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Abstract—A model predictive controller based on recursive
learning is proposed. In this SISO adaptive controller, a model is
automatically updated using simple recursive equations. The
identified models are then stored in the memory to be re-used in the
future. The decision for model update is taken based on a new control
performance index. The new controller allows the use of simple
linear model predictive controllers in the control of nonlinear time
varying processes.
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1. INTRODUCTION

N many industrial plants, distributed control systems (DCS),

mainly composed of PID controllers, have been used to
control the process. The continuous need to increase
productivity, improve efficiency, and the challenges caused by
process disturbances, process nonlinearity, variance in raw
material quality, have motivated the use of advanced process
control (APC). Among different APC schemes, model
predictive control (MPC), has received the most attention
especially in refining, petrochemical and chemical industries
[1]. Linear model predictive control (LMPC) has been
successfully applied to many industrial processes. However
the characteristics of many industrial processes are nonlinear
and time varying, making LMPC not efficient [2]. In such
conditions, MPC based on nonlinear models (NMPC) should
be considered. Although NMPC has been successfully
implemented in many cases [1], the designer is always
challenged with the difficulty of obtaining accurate nonlinear
models for complicated processes as well as the large
computation effort required for nonlinear optimization
algorithms. Another alternative is to use adaptive MPC where
linear models are continuously estimated for each operating
region. This can be achieved using online model identification
using neural networks [3-5], fuzzy systems [6, 7], or based on
actual measurements database [8,9]. The development of such
scheme was restricted by the high computation time required,
limiting its application to systems with large sampling time
[10]. Another practical approach is to identify different linear
models for different operating regions and switch between
different models as the process moves between regions. This
work presents a new adaptive MPC technique that uses a
simple recursive learning method to update the process model
when required. The decision of model update is taken based
on a new control performance index.
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The model identified is stored in the memory to be re-used
for the same operating region in the future. The number of the
linear models is adaptively selected based on process non-
linearity. The paper is organized as follows: Notation used in
the paper is presented in section II. Section III is dedicated for
a quick overview on the theory behind a famous type of MPC
which is the dynamic matrix control (DMC). The new
adaptive controller is described in section IV. The simulation
results and the conclusion are presented in sections V and VI
respectively.

II.NOTATION

Bold lower case letters are used for vectors while bold
upper case letters are used for matrices. The hat accent is used
to indicate that the variable is an estimated one. All notation
used in this paper are given in Table |

TABLE
NOTATION

Symbol Description

Impulse response coefficients
Plant measured output
Control error

Optimization cost function
Controller output

Identity matrix

Process gain

S K HeE wox Z

Process dead time
Process time constant
Unmeasured disturbances
Move suppression factor

Prediction horizon

5 ° > a A

Control horizon

o]
w
=

Finite Step Response
LUT Look Up Table

III. BACKGROUND

A. Model Predictive Control

MPC refers to a family of controllers that uses a discrete
form of the process model to predict future values of a process
variable based on past values of controller output. The main
idea behind MPC type controllers is illustrated in Fig. 1 for a
SISO system [12]. At sampling time k, a set of m future
manipulated variable moves (control horizon) are selected, so
that the predicted response over a finite horizon p (prediction
horizon) has certain desirable characteristics. This is achieved
by minimizing an objective function based on the deviation of
the future controlled variables from a desired trajectory over
the prediction horizon p and the control energy over the
control horizon m.
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The MPC optimization is performed for a sequence of
hypothetical future control moves over the control horizon and
only the first move is implemented [13]. The problem is
solved again at time k + 1 with the measured output y (k + 1)
as the new starting point. Model uncertainty and unmeasured
process disturbances are handled by calculating an additive
disturbance as the difference between the process
measurement and the model prediction at the current time
step.
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Fig. 1 Illustration for the concept of model predictive control

Although this work focus only on SISO controllers, MPC
algorithm can be generally extended to control MIMO
processes, subject to numerous disturbances and dynamically
varying constraints. Based on the model used, different MPC
algorithms are described in literatures [11]

