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Abstract—In order to provide accurate heart rate variability 

indices of sympathetic and parasympathetic activity, the low 
frequency and high frequency components of an RR heart rate signal 
must be adequately separated. This is not always possible by just 
applying spectral analysis, as power from the high and low frequency 
components often leak into their adjacent bands. Furthermore, 
without the respiratory spectra it is not obvious that the low 
frequency component is not another respiratory component, which 
can appear in the lower band. This paper describes an adaptive filter, 
which aids the separation of the low frequency sympathetic and high 
frequency parasympathetic components from an ECG R-R interval 
signal, enabling the attainment of more accurate heart rate variability 
measures. The algorithm is applied to simulated signals and heart rate 
and respiratory signals acquired from an ambulatory monitor 
incorporating single lead ECG and inductive plethysmography 
sensors embedded in a garment. The results show an improvement 
over standard heart rate variability spectral measurements.   
 

Keywords—Heart rate variability, vagal tone, sympathetic, 
parasympathetic, spectral analysis, adaptive filter. 

I. INTRODUCTION 
EART rate variability (HRV) is a measure of alterations 
in heart rate derived by measuring the variation of RR 

intervals, and HRV parameters have been shown to aid 
assessment of cardiovascular disease [1]. Heart rate is 
influenced by both sympathetic and parasympathetic (vagal) 
activity. The influence and balance of both branches of the 
autonomic nervous system (ANS) have been termed 
sympathovagal balance and is reflected in the RR interval 
changes. HRV is frequently estimated by means of spectral 
analysis in which power in three or four frequency bands is 
determined. A low frequency (LF) component has been 
proposed as reflecting both sympathetic and parasympathetic 
effects on the heart and generally occurs in a band between 
0.04 Hz and 0.15 Hz. Chemoreceptor processes, 
thermoregulation, and the rennin-angiotensin system have 
been tied to very low frequencies. The influence of vagal 
efferent  modulation of the sinoatrial node can be seen in the 
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high-frequency band (HF), loosely defined between 0.15 and 
0.4 Hz and known as respiratory sinus arrhythmia (RSA) 
because it occurs at the respiratory frequency. The magnitude 
of this high frequency band has been demonstrated to be 
associated with the extent of cardiac parasympathetic activity 
in pharmacological autonomic blockade studies [2] respiratory 
sinus arrhythmia, cardiac vagal tone, and respiration: within- 
and between-individual relations.  

The ratio of power in the LF and HF components (LF/HF) 
has been used to provide an estimate of cardiac 
sympathovagal balance, although this measure remains in 
dispute [3]. Nevertheless, several studies have indicated that 
when considered jointly, HF and LF HRV may provide useful 
information about both sympathetic and parasympathetic 
influences upon the cardiac cycle [4-6]. A correlation between 
body fat content and the LF/HF ratio after glucose ingestion 
have been correlated in nonobese subjects with various levels 
of body fat content [7]. Decreased values of HRV are 
indirectly proportional to pressure, body mass index and 
insulinemia in young and obese patients without clinical 
symptoms of cardiovascular disease, diabetes or damage of 
target organs [8]. These HRV measurements can also be 
sensitive to stress and can be seen to decrease with age, which 
has been attributed to a decrease in efferent vagal tone. On the 
other hand, regular exercise has been shown to increase vagal 
tone. Measures of mortality have been examined primarily 
with patients who have undergone cardiac surgery. Clinical 
depression strongly associated with mortality with such 
patients is often associated with a decrease in HRV [9]. 

