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Abstract—This study is concerned with a new adaptive 
impedance control strategy to compensate for unknown time-varying 
environment stiffness and position. The uncertainties are expressed 
by Function Approximation Technique (FAT), which allows the 
update laws to be derived easily using Lyapunov stability theory. 
Computer simulation results are presented to validate the 
effectiveness of the proposed strategy. 

Keywords—Adaptive Impedance Control, Function 
Approximation Technique (FAT), unknown time-varying 
environment position and stiffness. 

I. INTRODUCTION

ORCE control is crucial in regulating the amount of force 
applied by a robot on the environments or objects.  In 

some applications, such as massaging, polishing, wiping, 
folding, writing, carving and medical surgery, it is desirable 
for the robot to exert the desired of force on the environment, 
while tracking a required position trajectory in the orthogonal 
direction. Impedance control is one of the control strategies in 
accomplishing this task. The advantage of impedance control 
is that it provides a smooth transition between noncontact and 
noncontact spaces. However, the disadvantage of this method 
is that it requires the exact knowledge of the environment 
position and stiffness beforehand [1]. Nevertheless, this 
information may not be available a priori in practical [2]. 

Seraji and Colbaugh [1] presented a direct and an indirect 
adaptive impedance control to deal with unknown 
environment position and stiffness. The method has also been 
applied in [3] for controlling pneumatic legs. However the 
technique is limited for constant environment position and 
stiffness only. Jung et al. [2] derived a simple adaptive control 
to cater for time varying uncertainties in the environment 
position and stiffness, but the desired stiffness gain imposed in 
the target impedance is set as a constant during free space and 
switched to zero during contact space. The discontinuity in the 
control parameter, as has been reported by many researchers 
may induce instability in the case of unexpected contact with a 
stiff environment [3]. Lee and Buss [4], presented a novel 
force tracking impedance control strategy with an adaptation 
in the controller gain to cater for uneven and triangular shaped 
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environmental geometries, and abruptly changing 
environment stiffness. Nonetheless, the method does not 
ensure the convergence of the force error to zero for a nonzero 
reference force and the presented stability proof is limited to 
constant desired force only.  

 This paper presents a new adaptive impedance control to 
compensate for unknown time-varying environment stiffness 
and position (or non-flat environment shape) using Function 
Approximation Technique (FAT). The uncertainties are 
expressed by FAT [5], making it easy for the update laws to 
be derived using Lyapunov stability theory. The simulation 
results under two environment conditions are presented to 
demonstrate the effectiveness of the proposed method. 

II. FAT BASED ADAPTIVE IMPEDANCE CONTROL FOR 
UNKNOWN ENVIRONMENT STIFFNESS AND POSITION

A. FAT based Adaptive Target Impedance 
This study proposes two phases control law for the force 

controllable direction, which are the contact phase and 
noncontact phase. During contact space, the robotic finger is 
already in contact with the environment. The precise 
knowledge of the environment position and stiffness are 
required so that the reference trajectory to achieve the desired 
force can be realized [1]. However, this information may not 
be available a priori in practice. Therefore, this study proposes 
an FAT-based target impedance for n degree of freedom 
(DOF) robot, described by 

' '
1 2 3

4 5 6 7

d e d e

f f

B X X K X X

K E
                   (1) 

where 1nX is the vector of the robot’s end position, 
1nX is the time derivative of 1.nX

n n
dB , n n

dK  and n n
fK  are the diagonal 

symmetric positive definite desired damping, stiffness and 
force error factor matrices respectively, which can be 
specified by the designer. fE is the  force error described by  

f e dE F F                                                                    (2) 
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where 1n
eF  is the vector of the force exerted by the 

robot on the environment, and 1n
dF is the vector of 

desired force. ' 1n
eX  is the initial environment position 

estimation since the accurate environment position is 
unknown in advance. ' 1n

eX  is governed by 

'
e e XeX X                                                                  (3) 

where 1n
eX  is vector of the true value of the time 

varying environment position and 1n
Xe is the vector of 

inaccuracy in the initial environment position estimate. 
1n

eX  is the time derivative of 1,n
eX

1 2 3 4 5 6, , , , ,  and 7  are FAT-based 
compensators represented by 

1 2' '

3 4 5' ' '

6 7' '

ˆ ˆ
, ,

ˆ ˆ
, ,

ˆ ˆ
,

d KXdot KXdot d KX KX

e e

d KDdot KDdot d KD KD d d d d

e e e

f K K f d KXX KXX

e e

B W Z K W Z
K K

B W Z K W Z B F K F
K K K

K W Z E B W Z
K K

where ˆ ˆ ˆ ˆ ˆ, , , ,KXdot KX KD KDdot KXXW W W W W and ˆ
KW  are the 

matrices of the estimation of the weighting function, 
, , , ,KXdot KX KDdot KD KZ Z Z Z Z and KXXZ  are the matrices of 

the basis function, 1n
dF is the time derivative of dF .

