
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:1, 2007

104

Adaptive Algorithm to Predict the QoS of Web
Processes and Workflows

Jorge Cardoso

Abstract—Workflow Management Systems (WfMS) allow
organizations to streamline and automate business processes and
reengineer their structure. One important requirement for this type of
system is the management and computation of the Quality of Service
(QoS) of processes and workflows. Currently, a range of Web
processes and workflow languages exist. Each language can be
characterized by the set of patterns they support. Developing and
implementing a suitable and generic algorithm to compute the QoS
of processes that have been designed using different languages is a
difficult task. This is because some patterns are specific to particular
process languages and new patterns may be introduced in future
versions of a language. In this paper, we describe an adaptive
algorithm implemented to cope with these two problems. The
algorithm is called adaptive since it can be dynamically changed as
the patterns of a process language also change.

Keywords—Quality of Service, Web processes, Workflows, Web
services.

I. INTRODUCTION

ith the mergence of Web services, workflow
management systems have become essential to support,

manage, and enact workflows and Web processes, both
between enterprises and within the enterprise [1].

The management of the QoS of Web processes is an
important requirement for organizations operating in modern
markets involving e-commerce and e-business activities using
distributed Web services interactions.

The implementation of QoS management support involves
the development of integrated solutions composed of four
modules: specification, prediction, monitoring, and control
[2]. In this paper, we turn our attention to the development of
prediction algorithms. Prediction algorithms are important
since they allow the computation of a Web process QoS
before making the process available to its customers.

Currently there is no agreement on the patterns or control-
flow pattern that should be part of Web processes or
workflows languages [3]. Therefore, prediction algorithms
need to be tailored to fit the patterns of specific process
specification languages. As a result, slightly different
implementations of the same prediction algorithm to compute
the QoS of processes need to be developed for each process

specification language.

Manuscript received October 29, 2004.
J. Cardoso is with the Department of Mathematics and Engineering,

University of Madeira, Funchal, 9000-019 Portugal, (e-mail:
jcardoso@uma.pt).

It is highly desirable and important to develop prediction
algorithms that could be easily adapted to reflect the patterns
present in a process specification language. Adaptable
prediction algorithms for QoS computation can be
dynamically changed to cope with the introduction of new
patterns. The development of such algorithms is the main
objective of this paper.

This paper is structured as follows. In Section 2, we discuss
the basis of algorithms to compute and predict the QoS of
processes. Namely, we present a static algorithm which can be
used to compute and predict the QoS of processes, the SWR
algorithm, and discuss the inherent need for adaptive
algorithms. Section 3 discusses the characteristics of static and
adaptive QoS prediction algorithms. We present an adaptive
version of the SWR algorithm which is more suitable for
current WfMSs. Finally, section 4 presents our conclusions.

II. QOS PREDICTION ALGORITHMS

The design and composition of processes cannot be
undertaken while ignoring the importance of QoS
measurements. The management of QoS directly impacts the
success of organizations participating in e-commerce.

One important requirement of algorithms to compute the
QoS of Web processes is the ability to automatically compute
the QoS of Web processes based on the QoS of process
components (i.e., Web services). This feature is important,
especially for large processes that in some cases may contain
hundreds of Web services. A manual computation is neither
realistic nor viable.

A. Describing the structure of a process

Web process, workflows and processes in general can be
specified using specification languages such as BPEL4WS
and WSFL. A Web process schema is the actual topology of a
process, that is, the sequence of Web services which must be
performed in order to accomplish an organizational goal. Web
process and processes in general can be specified using a
specification language which include a set of fundamental
patterns. An example of a Web process is illustrated in Fig. 1.

W

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:1, 2007

105

Check

Home Loan

• •

Fill

Loan

Request

••

Check

Car Loan

Check

Education Loan

Approve

Home Loan

Reject

Home Loan

Approve

Home Loan Conditionally

•

• •

•

Archive

Application

• •

••

••

•

Approve

Home Loan

Reject

Car Loan

Notify

Car Loan

Client

Notify

Home Loan

Client

Notify

Education Loan

Client

Check

Loan

Type

Check

Home Loan

• •

Fill

Loan

Request

••

Check

Car Loan

Check

Education Loan

Approve

Home Loan

Reject

Home Loan

Approve

Home Loan Conditionally

•

• •

•

Archive

Application

• •

••

••

•

Approve

Home Loan

Reject

Car Loan

Notify

Car Loan

Client

Notify

Home Loan

Client

Notify

Education Loan

Client

Check

Loan

Type

FIGURE I. Example of a Web process

A Web service with more than one outgoing transition can
be classified as an AND-split or XOR-split. AND-split Web
services enable all their outgoing transitions after completing
their execution. AND-split Web services enable only one
outgoing transition after completing their execution. And-split
Web services are represented with a ‘•’ and XOR-split Web
services are represented with a ‘ ’. A Web service with more
than one incoming transition can be classified as an and-join
or XOR-join. AND-join Web services start their execution
when all their incoming transitions are enabled. XOR-join
Web services are executed as soon as one of the incoming
transitions is enabled. As with AND-split and XOR-split Web
services, AND-join Web services and XOR-join Web services
are represented with the symbol ‘•’ and ‘ ’, respectively.

