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Abstract—The batch nature limits the standard kernel principal 

component analysis (KPCA) methods in numerous applications, 
especially for dynamic or large-scale data. In this paper, an efficient 
adaptive approach is presented for online extraction of the kernel 
principal components (KPC). The contribution of this paper may be 
divided into two parts. First, kernel covariance matrix is correctly 
updated to adapt to the changing characteristics of data. Second, KPC 
are recursively formulated to overcome the batch nature of standard 
KPCA.This formulation is derived from the recursive 
eigen-decomposition of kernel covariance matrix and indicates the 
KPC variation caused by the new data. The proposed method not only 
alleviates sub-optimality of the KPCA method for non-stationary data, 
but also maintains constant update speed and memory usage as the 
data-size increases. Experiments for simulation data and real 
applications demonstrate that our approach yields improvements in 
terms of both computational speed and approximation accuracy. 
 

Keywords—adaptive method, kernel principal component 
analysis, online extraction, recursive algorithm.  

I. INTRODUCTION 
ERNEL principal component analysis (KPCA), which is a 
nonlinear extension of principal component analysis 

(PCA) [1], has gained significant attention as a learning 
machine [2] in pattern recognition [3-6], statistical analysis [7, 
8] and image processing [9, 10]. The core idea of KPCA is to 
first map the input space into a feature space using a nonlinear 
mapping and then compute the principal components in the 
feature space. As a result, the extracted kernel principal 
component (KPC) of the mapped data is nonlinear with regards 
to the original input space.  

The main challenge in KPCA for online feature extraction is 
its batch nature. On one hand, the batch nature hinders KPCA 
in terms of computation and memory demands as the data-size 
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increases. For KPCA, the kernel Gram matrix has to be wholly 
available before eigendecomposition can be carried out. The 
arrival of a new data will require the addition of a new row and 
column for kernel Gram matrix, and eigendecomposition has to 
be constantly reevaluated for the ever-growing matrix. In 
addition, all data must be saved to represent the KPC. This 
translates into high costs for storage resources and 
computational load during run-time application of large 
datasets. On the other hand, the batch KPCA, which relies on a 
fixed model, cannot be employed for non-stationary data whose 
input distributions could be temporally changed. According to 
[11], the non-stationary property in input space will reappear in 
feature space when the nonlinear mapping is smooth and 
continuous. However, KPCA spends equivalent modeling 
power on the mapped data to extract the KPC. This is not 
desirable for tracking the changing characteristics of the input 
data.  

In the last decade, several approaches have been proposed to 
deal with the batch nature of KPCA, and could be mostly 
grouped into one of the following three approaches: iterative 
KPCA based on Hebbian updates algorithms[10, 12], 
incremental KPCA[13, 14] and the greedy KPCA[15, 16]. The 
first kernelizes the generalized Hebbian algorithm which is an 
iterative self-organizing procedure for linear PCA. Whereas 
this method can potentially lower the time complexity of 
computing KPCA, it is unclear how to continue the iterations 
when a new data added to the training set and its convergence is 
comparatively slow. The second performs incremental singular 
value decomposition (SVD) in the kernel induced feature space 
and iteratively constructs reduced-set expansions to maintain 
constant update speed and memory usage. The third filters 
samples the original training set for a lesser but representative 
subset of vectors which span approximately the same subspace 
as the subspace in the kernel induced feature space spanned by 
the training set. However, in last two approaches, constructing 
of reduced-set expansion and prior filtering of the training data 
could be computationally expensive by themselves. 
Furthermore, these methods cannot be directly used to adapt the 
KPC to process non-stationary data. 