B. Dynamic Matrix Control:

Dynamic matrix control DMC is a widely used algorithm
developed by Cutler and Ramaker in the seventies. DMC uses
a linear finite step response (FIR) model to predict the future
process variable, ¥(n +j), over sampling future samples

reference to the current time n:
j

I +D) = Yo ) hdun+j-D+dn+) (1)
i=1

Where y,is the initial plant output, Au; is the change in the
controller output at the i th sample, h; is the i th unit step
response coefficient of the process, the term d(n+j)
combines the unmeasured disturbances and the inaccuracies
due to plant-model mismatch.
The goal of the controller is to compute a series of moves such
that:

em+j) =RMm+j)-ym+j)=0 j=12,..,P )
where R(n) is the reference trajectory or target set point, is

the prediction horizon, and e(n) is the control error.
Using (1), it can be shown that:

hy 0 0 0
e(n+1) h, by 0 0
e(n+ 2) _ths  h hy :
: " |hy hg h,
e(n+P)l, : : :
hp hp—l hp—2 hp—m+1 PxM
Au(n)
Au(n + 1)
Aum+M -1, )
Or in compact matrix notation:
e =H.Au @)

where e is the vector of predicted errors over the next P
samples, H is the dynamic matrix, and Au is the vector of
controller output moves to be determined.

Eq. (4) can be solved by minimizing a quadratic cost function
of the form:

Miny, ] = [e — HAu]"[e — HAu] + AuTAAu 5)

where is the move suppression factor used to avoid
excessive control action. In the unconstrained case, this
minimization problem has a closed form solution, which
represents the DMC control law:

Au= (HTH + AD)"*HTe (6)
C. Multi-Model MPC

Several linear empirical model can be used together to
control a nonlinear plant using DMC. One technique uses a
gain and time scheduling technique for updating the process
model as the process move from one region to another [14].
An extension of this method is to use multiple models to
update the controller model. Linear models that describes the
system at various operating regions are developed using actual
plant measurements or through step tests. It has been shown in
[15] that linear models can be combined in order to obtain an
approximation of the nonlinear process that approaches its true
behavior. This scheme can be implemented practically by
using several controllers in parallel, each designed and tuned
for a specific operating region and switch between controllers
depending on the operating region. To avoid bumping at
switchover, the controllers” moves are weighted based on the
prediction error calculated for each [16]. The resulting weights
are obtained using recursive identification to minimize the
error of the final controller output. Another technique uses
fuzzy logic to combine controllers’ outputs [17]. Generally
the success of this scheme depends on the accuracy of the
individual models used, the number of linear models required
to approximate plant nonlinearity and the technique used to
switch from on model to another. Multi-model MPC can also
be implemented using online recursive formulations that use
actual plant measurements to develop “local” linear models
for the MPC [18]. The success of this scheme depends on the
presence of enough excitations in the data used, the level of
noise, and the convergence of the modeling formulations used.

770



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:6, 2012

The local linear model can be approximated using a first order
plus dead time (FOPDT) model that has the form

‘t% +y(t) =ku(t—0) 7
Or,

y(s) ke ®

OREEES ®)

Where k is the process gain, T is the time constant and 0 is the
process dead time. Although a FOPDT model approximation
does not capture all the features of higher order process, it
often reasonably describes the process gain, overall time
constant and effective dead time of such processes [19].

In this work, approximated FOPDT models are identified
for the common operating regions. At each change in the set
point, a performance index is used to evaluate the controller
performance. If the performance is below an accepted level, a
local FOPDT model is identified by comparing the actual
plant measurements with the model output. The three model
parameters together with the target set point are then stored in
a look-up table in the memory. For each future change in the
set point the stored look-up table and linear interpolation is
used to estimate the local model for this new operating region.
The final number of linear model used is adaptively selected
depending on degree of process nonlinearity.