B. Computing Web processes’ QoS

We identify two methods which can be used to compute the
overall QoS of processes: mathematical modeling and
simulation. Simulation will not be discussed in this paper and
the reader is referred to [4] for the description of simulation
analysis techniques and systems.

Mathematical modeling methods formally describe the
formulae to compute QoS metrics among Web services. In the
next section, we present an algorithm that we have developed
to automatically compute the overall QoS of a process.

C. The SWR algorithm

To compute QoS metrics for Web processes based on Web
service’s QoS metrics the Stochastic Workflow Reduction
(SWR) algorithm [5] can be used. While the algorithm we
have developed was initially implemented for workflows, it
can also be applied to Web processes.

The SWR algorithm repeatedly applies a set of reduction
rules to a Web process until only one Web service remains.
Each time a reduction rule is applied, the process structure
changes. After several iterations only one Web service will
remain. When this state is reached, the remaining Web service
contains the QoS metrics corresponding to the Web process
under analysis.

The algorithm uses a predefined set of six reduction rules
because a vast majority of workflow systems support them
[3]. The algorithm has been designed for a specific set of

patterns that are part of the METEOR [6] workflow language.
The algorithm and the rules are hard-coded and cannot be
changed easily. We will see in the next section that this is a
limitation that should be overcome.

D. The need for an adaptive algorithm

A large number of process specification languages exist
nowadays. While some of these languages have existed for
more than a decade now, there is a lack of consensus as to
what constitutes a Web process specification. A modest
agreement has been reached as to what should be key
components of a process specification language [3].

Process specification languages, such as workflow
languages, can de described based on the control flow
constructs that they allow to be modeled. These constructs
have been denominated patterns [7]. Patterns describe control
flow dependencies which can be modeled using a particular
process modeling language and address business
requirements.

It is important to realize that patterns are derived from
business requirements. Depending on the application domain
it may be essential to create additional patterns to represent
and handle particular types of control flow structures. When
new patterns are needed to design processes that require a
specific set of requirements, the QoS of the newly created
process can no longer be computed and analyzed using a static
algorithm. Computation is not feasible since new patterns and
rules govern the process specification. One obvious solution is
to rewrite and recompile the algorithm to cope with the newly
introduced patterns. Another more attractive solution would
be to use an adaptive algorithm which could accept new
patterns as they are needed for a particular application
domain.

In the next section we demonstrate how such an adaptive
algorithm to compute the QoS of Web processes can be
designed and implemented.

III. FROM A STATIC TO AN ADAPTIVE QOS PREDICTION

ALGORITHM

In this section we present two versions of the SWR
algorithm. The first version is a static version of the algorithm.
Any modification or adaptation to support new process
patterns requires recoding and recompiling the algorithm. The
second version of the algorithm is adaptive in the sense that
new patterns can be dynamically added or retracted without
the need to recompile or rebuild the algorithm.

A. SWR algorithm: The static version

Comprehensive solutions to the difficult problems
encountered in synthesizing QoS for composite Web services
(Web processes) are discussed in detail [8], which presents the
SWR algorithm. This algorithm is able to compute metrics
such as the response time (T), cost (C) and reliability (R).

The SWR algorithm has six reduction rules (sequential,
parallel, conditional, fault-tolerant, loop, and network) hard-
coded and cannot be changed easily, they are static and so is

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:1, 2007

106

the algorithm.
As an illustration, we will show how reduction works for a

parallel system. Fig. II shows how a system of parallel Web
services t1, t2, …, tn, an AND-split Web service ta, and an
AND-join Web service tb can be reduced to a sequence of
three Web services ta, t1n, and tb. In this reduction, the
incoming transitions of ta and the outgoing transition of Web
services tb remain the same. The only outgoing transitions
from Web service ta and the only incoming transitions from
Web service tb are the ones shown in the figure below.

tbta
*

(a) (b)

*
tbta t1n

t1

t2

tn

FIGURE II. Parallel system reduction

The QoS of Web services ta and tb remain unchanged. To
compute the QoS of the reduction the formulae in Table I are
applied.