' 1n
eK  is the vector of the initial estimate of the 

environment stiffness which is introduced since the true 
environment stiffness is unknown and is represented by 

'
e e KeK K                                                                  (5) 

where n n
eK  is the diagonal symmetric positive definite 

matrix of the true environment stiffness and n n
Ke  is 

the   diagonal symmetric positive definite matrix of inaccuracy 
in the environment stiffness estimate. Both of these values are 
unknown and time-varying. 

Considering that force is applied in one directions only for 
simplicity. Letting , , , , , ,d d f d e fb k k x f f e  be the elements of 

, , , , , ,d d f d e fB K K X F F E  respectively and ˆ ˆ, ,kxdot kxW W
ˆ ˆ ˆ ˆ, , , , , , , , ,kd kddot kxx k kxdot kx kddot kd k kxxW W W W Z Z Z Z Z Z be the 

vectors in ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,KXdot KX KD KDdot KXX KW W W W W W
, , , , ,KXdot KX KDdot KD K KXXZ Z Z Z Z Z   respectively, (1)-(5) 

can be rewritten as 

' '
1 2 3

4 5 6 7

d e d e

f f

b x x k x x

k e
                     (6) 

where 

'
e e xex x ,          '

e e kek k

1 2' '

3 4 5' ' '

6 7' '

ˆ ˆ
,

ˆ ˆ
, , ,

ˆ ˆ
,

d kxdot kxdot d kx kx

e e

d kddot kddot d kd kd d d d d

e e e

f k k f d kxx kxx

e e

b W Z k W Z
k k

b W Z k W Z b F k F
k k k

k W Z e b W Z
k k

            

The environment model with the true time-varying 
environment stiffness and position [1] and its derivative can 
be described by 

e e ef k x x .                                                         (8) 

e e e e ef k x x k x x                                     (9) 

The update law for (.)Ŵ  in (7) can be obtained by defining 

the inaccurate force exerted on the environment, 

eef containing the initial environment stiffness and position as 

ee e ke e xe e xef f x x k .                      (10) 

and its derivative can be determined as   

ee e ke e xe

ke e xe e xe e xe

f f x x

x x k k
,             (11)      

x and x  can also be expressed using 
eef and 

eef  as 

,ee
e xe

e ke

f
x x

k
                              (12)                   

ee
e xe

e ke

f
x x

k
 .                                           (13) 

(4) 

(7) 
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Defining functions of the environment parameters in terms 
of Function Approximation Technique (FAT) as 

, ,

,

, ,

,

ke e xe kx kx kx

ke e xe kxdot kxdot kxdot

e xe kd kd kd e xe kddot kddot kddot

ke k k k e e kxx kxx kd

x x W Z

x x W Z

k W Z k W Z

W Z k x x W Z

 (14) 

their respective estimations in (7) can be expressed as 

ˆ ˆ ˆˆ ˆ, ,

ˆˆ ˆ ˆ, ,

ˆˆ ˆ ˆˆ,

ke e xe kx kx e xe kd kd

ke e xe kxdot kxdot ke k k

e xe kddot kddot e e kxx kxx

x x W Z k W Z

x x W Z W Z

k W Z k x x W Z

                

where (.)1
(.)W is the vector of the true value of the 

weighting function, (.) 1
(.)Z  is vector of the basis 

function, (.)1
(.)Ŵ  is the vector of the estimated 

weighting function, (.)  is the number of basis function 

implemented and (.)  are the approximation errors. It is 

assumed that sufficient number of basis function is utilized, 
thus, (.)  can be assumed to be zero. From (14) and (15), it 

can be seen that since FAT can be used to describe time 
varying function, this technique can be utilized to estimate the 
uncertainties that are functions of x and x , which can not be 
done by adopting the traditional adaptive scheme directly.  

Substituting (14), ,x x  from (10) and (11), into (6) and 

multiplying with e kek , the modified target impedance 
becomes 

0

d f d f e f d kxdot kxdot

d kx kx d kddot kddot d kd kd

d kxx kxx f k k f

b e k k k e b W Z

k W Z b W Z k W Z

b W Z k W Z e

        (16) 

where (.)W is the estimation error, (.) (.) (.)
ˆW W W  .                     

