
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

247


Abstract—Chemical Reaction Optimization (CRO) is an

optimization metaheuristic inspired by the nature of chemical
reactions as a natural process of transforming the substances from
unstable to stable states. Starting with some unstable molecules with
excessive energy, a sequence of interactions takes the set to a state of
minimum energy. Researchers reported successful application of the
algorithm in solving some engineering problems, like the quadratic
assignment problem, with superior performance when compared with
other optimization algorithms. We adapted this optimization
algorithm to the Printed Circuit Board Drilling Problem (PCBDP)
towards reducing the drilling time and hence improving the PCB
manufacturing throughput. Although the PCBDP can be viewed as
instance of the popular Traveling Salesman Problem (TSP), it has
some characteristics that would require special attention to the
transactions that explore the solution landscape. Experimental test
results using the standard CROToolBox are not promising for
practically sized problems, while it could find optimal solutions for
artificial problems and small benchmarks as a proof of concept.

Keywords—Evolutionary Algorithms, Chemical Reaction

Optimization, Traveling Salesman, Board Drilling.

I. INTRODUCTION

ODERN life heavily relies on optimization as a
keystone in science and engineering when applied to the

business and industry problems; most of the problems can be
formulated as optimization problems; like scheduling, cell
placement, stock market trend prediction, etc. Algorithms for
finding optimal solutions for practically sized problems in
reasonable time do not exist and may not even in the future,
but if the goal is relaxed to near optimal then a wide range of
approximate algorithms do exist. For example, the class
known as nature-inspired optimization techniques are typically
general-purpose population-based techniques, also known as
Evolutionary Algorithms (EA), build on the natural biological
processes. Although EA refers to the biological process, it has
been used with any process of iteratively changing a group of
possible solutions towards the best possible one for the
problem in hand. Amongst the most popular ones are: Genetic
Algorithm (GA) [1], Particle Swarm Optimization (PSO) [2],
Memetic Algorithm (MA) [3], [4], Differential Evolution (DE)
[5], Ant Colony Optimization (ACO) [6], and Harmony

Taisir Eldos is with the Jordan University of Science and Technology, Ibid

- Jordan, currently in a sabbatical leave at Salman bin Abdulaziz University,
Alkharj - Saudi Arabia (e-mail: eldos@sau.edu.sa.).

Aws Kanan, Walid Nazih, and Ahmad Khatatbih are with the Salman bin
Abdulaziz University, Alkharj - Saudi Arabia (e-mail: a.kanan@sau.edu.sa,
w.nazih@sau.edu.sa, a.khatatih@sau.edu.sa).

Search (HS) [7]. Many of them are inspired by the biological
process, varying in scale from the genetic structure to the
living things behavior, and recently the CRO, which was
proposed by [8]. The CRO is inspired by the nature of
chemical reactions, and has been applied to solve many
problems successfully, outperforming many evolutionary
algorithms. Gravitational Search Algorithm (GSA) [9], [10] is
an example of evolutionary algorithms that build the physical
phenomenon to evolve a set of solutions towards a near
optimal one. Another example is the Simulated Annealing
(SA) [11], which builds on the annealing process in which the
physical properties of iron depends on the cooling schedule
after melting. This algorithm has a hill climbing feature but
differs from the CRO in that it works on one solution rather
than a population. The CRO behavior becomes close to the SA
under certain conditions.

The standard CRO uses different elementary actions on a
set of molecules to reach an equilibrium or minimal energy
state. The actions consist of two ineffective collisions, on-wall
and inter-molecular, to achieve intensification (or exploitation
in terms of solution space), and two others; decomposition and
synthesis, to achieve diversification (or exploration in terms of
solution space). In our implementation, we will use similar
actions but with names that are more consistent with
algorithmic significance in the search process.

During the search, and based on the parameters settings, the
CRO may demonstrate behavior of both SA and GA, and
hence may have a potential to tackle problems which have not
been successfully solved by other metaheuristic. CRO has not
been heavily explored; some problems were solved
successfully due to some reports, but we don't know yet which
classes of problems are suitable for CRO and which are not.
There is no easy answer at this moment, and like many other
evolutionary algorithms, it takes a while to figure out as the
research community applies this method to more and more
problems.