TABLE I
REDUCTION FORMULAE TO COMPUTE QOS

)()(..11 inin tTMaxtT
ni

in tCtC
.1

1)()(
ni

in tRtR
.1

1)()(

The SWR algorithm has been coded in Java and can be
found in [5].

B. SWR algorithm: The adaptive version

One of the major requirements for the development of an
adaptive algorithm is its ability to dynamically accept new
patterns and compute the QoS of processes with previously
unseen control flow structures.

One solution to develop such an algorithm is to use
predicate logic. We choose predicate logic to achieve five
major goals: a) formally describe the structure of a process, b)
reduction rules definition, c) pattern identification, d) QoS
model computation, and e) pattern reduction. Each of these
goal are discussed and illustrated in the following sections.

1) Process structure specification

To represent a Web process, such as the one in Fig. 1, each
of the components of the process schema need to be translated
to a suitable presentation in predicate logic. We give details
about the facts that describe a process schema and the QoS
model associated with each Web service. We represent in
predicate logic the following basic components of a process:
Web services, start service, end service, transitions, XOR-
splits, XOR-joins, AND-splits, and AND-join.

Web service. We use the predicate webservice/1 to
represent a Web service. The following examples are
extracted from the Web process illustrated in Fig. 1.

webservice(fill_loan_request).
webservice(check_loan_type).
webservice(check_home_loan).
webservice(archive_application).

Start service and end service. The predicates for these two
elements are start/1 and end/1. For example,

start(start_service).
end(end_service).

Transitions. Transitions are directed arcs that express
dependencies between Web services. For transitions the
predicate is transition/3. The first argument indicated the
probability p of the transition being fired at runtime, the
second argument indicates the Web service source and the last
argument represents the Web service target. For example,

transition(1, startservice, fill_loan_request).
transition(0.4, check_loan_type, check_home_loan).
transition(0.3, check_loan_type, check_car_loan).

XOR-splits, AND-splits, XOR-joins, AND-joins. These
elements are used to capture the execution logic in processes
and are represented with the predicates xorsplit/1,
xorjoin/1, andsplit/1, and andjoin/1, respectively.
From our example the following facts hold,

xorsplit(check_loan_type).
xorjoin(archive_application).

QoS model. Process QoS addresses the non-functional
issues of processes and can be characterized along various
dimensions. The QoS model employed in this paper is
composed of three dimensions: time, cost, and reliability. A
complete description of the model can be found in [2].

TABLE II
EXAMPLE OF QOS SPECIFICATION FOR A WEB SERVICE FILL FORM [2]

Min value Avg value Max value
Time 192 196 199
Cost 576 576 576

Reliability - 100% -

The basic class of the QoS model of the Fill Form Web
service from Table II is translated to the following first order
logic statement:

qos(fillform, time(192,196,199), cost(576,576,576),
reliability(0,1,0)).

2) Rule Definition

The following section of code illustrates the main steps
involved when applying any reduction rule. Each rule is
composed of three main segments: a) pattern identification, b)
QoS computation and c) pattern reduction. For a sequential
reduction rule the segments are the following:

applySequentialRule(SrcWebservice) :-
a) isaSequentialStructure(SrcWebservice,

DstWebservice),
b) computeQoSSequentialSystem(SrcWebservice,

DstWebservice, QoSModel),

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:1, 2007

107

c) reduceSequentialSystem(SrcWebservice,
DstWebservice, QoSModel).

Each segment is discussed individually in the next sections.

3) Pattern Identification

All the patterns that compose a process language must be
translated into a first order logic form. We have translated the
six patterns for which a reduction rule has been developed for
the SWR algorithm.

Due to space limitation, we will only describe the
sequential pattern reduction rule. The first step is to identify if
a particular process pattern exists in a process. Each individual
pattern is recognized based on the intrinsic characteristic of
the patterns themselves.

isaSequentialStructure(SrcWebservice, DstWebservice) :-
 \+ network(SrcWebservice),
 \+ network(DstWebservice),
 \+ xorsplit(SrcWebservice),
 \+ xorjoin(SrcWebservice),
 \+ andsplit(SrcWebservice),
 \+ andjoin(SrcWebservice),
 \+ xorsplit(DstWebservice),
 \+ xorjoin(DstWebservice),
 \+ andsplit(DstWebservice),
 \+ andjoin(DstWebservice),
 \+ start(SrcWebservice),
 \+ end(DstWebservice),

 getNextWebservices(SrcWebservice, NextWebservices),
 length(NextWebservices, 1),
 member(DstWebservice, NextWebservices),

 getPrevWebservices(DstWebservice, PrevWebservice),
 length(PrevWebservices, 1),
 member(SrcWebservice, PrevWebservices).

