composite adaptive low 

guarantees prediction error ( ) and tracking error 

( )(tr ) are bounded, while direct adaptive or NN control only 

guarantees that of the tracking error. This is because the fact 
that NN composite adaptation low explicitly pay attention to 
both tracking and prediction error. 

This NN controller has no preliminary off-line learning 
phase. The weights can simply initiated at zero. Because of the 
PD controllers in (23) the closed loop system remains stable 
until the neural networks began to learn. The weights are tuned 
online in real time as the system tracks the desired trajectory. 
As the NN learns )(xf , the tracking performance improves. 

IV. SIMULATION  

The simulation results obtained from the implementation of 
presented NN tracking controller on a low-speed AUV named 
the Mako[19], which have high symmetry, modularity and 
stability. The NN controller parameters chosen for the 
simulation were as follows, 

)5,5,5,5.1,5.0,5.2(5

)8.0,1,1,15,1,8(40,1.0,100 1010

dig

diagKIF v

×=Λ
×==×= × κ

 

 
  The response of the simulated controller for linear velocities 
u, v and w represent the surge, sway and heave respectively; 
are shown in fig.3. The angular velocities roll, pitch and yaw 
about the x, y and z-axes respectively, are shown in fig.4. 
 

rKxWT
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Fig. 3 Simulation results for the linear velocities 

 
Fig. 4 Simulation results for the angular velocities 

 
The control signals of NN controller and the NN weight 

estimations are shown in fig.5 and fig.6, respectively. The 
velocities tracking response is good and the weight 
estimations are bounded. No initial training or learning phase 
was needed. The initial unknown terms were simply initialized 
at zero in this simulation.  

 

 
Fig. 5 The Control signal of NN Controller 

 
Time (sec) 

Fig. 6 The NN weights estimation 

V. CONCLUSION 

  This paper introduced a novel stable neural network 
controller with composite adaptive low for application of an 
autonomous underwater vehicle (AUV). The proposed 
controller improved velocities tracking performance of the 
AUV, while guarantee boundedness of both tracking error and 
prediction error. In this regard, guarantee accurate and 
dynamic fallowing of prescribed trajectories. The proposed 
controller has superior tracking performance than that of 
conventional controllers. Numerical simulation results in 
MATLAB showed the validity and effectives of the proposed 
controller. 
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