II. RELATED WORK

Chemical Reaction Optimization (CRO) [8] is a recently
proposed general-purpose optimization metaheuristic. It
mimics the interactions of molecules in chemical reactions,
driving towards the lowest state of free energy. CRO has
demonstrated its ability to solve many real-world optimization
problems. In [12], the authors employ CRO to solve an
optimization problem called population transition problem.
The objective is to maximize the probability of universal

Adapting the Chemical Reaction Optimization
Algorithm to the Printed Circuit Board Drilling

Problem
Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

248

streaming by manipulating population transition probability
matrix. Simulation results show that CRO outperforms many
commonly used strategies for controlling population transition
in many practical P2P live streaming systems. Reference [13]
develops a CRO-based cognitive radio channel allocation
algorithm, it studies three utility functions for utilization and
fairness, with the consideration of the hardware constraint.
The proposed algorithm always outperforms the others
dramatically. Reference [14] proposes a real-coded version of
CRO called RCCRO to solve continuous optimization
problems. The performance of RCCRO is compared with a
large number of optimization algorithms on a large set of
standard continuous benchmarks.

The PCB drilling problem is an instance of the Traveling
Sales Problem (TSP), a widely studied combinatorial
optimization problem, which is concerned with finding the
shortest tour that a salesman has to visit through all the cities.
It has many applications in different engineering and
optimization problems [15]. Several metaheuristic approaches
have been developed to solve the TSP problem such as
Simulated Annealing [16], Tabu Search [17], Genetic
Algorithms [18], Variable Neighborhood Search [19], Neural
Networks [20], Ant Colony Optimization [21], and Particle
Swarm Optimization [22]. In [23], TSP is used as a case study
to show the capabilities of the Ant Colony Optimization
(ACO) algorithm to find the best solution in terms of the
shortest tour length. The paper presents experimental results
on a benchmark data to show how it could improve ACS
algorithm. Reference [24] develops a new fuzzy-logic based
ACO algorithm, considering the uncertainties that can be
found in the pheromone and the heuristic factors. The
proposed technique enables the artificial ant to choose the best
oncoming step based on the values of the probabilities and
their corresponding fuzzy levels. It produces an optimal
solution in the form of an optimal value and its corresponding
fuzzy level.

III. CHEMICAL REACTION OPTIMIZATION

The CRO algorithm starts with a number of molecules
picked at random or through a mechanism for locating feasible
starting points in the landscape. Few elementary operations are
applied to those molecules iteratively producing more fit ones
until some stopping criteria is met. In the main reactions, the
ones meant to exploit subspaces, the number of inputs and
outputs are equal and hence do not change the population size
no matter how often they are called. However, the other two
reactions, the ones meant to explore the space, are either
population increasing or population decreasing, and unless
they have the same number of occurrences, the population size
will tend to increase or decrease. Fortunately, if the population
decreases, the algorithm will tend to apply decomposition to
avoid the single solution population. However, both extremely
small and extremely large populations are undesirable, as the
first is less effective in search while the second is a
computational burden.

Based on the number of molecules involved and the number
of molecules produced, we divide the CRO elementary
reactions into four classes:
 1-to-1 processes, one molecule is involved to produce one

molecule; a process in which a molecule structure is
deformed through a minor or a major structural change,
we call this process deformation.

 1-to-2 processes, one molecule is involved to produce
more than one molecule; typically two molecules are
derived from one, we call this process decomposition.

 2-to-1 processes, two or more molecules are involved to
produce one molecule; a process in which the properties
of many are expressed in one, we call this process
combination.

 2-to-2 processes, two molecules are involved to produce
two molecules; a process in which properties of both are
transferred into two new molecules; we call this process
collaboration

In the context of developing new solutions from a set of
ones in hand at a certain time, we will call the first two
actions, the ones that involve one molecule, D-type
(Deformation, Decomposition), while we call the other two,
the ones that involve 2 molecules, C-type (Combination,
Collaboration). Related literature uses chemical reactions
terms like synthesis instead of combination, and
intermolecular collision instead of collaboration, but we feel
better off using terms that express the processes behavior as
they take place in the search process. Starting with a set of
molecules representing valid solutions to the problem in hand,
those processes are meant to generate better sets over time,
until we reach an optimal solution; convergence. It is quite
important for convergence to carry out operations that provide
both exploration and exploitation. The relative effect of each
type on the exploitation and exploration is shown in Table I,
where ** means primary and * means secondary, based on the
contribution to convergence. In fact, no one action is solely
responsible for either exploration or exploitation.

