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 
Abstract—Fault diagnosis of Linear Parameter-Varying (LPV) 

system using an adaptive Kalman filter is proposed. The LPV model 
is comprised of scheduling parameters, and the emulator parameters. 
The scheduling parameters are chosen such that they are capable of 
tracking variations in the system model as a result of changes in the 
operating regimes. The emulator parameters, on the other hand, 
simulate variations in the subsystems during the identification phase 
and have negligible effect during the operational phase. The nominal 
model and the influence vectors, which are the gradient of the feature 
vector respect to the emulator parameters, are identified off-line from 
a number of emulator parameter perturbed experiments. A Kalman 
filter is designed using the identified nominal model. As the system 
varies, the Kalman filter model is adapted using the scheduling 
variables.  The residual is employed for fault diagnosis. The 
proposed scheme is successfully evaluated on simulated system as 
well as on a physical process control system. 
 

Keywords—Identification, linear parameter-varying systems, 
least-squares estimation, fault diagnosis, Kalman filter, emulators. 

I.  INTRODUCTION 

N recent years, many complex, high order, and nonlinear 
physical systems have been successfully modeled as (LPV) 

systems with a view to designing gain-scheduling controllers, 
fault diagnosis schemes, and real-time simulation. Fault 
Detection and Isolation (FDI) schemes based on assuming 
linear time-invariant systems are not reliable if the parameter 
perturbations are large around an operating point. FDI 
schemes using LPV models have been proposed for 
approximating a class of nonlinear systems by LPV systems 
[1]. Model of a physical system is complex and nonlinear. 
Linearized model is successfully employed in many 
applications. A model-based fault diagnosis for nonlinear 
systems is still a challenging problem [2].  In recent years, 
however, detection of a fault in nonlinear systems has been 
proposed using robust fault detection filters [3].  

In this paper, a piecewise liner model based on the linear 
parameter varying model approach to approximate a class of 
nonlinear system is employed. Modeling, identification and 
fault diagnosis of interconnected system composed of 
subsystems are developed by extending the results for linear 
system proposed in [4], [5]. The operating points are tracked 
by scheduling variables, which are measured in real time.  
They include exogenous signals such as the set point, internal 
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variables such as the velocity and power, environment 
variables such as the altitude, temperature, pressure and air 
speed. A reliable identification is proposed by identifying the 
system at a given operating point by indirectly perturbing the 
subsystem parameters. Except in the case of subsystems such 
as a controller, the parameters which characterize the 
subsystems may not be accessible. To meet the requirement of 
the accessibility of the subsystem parameters, an emulator is 
connected at the measured inputs and the outputs. Each 
emulator is associated with a subsystem, and is connected in 
cascade with it. Variations of the emulator parameters mimic 
the macroscopic behavior of the subsystem, namely the 
variations in the phase and magnitude of its transfer function. 
The emulator transfer function is a first-order all-pass filter, a 
finite impulse response (FIR) filter, an infinite impulse 
response (IIR) filter, a pure delay, a static gain or other.  

An adaptive Kalman filter is designed using the identified 
nominal model. The key property of the Kaman filter 
established in [4], [5] is exploited in developing the fault 
diagnosis scheme, namely the residual of the Kalman filter is 
zero mean white noise process if and only if there is no 
deviation between the nominal and actual model, otherwise, 
the residual will contain an additive term representing the 
deviation in their feature vectors. The Kalman filter model is 
adapted using the scheduling variable if the operating regime 
varies.  

The proposed scheme is evaluated on a physical process 
control system. The objective of identification is to help 
develop a fault diagnosis scheme to detect and isolate sensor 
and actuator faults 

II. LINEAR PARAMETER VARYING MODEL 

Physical systems are generally complex and nonlinear. 
Modeling of a class of nonlinear physical system for intended 
application to fault diagnosis is presented. To illustrate the 
proposed scheme, an interconnected system G formed of a 
number of subsystems  : 1,2,3,...,iG i m is considered. Each 

subsystem may represent a physical entity such as a sensor, 
actuator, controller or any other system component that is 
subject to variations, and may be affected by the noise v  and 
the disturbance inputs  iw as shown in Fig. 1. 