The Lyapunov-like function candidate can be defined as 

1 1
2 2

1 1
2 2
1 1 1
2 2 2

T T
f d f kxdot kxdot kxdot

T T
kx kx kx kddot kddot kddot

T T T
kd kd k k k kxx kxx kxx

V e b e W Q W

W Q W W Q W

W Q W W Q W W Q W

    (17) 

Taking its derivative gives 

ˆ ˆ

ˆ ˆ

ˆ ˆ

T T T
f d f kxdot kxdot kxdot kx kx kx

T T
kdot kddot kddot kd kd kd

T T
k k k kxx kxx kxx

V e b e W Q W W Q W

W Q W W Q W

W Q W W Q W

             (18)  

             
Substituting d fb e from (16) into (18), V becomes 

2 ˆ

ˆ

ˆ

ˆ

ˆ

T
f d e f k f k f k k

kxdot d kxdot f kxdot kxdot

kx d kx f kx kx

kddot d kddot f kddot kddot

kd d kd f kd kd

V e k k e W k Z e Q W

W b Z e Q W

W k Z e Q W

W b Z e Q W

W k Z e Q W

            (19) 

The update laws for the weighting function in (7) can be 
chosen to make the second to sixth terms on the right hand 
side of (19) equal to zero. Therefore, the update laws are set 
as 

1 1

1 1

1 2 1

ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ, ,

kx kxdot d kxdot f kx kx d kx f

kddot kddot d kddot f kd kd d kd f

k k f k f kxx kxx d kxx f

W Q b Z e W Q k Z e

W Q b Z e W Q k Z e

W Q k Z e W Q b Z e

     (20) 

Substituting (20) in to the derivative term in (19) results in   

T
f d e fV e k k e                                                 (21) 

Since (17) is positive definite and (21) is negative semi-
definite, , , , , , ,f kxdot kx kddot kd k kxxe W W W W W W are bounded. 

Differentiating (21), gives 

2 T
f d e fV e k k e                                               (22) 

From (16) and (22), it can be observed that V  is also 
bounded. Therefore, from Barbalat theory,   

(15) 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:2, 2013

180

lim 0
t

V     and    lim 0f
t

e                                     (23) 

Therefore, provided that the target impedance is achieved, 
with the adaptive target impedance (6) and the updating law 
(20), the actual force exerted on the environment converges to 
the desired value, e df f  as t although the true time-
varying environment position and stiffness are not known 
accurately in advance. 

In the non-contact or free space, the robotic finger is not in 
contact yet and is moving towards the environment. The target 
impedance for the force controllable direction during this 
phase is governed by, 

d d d d

d d f f

M X X B X X

K X X K E
                 (24) 

where 1n
dX  is the vector of the reference position of 

the robot’s end-effector, which can be set by the designer 
since the information of the environment position and stiffness 
are not necessary in this phase, 1n

dX  is the vector of 

the reference velocity and 1n
dX  is the vector of the 

reference acceleration, 1nX  is the vector of the 

acceleration of the robot’s end point n n
dM is the 

diagonal symmetric positive definite desired inertia, which 
can be specified by the designer. The same target impedance 
in (24) is implemented for position controllable direction in 
both free and contact phases. 

A. Impedance Control Law for Uncertain Finger 
Dynamics

The impedance control law as in [6] is applied to drive the 
system to reach the target impedance. The control input to can 
be written as 

s f eF F F F                                                (25)  

where 

1 2 3s r r
z

ZF K X K X X K
Z

          (26) 

fF KZ ,     rZ X X                                         (27) 

The control parameters 1, ,n n n nK K

2 ,n nK and 3
n nK are definite positive diagonal 

matrices. The elements of 1 2,K K and 3, K  are chosen large 
enough such that [6] 

1, 2, 3,, , ,
for 1, 2,...,

i i ik kM k kC k kG
i n

               (28) 

where 

( ) , ( , ) ,

( ) ,

kM M X kC X C X X

kG G X
                       (29) 

( ),M X ( , )C X X and ( )G X are the positive definite 
inertia matrix, Coriolis and Centrifugal force and gravitational 
force of the robot respectively. In this study, the augmented 
impedance error, Z is defined based on the target impedance 
in (1) and (24), where 

(position controllable direction and force 
         controllable direction in free space)

(force controllable direction in contact
          space)

f

c

Z
Z Z     (30) 

From (1), the augmented impedance error for the force 
controllable direction during contact mode can be obtained as,  

' 1 '
1 2

1
3 4 5 6 7

c d d

d f f

Z E B K E

B K E
  (31) 

where ' '
eE X X  and ' 1nE  is its time derivative.  

For position controllable direction in both phases and force 
controllable direction during non-contact mode, from (24), 

fZ  in this phase can be defined as [6] 

f flZ E E E ,                                                  (32) 

where dE X X , 1
fl fl d fE E M E ,  and  are 

positive definite matrices chosen such that  

1 1
d d d dM B M K .                 (33) 

The stability proof for the control law in (25) can be 
referred in [6]. 