This paper proposes an adaptive KPCA (AKPCA) method 
with rapid and accurate computation for online KPC extraction. 
Rather than directly operating on mapped kernel data or kernel 
Gram matrix, the proposed method commence with the kernel 
covariance matrix, from which the AKPCA arises. The basis of 
the solution lies in decomposing the new data into a component 
orthogonal and a component parallel to the previous KPC, and 
adaptively adjusting KPC based on the rank-1 update [17] of 
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kernel covariance matrix. The contribution made in this paper 
is twofold: (1) recursively formalizing KPC to adapt to the 
changing characteristics of non-stationary data, (2) reducing 
the computational complexity and memory usage of KPCA to 

( )O N . 
The rest of the paper is organized as follows. Section II 

presents a brief description of the KPCA method. Section III 
elucidates the proposed AKPCA approach, including the 
update of kernel covariance matrix, the recursive 
decomposition of kernel covariance matrix, and recursive KPC 
formulation. Section IV details the experiments and analysis 
aiming at assessing the performance of the proposed method. 
Section V draws some concluding remarks.  

II. KERNEL PRINCIPAL ANALYSIS 

Given a data matrix ( )1 2, , , m n
nx x x ×= ∈x " \ , with 

m
ix ∈\ being the data vector at time 1i ≥ , KPCA nonlinearly 

maps x  into a higher dimensional space F , and subsequently 
performs linear PCA in F . Assuming that the mapped data is 
centered in feature space (This assume will be removed later), 
its covariance matrix is given by 

( ) ( )
1

1 n T
i i

i
x xn n

φ φ
=

= ∑C ,                     (1) 

where φ  is the nonlinear mapping function. The map φ  is 
induced by a kernel function ( ),k ⋅ ⋅  that allows us to evaluate 

inner products in F : ( ) ( ) ( ),i j i jk x x x xφ φ= i , 
 , 1, ,for i j n= " . Given that the explicit mapping function φ  

is unknown, eigendecomposition can’t be performed on nC to 
compute the KPC. KPCA circumvents the KPC by a dual 
eigendecomposition problem for kernel Gram 
matrix k k

n kK nλ=a a , in which ( )1 2, , ,
Tk k k k

na a a=a "  is the 

normalized eigenvector1. Then, the r  most significant KPC in 
feature space take the form of  

( ) ( ) ( )2

1 2
1, , , , , , n

r
n nx x xφ φ φ⎡ ⎤= = ⎡ ⎤⎣ ⎦⎣ ⎦V v v v A" " ,     (2) 

where nA  is the matrix with the columns of ka  associated with 
the k -th largest eigenvalues, 1, 2,k r= " . Let mz ∈\  be a 
test data, with an image ( )zφ , then its k -th principal 
component corresponding to φ  is  

( ) ( ) ( )
1

,
n

k k
i i

i
k z a k x zφ

=

= = ∑p v i ,                  (3) 

where kv  is the k -th columns of nV . 

III. ADAPTIVE KERNEL PRINCIPAL ANALYSIS 
In this section, the batch nature and non-adaptability of 

KPCA is solved by a recursive KPC formulation, i.e., adjusting 
the KPC based on the effect of new data on the previous KPC. 
 

1 ka should be scaled to ensure
1k k

knλ
=a ai . 

 

The updating in detail for one step of the iterative procedure is 
described and it compares favourablely to standard KPCA. 

A. Exponential Forgetting Window for the Update of 
Kernel Covariance matrix 

Assume that data ( )1 2, , , nx x x"  have been given with their 
KPCA result so far and the new data 1nx + is given for current 
processing. To estimate the kernel covariance matrix in a 
manner that de-emphasizes past observations, the exponential 
forgetting window for the update of kernel covariance matrix is 
used 

( ) ( ) ( )1 1 11 T
n n n nx xε ε φ φ+ + += + −C C ,          (4) 

where ε  is the exponential forgetting factor, which is often set 

smaller than 
1

n
n +

 to de-emphasize the contribution of earlier 

observations.  
With the previous KPCA result n n

T
n nC V Λ V� , ( )1nxφ +  

can be decomposed into a component ( )1
n

nxφ +
V  parallel and 

component ( )1
n

nxφ
⊥

+
V orthogonal to nV  

( ) ( ) ( )11 1
n n

nn nx x xφ φ φ
⊥

++ += +
V V ,                  (5) 