The scheduling variable   is a function of the state of the 

system  kx . A finite number of scheduling variables,  , are 

selected to cover the relevant operating regimes. The 
scheduling variable is a 1px  discrete-time vector:  
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Fig. 1 Interconnected system 
 

The index  indicates an operating point, and 0 is the 
scheduling variable indicating the nominal fault-free 
operating regime. The nonlinear model of the system is 
linearized at each discrete variable   to obtain a set of 

piecewise linear approximate models   ,G z . The overall 

system relating the input ( )r k , and the output ( )y k  may be 

expressed using a linear regression model as: 
 

 ( ) ( ) ( )Ty k k v k                           (2) 

 
where ( )k is an 1Mx  data vector,  with a bM n n   , that is 

given by: 
 

 ( ) ( 1) ... ( ) ( 1)... ( )T
a bk y k y k n r k r k n            (3) 

 

   is an 1Mx  feature vector, which is a function of  the 

scheduling variable  :
   

           1 2 1.... ...
a b

T

n na a a b b   
                  (4) 

 

where   ia  and  ib  are the denominator and the 

numerator coefficients of the overall system transfer 
function.  ,G z .  

A  Emulator Model  

The structure and the parameters of a physical system may 
vary due to changes in the operating regime. The difference 
between the actual system and its model, termed model 
uncertainty, is considered in identification.  A model, termed 
the numerator-denominator perturbation model, is employed 
herein, where the perturbations in the numerator and 
denominator polynomials are treated separately instead of 
being clubbed together as a single perturbation term in the 
overall transfer function. The numerator-denominator 
perturbation model takes the following form: 

                                    0G z E z G z                                 (5) 

 

where    
 

0
0

0

N z
G z

D z
 ,is the nominal transfer function,   0N z is 

the nominal numerator polynomial,  0D z  the nominal 

denominator (scalar) polynomial, and  E z the multiplicative 

perturbation, termed here as the emulator:  
 

                                
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1
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1
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 
                                  (6) 

 

 N z RH   and  D z RH  represent, respectively, the 

pertutbations in the numerator and denominator polynomials 
of the nominal model 0 ( )G z .  In many practical problems, for 

computational simplicity, the perturbation model is chosen to 
mimic the macroscopic behavior of the system characterized 
by gain and phase changes in the system transfer function. 
The emulator  E z is chosen to be a constant gain ( i ), a gain 

and a pure delay of d time instants ( d
i z  ), an all-pass first-

order filter  
1

11
i

j
i

z

z








 
 

 
 or where  i are  termed herein as 

the emulator  parameters. Fig. 2 below shows a position 
control system formed of subsystems a) a PID controller with 
gains pk , Ik and dk , b) an actuator which is an amplifier of 

gain Ak , c) position sensor of gain k , d) velocity sensor of 

gain k , and  a plant , which is DC servo-motor with time 

constant  . The system is subject to load 
disturbance ( )w k and the measurement noise ( )v k . The 

actuator Ak , the velocity sensor k , and the position sensor k  

were modeled as constant gain transfer function. Since the 

subsystem of the plant  
1

1
1 1
( )

1p

k z
G z

z






 is subject to a fault as 

result of variation of the parameter , and since the plant 
parameter  is not accessible, an emulator, denoted 1( )E z , is 

connected at the output of the PID controller to mimic 
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variations in the plant parameter .  The emulator may be 

chosen to be a first order all pass filter 
1

1
1 1

1

( )
1

z
E z

z












.The 

emulators 2E , 3E  and 4E  to induce faults respectively in the 

actuator Ak , the velocity sensor k , and the position sensor k   

are chosen to be static constant gain transfer functions given 
by:    

 

2 2 3 3 4 3; ;E E E                                (7) 
 