TABLE I

ACTIONS AND SIGNIFICANCE

Action Cardinality Exploration Exploitation

Deformation 1-to-1 * **

Decomposition 1-to-2 ** *

Combination 2-to-1 ** *

Collaboration 2-to-2 * **

The CRO algorithm is simple, we initialize a set of

parameters based on the instance to solve, and we repeat until
the stopping criterion is satisfied. In each loop we go for C-
type or D-type path based on the present value repressing the
C-type actions rate. And in each path, we check for
decomposition or synthesis condition if met, or else we
perform deformation or collaboration instead. The pseudocode
below shows an outline of the algorithm, along with basic
definitions of the terms used.

1. Set The CRO Initial Parameters

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

249

2. Pick Initial Set of Molecules
3. Pick a random number p [0,1]
4. If p < CAR {
 Pick a molecule at random
 If CCS { // Apply Combination
 }
 else
 { // Apply Collaboration
 }
 }
 else
 {
 Pick two molecules at random
 If CDS { // Apply Decomposition
 }
 else
 { // Apply Deformation
 }
 }
 endif
5. Keep Current Optimal Molecule
6. If NOT SCS GOTO 3
7. Report Optimal Molecule

CAR means C-type Actions Rate
CCS means Combination Criteria Satisfaction is true
DCS means Decomposition Criteria Satisfaction is true
SCS means Stopping Criteria Satisfaction is true
The stopping criteria used is a preset number of repeats with

a preset number of iterations for each. The values CAR, CCS
and DCS were varied based on the test to be carried out.

IV. PCB DRILLING PROBLEM

Printed Circuits Board (PCB) manufacturing is a major
component of computers and electronic equipments in general.
The number of holes of various diameters varies from few tens
to few hundreds or even thousands. The time to drill the holes
depends on the order by which the numerically controlled
drilling machine drill the holes. This problem can be viewed
as an instance of the well known Traveling Salesman problem
(TSP) with a time matrix instead of distance matrix.

The Printed Circuit Board Drilling problem can be viewed
as an instance the Traveling Salesman Problem, where the
cities map to holes and the distance matrix maps to the time
matrix, which represents the time to fly the drill bit between
two holes. To make use of the CROToolBox, we represent
each candidate solution with a string whose length is the
problem size, i.e. number of holes to order for drilling. While
processing those solutions as molecules, we apply a set of
actions towards getting more fit ones taking into account that
none of those actions results in an invalid solution; every hole
number has to appear exactly once in the string. The actions
may produce solutions that look different while they are in
reality the same from the fitness point of view, for example,
the two strings:

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 – 9 and 3 - 4 - 5 - 6 - 7 - 8 - 9 - 0 - 1 - 2

represent two solutions while they have the same fitness and
they represent the same order. Such strings may show up in
the population over time and no attention will be paid to avoid
them, as they represent different schemata in fact, and
applying the same action to each would result in two different
outcomes. For example, if the deformations action is to
operate on the 4th entry, then we can get:

0 - 1 - 2 - 4 - 3 - 5 - 6 - 7 - 8 – 9 and 3 - 4 - 5 - 7 - 6 - 8 - 9 - 0 - 1 - 2

which are not the same. Hence, we believe that this would
avoid computational burden and results in better exploration
of the solution space.

D-Type and C-Type Actions

Two types of actions are used in the CRO search; D-type
and C-type. The D-type actions use one molecule to generate
either one or two molecules. Deformation is a process in
which a molecule is slightly perturbed to generate a new
molecule, while Decomposition is a process that generates two
molecules out of one, passing to each one part of its structure.
The C-type actions use two molecules to generate one or two
molecules. Combination is a process in which two molecules
combine or unite to generate one, carrying part of each
structure, while Collaboration is a process in which two
molecules have some sort of crossover to generate two ones
with some degree of similarity; each one have parts of the two
molecules involved. The following section explains how to
carry out those actions using a small instance of 10 holes,
showing the input(s) and outputs(s) of each action.