IV. ADAPTIVE MPC USING RECURSIVE LEARNING

A. Recursive Model Identification

Now assume that the controller output is applied to the
model as well as the plant as illustrated in Fig.2

L MPC Controller Y Plant

1,

b Plant model

——> y_hat

Fig. 2 Using plant model in model identification

Fig. 3, 4 and 5 show a plot for both y and ¥ in case of gain
mismatch, time constant mismatch, and in case of mismatch in
all FOPDT parameters. Fig.6 shows the first derivatives y'and
§’ corresponding to the case in Fig.5
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Fig. 3 Outputs in case of process gain mismatch
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Fig. 4 Outputs in case of process time constant mismatch
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Fig. 5 Outputs in case of process gain, time constant and dead time
mismatch

|~ Ynat

Fig. 6 Outputs’ first derivative in case of process gain, time constant
and dead time mismatch

If the new set point is applied at t;, and the process is
stabilized at t,, FOPDT model parameters can be estimated by
comparing y,¥,y'and §' using the following recursive
equations:

y(t2) —y(ty)

Knew = Kold- so—a 2 9
new = Ko 56y = 5(t) ©
knew ?(t)lmax
Tnew = Told- Ty, — X (10)
new old kold y (t)lmax t<t<t
1 2
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The dead time O can be calculated by estimating the time
shift between y and §. Fig.7 shows the improvement in control
performance after one learning pass using Eq.(9) and (10).

‘ / Improvement after one
/ fearming pa:

) 100 150 200 250 300

Fig. 7 Example 1 for control improvement after one learning pass

Fig.8 shows another example for more severe mismatch and
quick change in set point.

N
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Fig. 8 Example 2 for control improvement after two learning passes

B. Adaptive Multi-Model MPC:

For the sake of this work, a new performance index is
introduced and is defined as:

_ max (y'(t)) max (y(t)
S max@'®)” R

an

ty<t<t,

where R is the final controller set point. The index [ is close to
1 for well performing control. The steps for implementing the
new adaptive controller is summarized in the flow chart of
fig.9
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v
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controller
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g
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Fig. 9 Flow chart for the proposed adaptive controller

Using recursive
learning to update
the model and
store it in the LUT

V.SIMULATION RESULTS

A. Gravity Drained Tank

The performance of the new controller is first demonstrated
through the level control of gravity drained tanks. This is
highly nonlinear process where the gain may vary by more
than 500%. A schematic for system is shown in fig. 10

Fig. 10 Schematic for gravity drained tanks

The system consists of two non-interacting tanks stacked
one above the other. Each of the two tanks has a diameter of
Im and a height of 2.75 m. The level transmitter is of
differential pressure type and its tap points are installed at
heights 0.25m and 2.5m reference to tank base, offering a total
measurement span of 2.25m. Two globe valves are installed at
the outlet of each tank with valve constants Cvl equals to 0.5
and Cv2 equals to 1. The outlet of T-02 is at 0.25m height and
the outlet valve is installed at the same level of tank base. The
controlled variable is the level of the lower tank, and the
manipulated variable is the control valve position at the inlet
of the first tank. Using mass balance, the dynamic model of
the system can be modeled using the two following
differential equations:

Al'E =Q; —Cvlyh; +x4 (12)

dh
Az.d—t2 = Cvyy/hy +x; + X, — Cvpi/hy (13)

Where h1,h2, A1 and A2 are the height and cross-section area
of tanks T-01 and T-02 respectively, x; and x, are the distance
between T-01 and valve 1 and between valve 1 and T-02.
Plant measurements around h2=5% were used to construct the
FSR model used in the DMC controller. Fig.11 shows the
performance of a single model DMC controller for this non-
linear process compared to the performance of the adaptive
recursive learning DMC after one learning pass. It is clear that
as the level set point increases, overshoot increases due to
process gain increase. RL-DMC can successfully capture the
change in the model diameter and thus avoid overshooting.
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Fig. 11 Control performance of RL-DMC compared to DMC

TABLE II
IDENTIFIED MODELS

Initial Model Model after one pass
K T 0 K T (€]
5 0.23 3.4 0 0.23 3.6 0
10 0.23 3.4 0 0.54 3.2 1
15 0.23 3.4 0 0.7 3.7 2
20 0.23 3.4 0 0.83 4.1 3
25 0.23 3.4 0 0.95 44 3

To better illustrate the idea, consider a change in set point
between 10% and 15% up and down as shown in Fig.12. At
each change in the set point the RL-DMC identify a more
accurate model leading to better control. This test represents
the way the plant operator or the control engineer should use
the consecutive set point changes to allow adaptation to
varying operating conditions.
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Level (%)
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Fig. 12 using successive set point changes to improve the control
performance

B. Nonlinear Mixing Process

This section demonstrates the performance of the new
controller on a nonlinear mixing process. This process consists
of an open tank with an agitator as shown in Fig. 13.