All the emulators are connected in cascade with respective 
devices. The nominal diagnostic parameters are chosen such 

that during the operating regime they have negligible effect on 
the static and the dynamic behaviour. In the case of the plant 
emulator 1( )E z , the nominal emulator parameters is chosen so 

that 1( )E z  is approximately unity. The emulator and the 

scheduling parameters play an important role in the 
identification and fault diagnosis of a LPV system. The 
emulator parameters mimic variation in the subsystems during 
the identification, and the associated influence vector is 
employed in isolating a fault. The scheduling parameters on 
the other hand track the variation in the operating regime of 
the system. Both parameters are accessible. Consider an 
interconnected system shown in Fig. 1. 
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Fig. 2 Position control system  
 

A subsystem  iG z  may be a process (or a plant), a 

controller, an actuator, or another device, and is associated 
with an emulator  iE z . The parameter i  of  iE z  is selected 

so that it is capable of monitoring solely the health of the 
subsystem ( )iG z . The emulator parameter vector   for the 

entire interconnected system is a (q 1) vector that augments 

 , 1,2,...,i i s  for all subsystems, ( ), 1,2,...,iG z i s , that are 

subject to failure. The overall 1qx  diagnostic parameter vector 

 formed of all the subsystem diagnostic parameters  i is 

given by:  
 

1 2 3
1 2... ...

T Ts
q                        (8) 

 
Let 0 be nominal value and its variation 0       

B. The Feature Vector and the Emulator Parameters 

It can be shown that linear regression model of the system 
during the identification phase takes the following form: 
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   (9) 

 
where 0 ( )  is the nominal fault-free feature vector 

corresponding to the emulator parameter values 0 ; 

   0 0 ( )Ty k k    is the nominal output ;  i
 ,  ij

 , 

 ijk
 , …  123..q

 are 1Mx  vectors, termed influence 

vectors, which denote the first, second, third and up to qth 
partial derivatives of   with respect to  as given by: 
 

     
2

123..
1 2 3

, , ...,
...

q

i ij a
i i j q      

  
  
      

          

 
The nominal feature vector and all the partial derivatives 

are computed at the scheduling variable  . The nominal 

feature vector 0 0( , )   and influence matrix   formed of 

influence vectors,        123..., , ,...i ij ijk q
  

            , 

completely describe the describe the system during the 
identification .  
 

III. IDENTIFICATION OF THE SYSTEM 

The system model is identified by performing a number of 
parameter-perturbed experiments. Each experiment consists 
of perturbing one or more emulator parameters. The input 
 r k  is chosen to be persistently exciting to allow the model 

to capture as much as possible of the system dynamics.  
Consider the thj experiment of perturbing the one or more 

elements of emulator parameter  . Let   jy k  be the set of 

all outputs from the parameter perturbed experiments for the 
input ( )r k .The objective here is to identify a) an optimal 
nominal model and b) the influence vectors from the input-
output data collected from all perturbed parameter 
experiments from:  

 

       
0

20 0ˆ ˆ, arg min ( ) j

f

y k y k y k
          

 


      


  (10) 
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The optimal nominal model in the state space form, 

denoted       0 0 0, ,    A B C , is derived from the estimate 

of the nominal feature vector 0ˆ ( )  .  
The proposed scheme based on performing a number of 

experiments and the conventional scheme base on single 
experiment at the nominal operating points under noise and 
disturbance corrupting the data and variations the system 
model is significantly superior based on both simulated 
examples and the actual physical system as shown in Fig. 3 
where the mean squared errors between the identified and the 
actual model as under model variations are compared.   The 
mean squared error for the proposed is significantly smaller.  