Following (3),  
( )

11 n

n
n n xxφ

++ =V V p                                  (6) 
and 

( ) ( ) ( ) ( ) ( ) 1
1 1 2 1, , , ,

1
nn

n n n
xx x x x xφ φ φ φ φ

⊥
+

+ +

−⎡ ⎤
= ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

V
p

" ,    (7) 

where 
1nx +

p  reads entrywise ( ) ( )
1 1n

k
nx k xφ

+ += vp i .  

For ( )1
n

nxφ
⊥

+
V , the norm 

( ) ( )
1 1

2

1 1 1,n

n n

T
n n n x xx k x xφ

⊥

+ +
+ + += −V p p .      (8) 

When ( )1
n

nxφ
⊥

+
V  is small enough to be modeled as noise, one 

can say ( )1nxφ +  is linearly dependent on 

( ) ( ) ( )1 2, , , nx x xφ φ φ" . The current KPC can be obtained by 
rotating the previous KPC in the kernel subspace to most 
faithfully preserve the covariance structure (Subsection III.B). 
Otherwise, ( )1nxφ +  is linearly independent on 

( ) ( ) ( )1 2, , , nx x xφ φ φ" , and new KPC should be added into 
consideration (Subsection III.C). 

B. Rotate the KPC to most faithfully preserves covariance 
structure 

If ( )1
n

nxφ
⊥

+
V  is smaller than a given threshold τ , then 

( )1
n

nxφ
⊥

+
V  can be viewed as noise, and has no effect on the 

original KPC. In such case, the variation caused by 1nx +  mainly 

depend on ( )1
n

nxφ +
V .  Thus, (4) can be rewritten as the 

following recursion:  
( ) ( ) ( )1 1 11 Tn n

n n n nx xε ε φ φ+ + ++′ = − V VC C .           (9) 
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 Substituting the previous KPCA result and (6) into (9), the 
kernel covariance matrix is rewritten by 

( )( )1 11 1
n n

TT
n x xn n nεε

+ ++ + −′ =C V Λ p p V .             (10) 
Denoting the eigendecomposition of the matrix 

( )
1 1

1
n n

T
n x x

εε
+ +

+ −Λ p p as TUDU , where U  is orthonormal and 

D  is diagonal, (10) becomes 
1

T T
n n n+′ =C V UDU V .                            (11) 

Consequently, the eigensystem variation of kernel 
covariance matrix caused by ( ) ( )1 1

1
1

Tn n
n nn

x xφ φ+ ++
V V  turns 

out to be 
1n n+ =A A U  

( ) ( ) ( )1 21 1, , , nn n nx x xφ φ φ+ +
⎡ ⎤⎣ ⎦ ′= =V V U A" , 

and 1n+ =Λ D .                          (12) 
In (12), U  represents directional variation of KPC caused 
by ( )1

n
nxφ +

V , and D  represents component ration of the 
updated KPC.  

C. Add new KPC to fit the orthogonal component 

If ( )1
n

nxφ
⊥

+
V  is larger than the threshold τ , new KPC 

should be added into consideration. The first key observation is 
that previous KPC nV  can be rewritten as 

( ) ( ) ( ) ( )1 2 1,, , , n
n n nx x x xφ φ φ φ +

⎡ ⎤
= ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

A
V

0
" ,         (13) 

where 0  is a 1 n×  vector of zeros. The second key observation 

is that ( )1
n

nxφ +
V  and ( )1

n
nxφ

⊥

+
V  can be rewritten as 

( ) ( ) ( ) ( ) ( )
1

1 1 2 1,, , ,
n

nn
n n n xx x x x xφ φ φ φ φ

+
+ +

⎡ ⎤
= ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦

V A
p

0
" , 

( ) ( ) ( ) ( ) ( ) 1
1 1 2 1,, , ,

1
nn

n
n n n

xx x x x xφ φ φ φ φ
⊥

+
+ +

−⎡ ⎤
= ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

V
A p

" .(14) 