Spectral HRV was previously described as a measure of 
power in various frequency bands. To determine the RSA 
amplitude over a period of time, frequency domain, time 
domain and phase domain approaches have been analyzed 
[10]. A time-domain approach by Grossman [10] known as 
the peak-valley algorithm measures the maxima and minima 
values of R-to-R time intervals within each breath. In the 
frequency domain a value for RSA can be derived by applying 
an appropriate window function to a given time series to 
reduce spectral leakage from random events and applying the 
Fourier transform to the filter residuals. When analyzing the 
HF band the respiratory frequency should be predetermined 
through some kind of respiratory sensor, determined through 
paced breathing or at the very least estimated by means of 
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dominant frequencies. The frequency domain approach takes 
the average response over time, e.g. a 5-minute period or 
longer. This approach provides little information about the 
RSA waveform as it is time averaged and may not reflect 
cardiac vagal dynamics. Another approach to evaluating RSA 
has been to analyze dynamics of the heart rate with respect to 
respiratory phase [11] known as the phase domain approach. 
Waveforms in the phase-domain were shown to be similar 
regardless of breathing pattern. By looking at heart rate with 
respect to phase showed synchronous patterns during paced 
breathing and useful to extract RSA during spontaneous 
breathing. One preprocessing approach by Korhonen et, al. 
[12] used multistage linear filtering methods as a ventilation 
cancellation filter to attenuate the effects of spontaneous 
respiration. This approach estimated slow baseline variations 
in the RR signal, which was linearly subtracted from the RR 
signal prior to analysis. Other investigations [13][14] describe 
a time-domain decomposition to assess vagal tone. This 
methodology uses an adaptive filter to separate the respiratory 
influence from the nonrespiratory sympathetic variations to 
measure the magnitude of the RSA component. Presented in 
this paper is an adaptive filter, which can separate the LF and 
HF components and therefore acquire separate spectral 
analysis measures. This enables a uniformly sampled RSA 
waveform to be linearly predicted which more accurately 
reflects cardiac vagal dynamics in the time-domain. With 
time-domain LF and HF signals more accurate statistical 
measures can be applied. 

II. METHODS 

A. Data Collection 
The data in this investigation was collected from the 

LifeShirt. The LifeShirt employs the Konno and Mead [15] 
two compartment-breathing model of the respiratory system. 
This approach shows changes in tidal volume measured at the 
mouth to be comparable to the sum of changes in ribcage and 
abdominal contributions. These volume changes are normally 
obtained by measuring variations in the thoracic and 
abdominal regions by inductive plethysmography (IP), 
magnetometers, or strain gauges [16-18]. The LifeShirt 
contains two IP sensors encircling the ribcage and abdomen 
used to measure tidal volume. Studies comparing IP with 
pneumotachographic airflow measurements have reported 
correlation accuracies of r=0.96 and greater [19].  To measure 
the self-inductance of these IP sensors a low oscillating 
current is passed through the inductive bands creating a 
magnetic field. The self-inductance of the coil is proportional 
to the cross sectional area of the band. As this cross sectional 
area changes the coils self-inductance changes. Changes in 
self-inductance are measured by integrating an oscillator 
circuit whose resonant frequency varies with changes in self-
inductance. A counter measures this resonant frequency by 
counting the pulses produced by the oscillator over time, 
creating a waveform proportional to changes in the cross 
sectional area. The IP bands are calibrated to apply the correct 

contribution of each band to overall tidal volume based on 
Equation (1)  

 
ABlRCkVt .. +=         (1) 

 
where Vt is the tidal volume measurement, RC and AB are the 
ribcage and abdominal bands, and k and l are calibration 
coefficients that apply the appropriate gain to each signal 
based on a calibration algorithm [20][21]. The LifeShirt also 
contains a single lead ECG sampled at 200 Hz, which is 
linearly interpolated to 1 kHz, and heart rate is determined 
based on R wave locations determined from Pan and Tomkins 
QRS detection algorithm [22]. 

B. Spectral Analysis 
The derived RR intervals are preprocessed prior to spectral 

analysis. This process is illustrated in Figure 1 where the 
instantaneous RR intervals are uniformly sampled at 50Hz and 
downsampled to 5Hz. 

 
 
 
 
 
 
 
 
 

Fig. 1 Block diagram of HRV preprocessing 
 
Five-minute time windows are detrended using a best 

straight line fit approach with the segment mean removed. 
Welch's [23] power spectral density estimation approach is 
then applied. Welch's averaged, modified periodogram 
method applies sections of the RR signal with 50% overlap, 
with each section windowed with a Hamming window and 
nine modified periodograms are computed and averaged. A 
five-minute window is decomposed into 1-minute windows 
with 300 samples; sampled at 5 Hz. Each 1 minute window is 
zero padded to a 2048 sample length and the power of the 
FFT averaged. Various window functions may be applied, 
although a rectangular window will normally introduce some 
spectral leakage, and other window functions such as 
Blackman-Harris and Nutal can smear the spectra, but are also 
preferred in certain circumstances. The power in the LF and 
HF bands are then calculated across their given ranges 0.04-
0.15 and 0.14-0.4 Hz respectively [24]. 