Check if the Web
services involved
are not networks,
splits or joins, and
start or end services.

Check if the Web
service source has
only one outgoing
transition

Check if the next
Web service has
only one incoming
transition

4) QoS Model Computation

When it has been determined that a set of Web services
form a specific pattern, the computation of its QoS can be
evaluated. For example, if two Web services constitute a
sequential system, then the QoS of the sequential system is
computed the following way.

computeQoSSequentialSystem(SrcWebservice,
DstWebservice, NewQoSModel) :-

a)qos(SrcWebservice, _Ts, _Cs, _Rs),
b)qos(DstWebservice, _Td, _Cd, _Rd),
c)addQoSmodels(qos(SrcWebservice, _Ts, _Cs, _Rs),
qos(DstWebservice, _Td, _Cd, _Rd), NewQoSModel).

In line a) and b) the QoS model of each Web services is
obtained and in line c) the two QoS models are added
resulting a new QoS model. While we do not give specific
details on the computation of QoS models, the reader may
refer to [2] to find additional information.

5) Pattern Reduction

Once the QoS of a pattern has been computed, the pattern
needs to be replaced with an equivalent pattern from the QoS
point of view. This replacement is illustrated in Fig. II, where
the pattern a) can be replaced with pattern b) after calculating
the QoS [2].

In our running example, the reduction of such a system
involves removing existing transitions (a), Web services (c,d),

and QoS models (e,f). The reduction also involves, updating
transitions (h) and adding a new Web service and its QoS
model (g,i). These actions are illustrated in the following
segment of code.

reduceSequentialSystem(SrcWebservice, DstWebservice,
QoSModel) :-

a) retract(transition(_p, SrcWebservice,
DstWebservice)),

b) QoSModel = qos(NewWebservice,_,_,_),
c) retract(webservice(SrcWebservice)),
d) retract(webservice(DstWebservice)),
e) retract(qos(SrcWebservice, _,_,_)),
f) retract(qos(DstWebservice, _,_,_)),
g) assert(webservice(NewWebservice)),
h) updateTransitions(SrcWebservice,

DstWebservice, NewWebservice),
i) assert(QoSModel).

C. Adding and removing pattern

In order to add new rule definitions to compute of the QoS
of previously unknown workflow patterns, it is only necessary
to implement the five main elements described in the previous
sections. Once these elements have been implemented they
can be dynamically introduced into the algorithm without
requiring any other changes. To remove a pattern that is no
longer supported by a process language is simple since it is
only necessary to retract the rules definition of the pattern.

IV. CONCLUSIONS

Developing a suitable algorithm to compute the Quality of
Service of Web processes designed using several process
languages is a difficult task. This is because some patterns are
specific to particular languages and a few patterns may have
been introduced after implementing the algorithm.

In this paper we show an adaptive algorithm implemented
using a first order logic programming language. The algorithm
is able to cope with various known process patterns and new
ones as they are deployed. The algorithm is called adaptive
since it can be dynamically changed as the patterns of a
process language also change.

REFERENCES

[1] Sheth, A.P., W.v.d. Aalst, and I.B. Arpinar, Processes Driving the
Networked Economy. IEEE Concurrency, 1999. 7(3): p. 18-31.

[2] Cardoso, J., et al., Quality of service for workflows and web service
processes. Web Semantics: Science, Services and Agents on the World
Wide Web Journal, 2004. 1(3): p. 281-308.

[3] Aalst, W.M.P.v.d., et al. Advanced Workflow Patterns. 7th IFCIS
International Conference on Cooperative Information Systems. 2000.

[4] Miller, J.A., J.S. Cardoso, and G. Silver. Using Simulation to Facilitate
Effective Workflow Adaptation. in Proceedings of the 35th Annual
Simulation Symposium (ANSS'02). 2002. San Diego, California.

[5] Cardoso, J., Stochastic Workflow Reduction Algorithm. 2002, LSDIS
Lab, Department of Computer Science, University of Georgia.

[6] Kochut, K.J., METEOR Model version 3. 1999, Large Scale Distributed
Information Systems Lab, Department of Computer Science, University
of Georgia: Athens, GA.

[7] Aalst, W.M.P.v.d., et al., Workflow Patterns. 2000, Eindhoven
University of Technology: Eindhoven.

[8] Cardoso, J., A. Sheth, and J. Miller. Workflow Quality of Service. in
International Conference on Enterprise Integration and Modeling
Technology and International Enterprise Modeling Conference
(ICEIMT/IEMC’02). 2002. Valencia, Spain: Kluwer Publishers.