Substituting (5), (13) and (14) into (4), the current kernel 
covariance matrix is given by  

( ) ( ) ( ) ( ) 1
1 1 2 1,, , ,

1
n

nn
n n n

xx x x xφ φ φ φ +
+ +

−⎡ ⎤
= ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

A pA
C

0
"  

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1

2 2
1

22 2
1 1

1 1

1 1

n

n n n

n n

n

T
nn x x x

T
n nx

x

x x

ε ε ε φ

ε φ ε φ

⊥

+ + +

⊥ ⊥

+

+

+ +

⎡ ⎤+ − −
⎢ ⎥⋅ ⎢ ⎥

− −⎢ ⎥⎣ ⎦

V

V V

Λ p p p

p
 

( ) ( ) ( ) ( )1
1 2 1,, , ,

1
n

T
Tnn

n n
x x x x xφ φ φ φ+

+⋅
−⎡ ⎤

⎡ ⎤⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

A pA
0

" .  (15) 

Similar with (11), eigendecomposition of the matrix 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1

2 2
1

22 2
1 1

1 1

1 1

n

n n n

n n

n

T
nn x x x

T
n nx

x

x x

ε ε ε φ

ε φ ε φ

⊥

+ + +

⊥ ⊥

+

+

+ +

⎡ ⎤+ − −
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

V

V V

Λ p p p

p
is 

denoted as TWEW , where W  is orthonormal and E  is 
diagonal. 

Consequently, the eigensystem variation of kernel 
covariance matrix caused by ( ) ( )1 1

1
1

Tn n
n nn

x xφ φ+ ++
V V  turns 

out to be 

1
1

1
n

nn
n

x +
+

−⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

A pA
A W

0
 

( ) ( ) ( ) ( )1 1 2 1 1,, , ,n n n nx x x xφ φ φ φ+ + += ⎡ ⎤⎣ ⎦V A" , 
and 1n+′ =Λ E .                            (16) 

For ( )1
n

nxφ τ
⊥

+ >V , different from the results in (10), the 

spanning vectors of the current KPC are extended from 
( ) ( ) ( )1 2, , , nx x xφ φ φ⎡ ⎤⎣ ⎦"  to ( ) ( ) ( )1 1,, , n nx x xφ φ φ +⎡ ⎤⎣ ⎦" . 

D. Recursive KPC formulation with mean update 
For the sake of simplicity, it was assumed that all the mapped 

data are zero-mean. However, the assumption is often invalid 
and the sample mean of the training data maybe changes over 
time as new data arrive. One shall now drop this assumption.  

Denoting the current means of mapped data as 1nμ + =  

( ) ( )11 n nxε μ εφ +− + , (4) can be rewritten as  

( ) ( )( ) ( )( )
1

1
1 1 1

1
1

n Tn i
n n i n i n

i
C C x xε ε φ μ φ μ

+
+ −

+ + +
=

= − − −∑  .  By 

the scatter matrix update[19], it can be easily achieved that 
kernel covariance matrices have following recursive formula 

( ) ( ) ( )( ) ( )( )1 1 11 1
T

n n n n n nC C x xε ε ε φ μ φ μ+ + += − + − − − . (17) 

The recursive KPC formulation of (17) can be computed 
following the above approach. The procedure will not be 
repeated here for obtaining the updated KPC because it is 
completely analogous with (5)~(16), only the mapped data 

( ) ( ) ( ) ( )1 2 1, , , ,n nx x x xφ φ φ φ +"  should be modified as 

( ) ( ) ( ) ( )( )1 2 1, , , ,
1n n n n n n

nx x x x
n

φ μ φ μ φ μ φ μ+− − − −
+

"  

respectively. The computational issues in this modified 
procedure can be seen in Appendix A of [1]. 