C. Adaptive Filtering 
Prior to spectral analysis the RR and Vt signals are fed into 

an LMS adaptive filter in order to separate the LF and HF 
components. The least mean square (LMS) adaptive filter 
algorithm [25] requires tuning a set of FIR filter coefficients 
to model the difference between the input RR signal and the 
reference signal Vt. The LMS algorithm computes a set of 
optimum coefficients, which are adjusted to minimize the 
mean squared error (MSE) between the two signals. This 
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algorithm is based on the steepest decent algorithm where the 
weights are updated on a sample-by-sample basis described by 
(4). This is a practical approach to obtaining estimates of the 
filter weights w in real-time without having to perform any 
type of matrix inversions which require a lot more 
computation. The algorithm doesn’t require prior statistical 
knowledge of the signal and instead uses instantaneous 
estimates. Therefore, the weights obtained by the LMS 
algorithm are estimates that gradually improve over time as 
the filter weights are adjusted as the filter learns the 
characteristics of the signal, and eventually converge. Figure 2 
best describes this algorithm where both signals are 
downsampled to the same rate. 

 
 
 
 
 
 
 
 
 

Fig. 2 LMS Adaptive filter 
 
A set of weights is first initialized to zero. For each 

subsequent sampling instants k the filter output is computed 
using an FIR filter structure expressed by Equation (2) where 
the output y is the filtered tidal volume (Vt) signal predicting 
the respiratory or RSA component in the RR interval signal. 
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Having predicted this signal y it is now possible to linearly 

subtract that component. The Vt signal is decimated by a 
factor of 10; downsampled to 5 Hz and the RR interval signal 
is resampled at 5 Hz to synchronize the samples of each 
signal. The RR interval signal is derived from a 1 lead ECG 
applying the Pan-Tomkins algorithm [22]. This signal is 
sampled at a rate of 50 Hz and low-pass filtered before 
decimating by 10 to produce a 5 Hz signal. The filter of length 
N is normally chosen dependant on the amount of memory 
required for the filter. The error estimate in this structure is the 
algorithm output and is computed as 

 
kkk yRRz −=           (3) 

 
where z is the LF component and y is the predicted HF or 
RSA component. The filter weights w are updated based on 
this error expressed in Equation (4), where µ controls the rate 
of convergence and the stability of the filter. On each iteration 
of the LMS adaptive algorithm, the MSE is minimized. 

 
12 −+= ikii Vtzww µ              (4) 

D. Simulation Design 
 Before applying the adaptive filter to real signals a 

simulation was designed to be roughly representative of the 
characteristics of real life respiratory and heart rate signals. 
This enables simple testing of the filter’s characteristics and 
performance and facilitates approximations of the filters 
parameters. Equations (5) and (6) express the simulated RR 
interval signals and tidal volume signals respectively, 

 
CtfBtfAts llhh ++++= )2sin()2sin()( απαπ           (5) 

EtfDtVt h += )2cos()( π                           (6)        
 

where A is the peak-to-peak RSA amplitude per breath 
expressed in msec, B is the LF/HF ratio  expressed as a 
fraction of A and C is the mean RR interval. Tidal volume is 
expressed by D, and E is a DC offset whose values depends 
on ribcage and abdominal cross sectional area, which varies 
with changes in posture and mass, as the respiratory signals 
are DC coupled. The parasympathetic (HF) component and 
sympathetic (LF) component have frequencies fh , fl and phases 
αh, αl respectively. The signals are sampled with 1msec 
resolution where t = 0, 0.001..299, for a 300 second or 5 
minute duration. The instantaneous RR interval signal is thus 
derived from Equations (7) and (8) where the sum of all 
previous RR intervals determines the time of the beat that is 
applied to Equation (9), where i is the beat number.  
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Each sample is then repeated for the duration of the cycle 

length in 20msec sample intervals providing the 50 Hz sample 
rate expressed as follows:  

 
1....02.0,),()( +== iikiRRkRRcont

                (9) 
 
This procedure emulates the data acquisition procedure for 

acquiring the continuous RR signal. By acquiring samples at a 
uniform rate (50 Hz) the signal can be uniformly decimated to 
5 Hz. 