1-to-1 Actions (Deformation)

This process injects some structural change, so the molecule
gets deformed. These deformations can be minor; swapping a
randomly selected entry with its neighbor, major; swapping
two randomly selected entries, or hard; by selecting three
entries at random and swapping the first with the second, the
second with the third, and the third with the first. For example:

Input
0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9
minor; one point

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 – 9

Output

 0 - 1 - 2 - 3 - 5 - 4 - 6 - 7 - 8 – 9

major; two points

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 – 9

Output
0 - 1 - 2 - 3 - 7 - 5 - 6 - 4 - 8 - 9
hard; three points

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 – 9

Output
0 - 7 - 2 - 3 - 1 - 5 - 6 - 4 - 8 - 9

1-to-2 Actions (Decomposition)

This process decomposes a molecule into two new ones to
enrich the population in its solution space representation; one

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

250

way to carry this out is by picking a random point, and
generating two molecules by keeping lower or upper part and
randomizing the rest. For example:

Input
0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9
Outputs

0 - 1 - 2 - 3 - 4 - 7 - 9 - 6 - 8 – 5 and 2 - 3 - 1 - 0 - 4 - 5 - 6 - 7 - 8 - 9

2-to-1 Actions (Combination)

This process combines two molecules into one; it constructs
a molecule whose entries are alternatively form the first and
the second without duplication. For example:

Inputs

0 - 6 - 1 - 3 - 4 - 8 - 2 - 7 - 5 – 9 and 7 - 2 - 8 - 5 - 6 - 0 - 3 - 9 - 4 - 1

Output
0 - 7 - 6 - 2 - 1 - 8 - 3 - 5 - 4 - 9

2-to-2 Actions (Collaboration)

This process is possibly the most significant due to its major
contribution to exploitation; we pick two molecules and mate
them to produce new two molecules carrying the properties of
both. This can be carried out by picking two random
molecules and make a cut in each; keep the first part and fill
the other from the other molecule. For example:

Input

0 - 6 - 1 - 3 - 4 - 8 - 2 - 7 - 5 – 9 and 0 - 7 - 2 - 8 - 5 - 6 - 1 - 3 - 9 – 4

Outputs

0 - 6 - 1 - 3 - 4 - 7 - 2 - 8 - 5 – 9 and 0 - 7 - 2 - 8 - 6 - 1 - 3 - 4 - 5 - 9

In all cases, the number of molecules has to be kept within

reasonable limits to match the computational resources.
Unless the decomposition and synthesis rates are equal, the
population will tend to inquires or decrease by time. A way
around that is to drop molecules if a list is reached, like the
least fit ones, and to split one to two for example when it goes
quite low. It is like thinking of a larger container holding the
container in which reactions take place, if the inner container
wall is pressure sensitive such that when pressure inside is low
due to smaller population then more molecules from the outer
container go in, and if it the pressure is high due to larger
population then some leak out.

V. EXPERIMENTS

First set of tests were conducted using the CRO Tool Box
with the default set of parameters. Small problems have shown
good results and the algorithm could even find an optimal
solution, while for medium sized problems the final solution
was an acceptable even with 20 repeats.

Table II shows 10 runs (repeats) for various number of
iterations using a set of default parameters; Initial population
Size: 150, Initial Kinetic Energy: 1000, Collision Rate: 0.2,
Energy Loss Rate: 0.2, Decomposition Threshold: 1300,
Synthesis Threshold: 10. In Table II, Error is computed as the

difference between the optimal and the found one divided by
the optimal.

TABLE II

BEST SOLUTION FOR 4 PROBLEMS

1,000,000 100,000 10,000 Problem

Error Best Error Best Error Best Optimal Size

0.006 74.07 0.18 74.45 0.07 75.92 74.07 22

0.30 41411 0.75 56300 1.92 92250 33523 48

1.22 1069 1.34 1106 2.04 1438 508.00 96

1.73 16157 1.91 17055 5.04 35313 6110.00 130

Testing the PCB442 (Optimal cost 50783) against number

of iterations using default parameters; Initial population Size:
150, Initial Kinetic Energy: 1000, Collision Rate: 0.2, Energy
Loss Rate: 0.2, Decomposition Threshold: 1300, Synthesis
Threshold: 10.