F1
Tt

Hot stream

F2
T2(1)
Cold stream
bmc

[ =

Fig. 13 Nonlinear Mixing Process

A hot water stream F,(t) is manipulated to mix with a cold
water stream F(t) to obtain an output flow F(t) at a desired
temperature T’(t). All flow measurements are expressed in m3
/s. The temperature transmitter is located at a distance L from
the mixing tank bottom. The volume of the tank varies freely
without overflowing. The tank level can be estimated through
mass balance as:

dh
A =Fi+F—F (14)

The output flow F(t) can be modeled as a function of the
liquid level and the manual valve used in bottom of tank:

F(t) = Cy1/h(t) (15)

Where Cv represents the valve constant. The outlet
temperature is obtained through mass balance as follows:

F1 (). CP. T, (t) + F,(t). CP. T,(t) — F(t).CP.T(t)
= A.CV.h(t). :l—rf (16)

where CP and CV are the heat capacity of the liquid at
pressure constant and volume constant respectively. T1(t) is
the hot water stream temperature, T2(t) is the cold water
stream temperature. T(t) is the temperature just in the bottom
of the tank. Because the temperature transmitter is located at a
distance L from the tank bottom, there is a delay time between
T(t) and the temperature registered by the sensor/transmitter
T’(t). That delay time to(t) can be calculated as:
LA(p

to =Ty a”
where At is the pipe cross section an L is the distance between
the tank bottom and the temperature transmitter position. The
temperature transmitter can be modeled as:

de(t)
dt

T. +c(t) =K. T'(t) (18)

Where tr and Kt are the transmitter time constant and gain
respectively. Finally the control valve can be modeled as:

T, dFét(t) +F,(t) = K,m(b) (19)

Where 1, and K, are the control valve time constant and gain
respectively. Matlab is used to solve the 4 differential
equations (14,16,18 and 19) using ode45 command. The final
steady state model parameters used in the simulation are
shown in table III:

TABLE 111
MODEL STEADY STATE PARAMETERS
Parameter Value Unit
F1 0.475 m3/s
F2 1.1 m3/s
F 1.56 m3/s
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T1 80 C

T2 15 C

T 35 C

P 1000 Kg/m3

A 10 m2

Cv 1 Kcal/C.Kg
CP 1 Kcal/C.Kg
Cv 0.6

L 3 m

At 0.005 M

Tv 0.5 S

Kv 0.016

Kt 1

Tt 0.5 S

H 6.8 m

Fig. 14 and 15 compare the performance of DMC with RL-
DMC after one learning pass and 3 learning passes
respectively. Note that the DMC model was identified around
an outlet temperature of 35C using a FOPDT model with
k=0.54, 1=22.9,and 6=14. As the set point decrease, the
process nonlinearity causes overshoots as indicated by the
dashed line. In contrast, the RL-DMC successfully identified
the real model for each operating set point leading to a
smoother control.

T
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Fig. 14 simulation results for one learning pass
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Fig. 15 Simulation results for 3 learning passes

The final identified models by the RL-DMC are shown in
table IV

TABLE IV

IDENTIFIED LOCAL FOPDT MODELS
Set Point for Identified Identified
outlet Gain Time
temperature constant
©
20 0.95 25.2
25 0.84 26.4
30 0.71 27.3
35 0.57 28.5

VI. CONCLUSION

This paper presents a new approach in the implementation
of SISO multiple models MPC controller for non-linear plants.
In this approach, approximate model(s) collected form
physical equations, dynamic simulations packages can be used
directly to the plant. Simple learning technique is used to
identify different models for different operating regions based
on controller performance. The simplicity of the calculations
avoids the high computation capacity normally required for
online identification. Adaptation can usually be accomplished
in one or two step changes. This approach can considerably
save the large cost spent on online identification packages and
on expert process control engineers.
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