E. AKPCA Algorithm 
As a summary, the AKPCA algorithm can be detailed in 

steps as follows: 
 

AKPCA Algorithm 
Step 1. Obtain n data and perform batch KPCA. 
Step 2. For 1, 2,i n n= + + "  
Step 3. Obtain ix . 
Step 4. Decompose ( ) 1i ixφ μ −−  into a component parallel and 

a component orthogonal to previous KPC. 

Step 5. If ( )( )1i ixφ μ τ
⊥

−− ≤
V

, go to Step 6; otherwise, skip 

to Step 7.  
Step 6. Update the KPC by rotation (Subsection III.B) based on 

(17). Skip to Step 8. 
Step 7. Update the KPC by adding a new kernel component. 

(Subsection III.C) based on (17).  
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Step 8. end if 
Step 9. Update the implicit mean of mapped data. 
Step 10. end for 

By examining the algorithm in Table 1, it can see that the 
time complexity of each update is dependent on the mapped 
data which are used to span the KPC. The number of the data 
increases very slowly in the update procedure, and can be 
viewed as constant. So the proposed algorithm has linear time 
complexity. This is confirmed by the experiments in Section 
IV. 

IV. EXPERIMENTS 
Several experiments were conducted to examine three 

properties of the proposed AKPCA algorithm: (1) the accuracy 
of in approximating batch KPCA; (2) empirical time 
complexity; (3) the effectiveness of the proposed method in 
visual tracking which essentially deals with non-stationary 
data. For the following, ‘IKPCA’ is defined as acronym of 
incremental KPCA method in[13]. 

The first experiment, which is carried on the 2000 simulation 
data in a non-stationary environment, serves to test the 
effectiveness of AKPCA in approximation accuracy. The 
two-dimensional data was generated in the following way: 
x -values have uniform distribution in [ ]1,1− , y -values are 

generated from 20.002i iy ix ξ= + , where ξ  is normal noise 
with standard deviation 0.2. The first 2000 vectors are plotted in 
Fig. 1. 
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Fig. 1 Non-stationary simulation data. 

 
 The AKPCA and IKPCA are used to find the first r  KPC 

of the data. The IKPCA parameters are 40, 4, 0.12,n r τ= = =  
0.9ε = , and 40, 4, 1p r l= = =  for IKPCA. The Gaussian 

kernel with 1σ =  is used. Since the characteristics of data 
varied as the time, some adding KPC were involved in the 
AKPCA processing. To assess the quality of the solutions of 
AKPCA and IKPCA, an alternative measure is adapted, i.e., the  
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Fig. 2. The residual error of AKPCA (a) and IKPCA(b). In the 
AKPCA processing, seven new kernel components at time 230, 406, 
623, 745, 970, 1674, 1741 are added into KPC (red dashed lines). 
 
residual error of training data points in the RKHS[18]. Residual 
error measures distances between the data points and their 
projections onto the KPC. Fig. 2 shows the results. It can be 
seen that AKPCA overcomes the danger of drift, i.e., error 
accumulates across the update procedure causing the 
divergency between the AKPCA results and the ground truth 
results to grow indefinitely large.  

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

Size of data

El
ap

se
d 

tim
e 

(s
ec

on
ds

) KPCA-G
KPCA-P
IKPCA-G
IKPCA-P
AKPCA-RD-G
AKPCA-RD-P

 
Fig. 3. Empirical time complexity of RKPCA with toy data  

 
The second experiment serves to examine the empirical time 
complexity of AKPCA. The toy data [1]was created in various 
sizes and processed by AKPCA with 20, 6,n r τ= = = ∞  and 

( ) 1ii
i

ε −
= . The Gaussian kernel (‘AKPCA-G’) with 1σ =  

and third-degree polynomial kernel (‘AKPCA-P’) are used. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2592