III. RESULTS 
The following investigations use the simulation previously 
described with selected parameters in order to first test the 
accuracy of the filter. Real signals are later applied using data 
collected from LifeShirt. The output of the first simulation 
(simulation A) is illustrated in Figure 3 for one parameter set 
with high and low frequencies of 0.2 and 0.1 Hz respectively. 
No phase variation was applied to this signal.  An RSA 
amplitude of A = 200 msec was used with B =100 to give a 
50% LF/HF ratio.  These signals  were  applied to the adaptive  
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Fig. 5 HRV spectra for simulation A 

Fig. 3 Simulation A. Vt and RR signals 

Fig. 7 Adaptive filter outputs for Simulation B 

Fig. 6 Simulation B. Vt and RR signals 

Fig. 8 HRV spectra for simulation B 

Fig. 4 Adaptive filter outputs for Simulation A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
the power in the HF and LF signal’s spectra is filter 
previously described with outputs shown in Figure 4. The 
second trace of Figure 4 shows the predicted HF component 
within the RR signal, predicted based of the reference signal 
Vt. It is evident from this trace that it took approximately 100 
seconds for the filter to tune and adapt to simulation A’s 
characteristics. The LF signal is derived by linearly 
subtracting the HF signal from the original raw signal. HRV 
analysis is performed on the original signal and the 2 
decomposed signals separately, applying the spectral routine 
of section 2.1 with the results illustrated in Figure 5. It is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
evident that the components are accurately decomposed where 
the power in the HF and LF signal’s spectra is 2165ms2 (186 
ms peak-to-peak) and 620ms2 (99.67 ms peak-to-peak) 
respectively. To adequately test the adaptive filter another set 
of signals were simulated (simulation B), where power leaked 
from the LF band into the adjacent HF band.  The same 
parameters were and the HF component remaining at 0.2 Hz. 
The signals are illustrated in Figure 6. The first trace in Figure 
6 is tidal volume (Vt), with a respiration rate of 5 seconds per 
breath or 0.2 Hz. This is representative of the typical average 
breath rate. The RR signal is downsampled via the 
preprocessing algorithm of Figure 1. The third trace of 
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Fig. 11 Filter output for example 2 Fig. 12 Power spectra for example 2 

Fig. 13 Filter output for example 3 Fig. 14 Power spectra for example 3 

Fig. 9 Filter output for example 1 Fig 10 Power spectra for example 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 shows modulation where a lower frequency envelope  
is  produced due  to close  proximity of each  component. The 
output of the adaptive filter algorithm having processed 
signals from simulation B is presented in Figure 7, where the 
HF  component  predicted by  the adaptive   filter  very closely 
resembles the tidal volume signal of Figure 6. The filter 
appears to have tuned faster than that of simulation A, with an 
approximate convergence time of 50 secs. The third trace of 
Figure 7 shows the LF component, which is the RR trace 
minus the predicted RSA component (HF). The LF frequency 
component is obvious, although exhibits noise. The power 
spectrum of each signal is illustrated in Figure 8 where it is 
evident that the unfiltered RR interval signal appears to have  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
only one component where the LF component smeared with 
have been accurately decomposed. The spectra is nearly a 
perfect match to that of Figure 5, where the power in the HF 
and LF signal’s spectra is 2106ms2 (183 ms peak-to-peak) and 
585ms2 (96.79 ms peak-to-peak) respectively which is 
extremely close to the simulated parameters.    