III. SIMULATION RESULTS

Simulation tests have been performed on a 2 DOF robotic 
finger [7]. It is assumed that the contact occurs at the end of 
the distal phalanx for simulation simplicity. The robotic finger 
is desired to approach the object and become in contact with it 
after 0.0833 seconds. The uncertainties in (15) have been 
approximated by the first 11 terms of Fourier Series and the 
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period of the Fourier series has been set as 1.4 seconds. It is 
assumed that the contact point and time can be obtained from 
the experiment.  

The controller has been tested under two cases of unknown 
time-varying environment position and stiffness. In the first 
case, the finger is desired to exert the desired force df in x 

direction while tracking a reference trajectory, dy  in y 
direction, described by 

0 0 s 0.08333 s
618 0.0833 N 0.08333 s 0.13333 s

2 0.0833
25 10sin N 0.1333 s

0.5

d

t
t t

f
t

t

 (34) 

3 360 10 15 10dy t m                                      (35) 

The true environment position and stiffness have been set 
as

   2 0.0833
25000 10000sin N/m

0.5e

t
k            (36) 

2 0.0833
0.004sin 0.0375 m

2 / 3e

t
x                     (37) 

However, these values are assumed to be unknown earlier. 
They have been initially estimated as ' 0.042ex cm and 

' 50000ek  N/m in (6). The update rates have been tuned as   
1 1 1 1 1

11 11 11 1110 , 10 , 10 , ,kddot kd kxdot kxQ I Q I Q I Q I
1 1

11 1110 ,k kxxQ I Q I . Fig. 1 - 3 illustrate the force 
tracking response in x direction, position tracking response in 
y direction and position response in Cartesian space for the 
first case respectively. It can be seen from the figures that the 
proposed controller has successfully control the robotic finger 
to exert the desired force on the environment although the 
accurate knowledge of the time-varying environment position 
and stiffness are unknown a priori.  The position tracking 
performance in y direction is excellent.  It can also be 
observed that no force overshoot occurs in the first case  since 
the reference trajectory in constraint space, dx  is smooth 
although it is time varying. 

In the second case, the finger is desired to track the 
reference trajectory, dy in (35) while at the same time exert 

the desired force df in x direction is described by 

0 0 s 0.08333 s
538 0.0833 N 0.08333 s 0.13333 s

2 0.0833
25 5sin N 0.1333 s

0.8

d

t
t t

f
t

t

 (38) 

The true environment position and stiffness for the second 
case have been set as 

2 0.0833
25000 5000sin N/m

0.8e

t
k            (39)                 

0.02941 0.0385 m      0< <0.25333 s
0.03033 0.0487 m  >0.25333 se

t t
x

t t
        (40) 

These values are assumed to be unknown in advance and 
'
ex  and  '

ek  in (6) have been set as 0.050 m and 50000 N/m 
respectively. The update rates have been tuned as   

1 1 1 1
11 11 11 1110 , 10 , 10 , ,kddot kd kxdot kxQ I Q I Q I Q I

1 1
11 11, 10k kxxQ I Q I .

Fig. 1 Force tracking response in x direction for the first case 
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Fig. 2 Position tracking response in y direction for the first case 

Fig. 3 Position response in Cartesian space for the first case 

The force tracking response in x direction and position 
response in Cartesian space for the second case are illustrated 
in Fig. 4 and 5 respectively. The figures demonstrate that the 
proposed control strategy has successfully compensate for 
unknown time varying environment position and stiffness, 
where the robotic finger has accurately exerted the desired 
force on the environment while tracking the desired trajectory. 
However it can be observed that a force overshoot occurs 
between 0.24 0.26t  s. This is due to robotic finger’s 
movement while tracking the desired force at the corner or the 
triangular-shaped environment.  

The simulation results verify that the proposed control 
strategy is effective in providing the necessary force and 
position control under unknown time-varying environment 
position and stiffness.  

Fig. 4 Force tracking response in x direction for the second case 

Fig. 5 Position response in Cartesian space for the second case 

IV. CONCLUSION

This paper presents a new FAT-based adaptive impedance 
control to compensate for unknown time-varying environment 
position and stiffness. The uncertain terms are represented by 
FAT, allowing the update laws of the weighting functions to 
be derived easily using Lyapunov stability theory. The 
simulation results have proven that the controller is effective 
in controlling the robotic finger to exert the desired force in 
the force controllable direction, while tracking the desired 
position in the position controllable direction in spite of the 
time-varying uncertainties in the environment position and 
stiffness. The proposed control law also does not require any 
noisy derivative force error feedback signal, which makes it 
practical for implementation. 
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