 

 

The processing time for each instance was recorded. The 
elapsed times of standard KPCA (‘KPCA-G’ for Gaussian 
kernel, ‘KPCA-P’ for Polynomial kernel) and IKPCA with 

10, 6, 1p r l= = = were also recorded for comparison. Fig. 5 (a) 
shows the results which confirm that processing time for 
AKPCA scales linearly with the problem size and KPCA scales 
with complexity ( )3O N . All curves in Fig. 3 were obtained by 
averaging results from 100 repetitions 
Finally, we investigate the feasibility of AKPCA in 
non-stationary visual tracking. We advance the adaptive 
appearance model [19] by using AKPCA to train the model.  
Given an AKPCA model which encodes the recent appearance 
of the object of interest up to the previous frame, candidate 
object of the current frame would potentially enclose the KPC 
in this model. The object with the closest matching appearance 
is determined to be the solution. Multi-resolution face kernel 
[20] was used for the specific objects in the task of tracking. 
Fig. 4 shows AKPCA tracking results of four video sequences2. 
The AKPCA paramether are 40, 8, 0.9n r ε= = =  and 0.4τ =  
for the first ‘fish’ sequence, 0.5τ =  for the second ‘sylv’ 
sequence, 0.8τ =  for the third ‘car4’ sequence, 1.4τ =  for the 
forth ‘davidin’. As a qualitative benchmark, we also ran IKPCA 
on the same sequences, with 10, 8, 5p r l= = = . As can be seen 
in Fig. 4, our method provides comparable performance to the 
IKPCA tracker. Conclusion and Future Work 

KPCA is a powerful method to extract the nonlinear feature 
of data. Although the adaptive algorithm for extracting KPC is 
important, it has not been reported so far. Our algorithm is 
devoted to filling this gap. In this paper, we proposed an 
AKPCA method for the online KPC extraction. This is 
achieved by formatting the recursive description of the 
eigensystem in kernel induced space and updating of the kernel 
covariance matrix to de-emphasize the past observations. The 
recursive description enables the proposed method to maintain 
constant update speed and memory usage in the learning 
process. The update of the kernel covariance matrix gives 
AKPCA the flexibility of accurately tracking the KPC. We 
show the accuracy and good computation properties of the 
proposed approach through several experiments. 

Several possible improvements to the proposed method are 
of interest for future research. For instance, in this paper we 
update the KPC once for every new data. However, for a 
trade-off between computational efficiency and tracking ability, 
how often shall we update the KPC, and how to do it?  Second, 
we wish to investigate the unsupervised threshold for the 
augmentation of new KPC. 

V. CONCLUSION AND FUTURE WORK 
KPCA is a powerful method to extract the nonlinear feature 

of data. Although the adaptive algorithm for extracting KPC is 
important, it has not been reported so far. Our algorithm is 
devoted to filling this gap. In this paper, we proposed an 
AKPCA method for the online KPC extraction. This is 
achieved by formatting the recursive description of the 

 
2Available at http://www.cs.toronto.edu/~dross/ivt/. 

eigensystem in kernel induced space and updating of the kernel 
covariance matrix to de-emphasize the past observations. The 
recursive description enables the proposed method to maintain 
constant update speed and memory usage in the learning 
process. The update of the kernel covariance matrix gives 
AKPCA the flexibility of accurately tracking the KPC. We 
show the accuracy and good computation properties of the 
proposed approach through several experiments. 

Several possible improvements to the proposed method are 
of interest for future research. For instance, in this paper we 
update the KPC once for every new data. However, for a 
trade-off between computational efficiency and tracking ability, 
how often shall we update the KPC, and how to do it?  Second, 
we wish to investigate the unsupervised threshold for the 
augmentation of new KPC. 
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Fig. 4. A comparison of AKPCA (indicated with a green solid box) and IKPCA (depicted by a red dashed box) in visual tracking. 