IV. KALMAN FILTER 

The Kalman filter (KF) is essentially a closed-loop filter 
formed of an exact copy of identified state-space model of the 

fault-free system       0 0 0, ,    A B C  and driven by the 

residual [4].  The structure of the KF is given by: 
 

       
 

0 0 0

0

ˆ ˆ( 1) ( ) ( )

ˆ( ) ( ) ( )

x k x k r k e k

e k y k x k

   

 

  



  



A B K

C
         (11) 

 

where ( )e k is the residual, and  0
K is the Kalman gain 

computed from the statistics of the disturbance and 
measurement noise . The KF model is adapted along the 
trajectories of the scheduling variable   in step with the 
variations in the system model varies.  It is shown in [5] that 
the residual takes the form of: 
 

 0 0( , ) ( ) ( ) ( )TF z e z z e z                                     (12) 

 
where    0 0 0 0( , ) ( )F z zI        A K C , 0( , ) ( )        , 

0 ( )e z is a zero-mean white noise process 

V. FAULT DIAGNOSIS 

A unified approach to both detection and isolation of a fault 
is presented based on the Kalman filter residual. The residual 
of the Kalman filter is a zero mean white noise process if and 
only if there is no fault. If there is a fault, the residual will 
have an additive fault indicating term. The fault indicating 
term is function of the variation in the feature vector [5].  

The fault detection problem is posed as binary hypothesis 
testing problem and the threshold value is chosen as an 
acceptable trade-off between the correct detection and false 
alarm probabilities. 

The fault isolation problem is similarly posed as a multiple 
hypothesis testing problem. The hypotheses include a single 
fault in a subsystem, simultaneous faults in two subsystems, 
and so on till simultaneous faults in all subsystems .The 
unified decision strategy becomes:  

  

( ) th
s

th

no fault
t

fault







e                          (13) 

 
Test statistics for a constant reference input ( )r k  is: 

 
1
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1
( ) ( )

N

s
i

t e k i
N





 e                           (14) 

 
It is based subjecting the residual to a detailed analysis by 

hypothesizing whether there is a variation in a single or 
simultaneous variations in two, three or all emulator 
parameters. For the single variation, the maximum likelihood  
estimate ˆ of   is obtained from: 
 

 
 

2

ˆ arg min ( ) ( )
i

T
j i i

i

e k k


 


     
  

              (15) 

 
The subsystem ( )jG z  is asserted to be faulty if 

ˆ
j exceeds some threshold value. 

VI. EVALUATION ON A PHYSICAL SYSTEM 

The objective is to detect and isolate leakage, actuator fault, 
liquid-level sensor fault.  In order to simulate faults in the 
physical system, static fault emulators are connected in 
cascade with the height sensor, the flow rate sensor, the 
actuator and the leakage drain pipe as shown in Fig. 4, which 
is the block diagram of the process control system. The 
emulator parameters 1 , 2 , and 3  are connected in cascade 

with the leakage drain pipe, the actuator and the height sensor 
during the off-line identification stage. 
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Fig. 3 Mean-squared errors: the proposed (in green) and 
conventional (in blue) schemes subject to model perturbations 
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Fig. 4 Process control system 
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Fig. 5 Identification experiments 
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Fig. 6 The residuals and their autocorrelations  

 
Fig. 5 shows the parameter perturbed experiments where 

the normal, leakage, actuator and sensor faults are induced by 
varying the emulator parameters. Fig. 6 shows the Kalman 
filter residual and its auto-correlation for the following cases: 
(a) nominal (or fault-free), (b) leakage fault, (c) actuator fault 
and (d) sensor fault. The test statistic value is the lowest and 

the auto-correlation is that of a zero-mean white noise for the 
nominal (fault-free) case. The subfigures in Fig. 6 A, B, C, D 
show the residuals and their test statistics shown as straight 
lines, whereas the sub-figures E, F, G and H show the 
corresponding auto-correlations. The proposed scheme was 
successful in fault. 
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VII. CONCLUSIONS 

The proposed adaptive Kalman filter based scheme is 
effective for fault diagnosis of LPV system based on 
simulated as well as physical systems. The residual is a 
reliable indicator of a fault as well for the adaptation of the 
Kalman filter.  
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