The following investigations utilized the LifeShirt were 
data was collected continuously throughout the day and night 
for a 16 hour period. The subject was ambulatory and 
performing their daily tasks, then slept for approximately 8 
hours. The complete 16 hours of data was first scanned to 
locate the most quiet period of steady stationary breathing. 
This 5-minute segment was then used to calibrate the RC and 
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AB signals. The QDC calibration algorithm (Qualitative 
Diagnostic Calibration [21]) was applied, which derives 
proportionality and scaling coefficients to calibrate these 
signals for a given position. For normal synchronous 
breathing the proportionality coefficient is optimally 
determined from the ratio of its associated ribcage and 
abdomen movement standard deviations. The scaling 
coefficient rescales the relative changes to absolute changes in 
tidal volume for correct proportioning. Theses coefficients 
apply a gain to each signal according to Equation (1). Three 
example signals and their associated power spectra are 
illustrated in Figures 9-14. In each example five traces are 
presented. The first trace (Vt) is  calibrated tidal volume (Vt), 
which is sampled at 50 Hz, and low pass filtered with a cut-off 
frequency of 1.4 Hz to eliminate noise generated from small 
band movements retaining only breathing components. There 
are no units for this trace although the ratio or percentage 
change in volume is reasonably accurate as the signals are 
calibrated. The second trace is the derived RR interval in 
seconds and is sampled at 50 Hz to be synchronized with 
respiration. The following 2 traces show tidal volume and RR 
interval measurements downsampled to 5 Hz. The HF (RSA) 
component that is predicted based on the 5 Hz Vt reference 
signal and 5 Hz RR interval input signal is presented, 
followed by the LF component which is RR input minus the 
predicted HF signal based on Equations (2) and (3). The 
spectra for each input and output signal is illustrated to the 
right of each set of signals. In Figure 10 the power in the LF 
an HF bands for the RR spectrum is 112ms2 and 85ms2 with 
75.6ms2 for the HF signal spectrum and 110.5ms2 for the LF 
signal spectrum. Each component is clearly decomposed and 
resolved. It is obvious from the figure that the increased 
power in each frequency band is a result of power leakage 
from adjacent bands. In Figure 12 the power in the LF and HF 
bands for the RR spectrum is 103.5ms2 and 114.6ms2 with 
104.8ms2 and 108.6ms2 for the HF and LF spectra 
respectively. Each component is clearly decomposed and 
resolved. The power in the LF and HF frequency bands for the 
RR signal of Figure 14 is 113.7ms2 and 114.8ms2 respectively. 
The associated power for the LF and HF signal’s spectra is 
115.7ms2 and 98.8ms2. The higher power in the HF band of 
the RR signal is due to power leakage from adjacent bands. 

IV. DISCUSSION 
In the investigations presented the adaptive filter length was 

kept optimally constant at N=20. This value was varied 
slightly, although didn’t improve by increasing or decreasing 
the value. The convergence parameter µ produced the best 
results for examples 1,2 and 3 with values of 2x10-8, 3.2x10-9 
and 2.5x10-9 respectively. The values appear to be very low as 
the input signals where not normalized. This is one drawback 
using the LMS adaptive filter in that as heart and respiratory 
rates vary, the signal characteristics change and the filters 
parameters require retuning. This is easily resolved with a user 
programmable feature, which is common in most software 

packages. This approach has been shown to  increase accuracy 
when applied with current HRV spectral analysis techniques. 
However, when applying a linear subtraction, although the 
predicted signal may be nearly perfect, any slight phase 
variation creates large artifact in the resultant signal. 
Therefore, careful tuning is required for variation in the input 
signals characteristics as is often the case with physiological 
signals. It is also important to illustrate the spectrum of the 
respiratory component as, when breathing varies, the RR 
spectra could exhibit what appears to be a typical LF and HF 
component, whereas they may both be breathing components. 
This technique resolves this by predicting the respiratory 
component and adequately separating them. 

V. CONCLUSION 

Some spectral estimators may help improve the resolution 
of the power spectrum and resolve some smearing effects to a 
small degree. For example, parametric spectral estimators 
such as autoregressive  (AR) modeling, autoregressive moving 
average (ARMA) and the prony method [26]. These methods 
however require accurate model order estimation. Higher 
model orders, which are required to resolve smearing, tend to 
model noise, whereas lower model orders will fail to model 
the correct characteristics of the signal. This approach of 
decomposing the LF and HF components also enables time-
domain algorithms to be applied as well as statistical measures 
to be performed separately on each component. An adaptive 
approach by Widrow using Neural Networks [27] may also 
allow for automatic retuning of parameters and remove the 
need for a user programmable feature. 
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