Table III shows the PCB442 benchmark test result. Clearly,
the number of iterations has an impact on the solution quality,
but not justifiable at large number of iterations; Going from
10,000 to 10 folds reduced the error by 2.06 while going from
1,000,000 to 10 fold reduced the error by only 0.25. In all
cases, the performance of this algorithm with its default
parameters is far less than expected.

TABLE III

STATISTICS VERSUS NUMBER OF ITERATIONS

Iterations Average Best Std. Dev. Error

10,000 555964 548811 3727 9.94

100,000 552748 542960 4517 7.88

1,000,000 329682 313044 8631 5.49

10,000,000 317130 313473 2558 5.24

100,000,000 310670 306077 2437 5.11

Table IV shows the effect of Decomposition Threshold; 10

runs, each 1,000,000 iterations. Small increments of the
starting point of 1300 have no impact on the error, that we
made large increments of 25,000. The minimum error
occurred when the threshold reached 100,000 and started to
increase again. This parameter is problem dependent.

TABLE IV

IMPACT OF DECOMPOSITION AND SYNTHESIS RATES

Threshold Decompose Synthesis Best Error

1300 452 600 322463 5.34

25,000 31 180 160442 2.15

50,000 15 164 149574 1.94

75,000 10 159 143506 1.82

100,000 7 156 136443 1.68

125,000 6 155 143212 1.82

150,000 5 153 143873 1.87

To evaluate the impact of the synthesis rate, we carried out

many runs, 100,000 iterations each, with fixed decomposition
threshold, and noticed only minor change in performance even

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

251

with large adjustments of collision rate, kinetic energy, energy
loss rate. Error fluctuated in the range 1.67 to 1.77 in no
pattern.

The progress, cost and population size over time, is tested
using 22-hole and 130-hole problems for 10,000 and 100,000
runs respectively, and the population, cost and number of
reactions of each type is shown. Figs. 1 and 2 depict the cost
and population size over time (iteration) for the 22-hole and
130-hole problems respectively. The CRO performance on
small instances was consistently excellent, as it could always
find an optimal solution, while it starts to decline even with
instances that are far less than the practically commercial size.
With PCB442 benchmark, the cost has never come even close
to the optimal one, even with tens of millions of iterations and
many repeats.

Fig. 1 Cost and Population over Time (22-hole instance)

Fig. 2 Cost and Population over Time (130-hole instance)

Fig. 3 shows the reaction types involved over time. The test

was conducted on a small instance and for 10,000 iterations.

Fig. 3 Actions Count over Time

Clearly, decomposition and combination contribution is
quite limited and almost have the same rate, while the
collaboration is relatively small compared to the deformation.
With this set of parameters the CRO behaves like SA
algorithm. The CRO could find the optimal solution for the
22-hole problem many times when 10,000 iterations and
default parameters were used, while the 130-hole problem
solution was always far from optimal. However, it was noticed
that major improvements in the objective function were
achieved when the population size drops to small values.

VI. CONCLUSION

As a recent general-purpose optimization technique, the
CRO builds on the nature of chemical reactions, mimicking
the interactions of molecules in the form of elementary
reactions. The sequence of the elementary reactions leads to
exploring the solution space towards a minimum with a hope
of a global minimum. The search parameters must be set to
control the search scope like climbing hills and hence
managing the energy is pivotal property of such an algorithm.
Another advantage of this algorithm was its ability to
adaptively change the population size and hence do more
iterations in less time. Although the literature reports many
successful applications of the CRO, we believe there is still
much to do to realize if the PCB drilling problem, or the TSP
as an umbrella, is fit or not for this technique, and thanks to
the No- Free-Lunch Theorem [25] which tells us that all
metaheuristic which search for extremes are exactly the same
in performance when averaged over all possible objective
functions, while one works well in a certain class of problems,
it may not in another.

VII. FUTURE WORK

Due to the less than expected performance on benchmarks,
we plan to modify the elementary reactions and possibly
introduce new ones that enhance the effectiveness of the CRO
algorithm for the PCB drilling problem in particular. One
possible way to go is to consider the peculiar relations among
sets of holes; like those representing two or four sides of a
chip. This might require partitioning the holes in a way that

0

20

40

60

80

100

120

140

160

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

Solid : Cost, Dashed : Population

0

20

40

60

80

100

120

140

160

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

3
5
0
0
0

4
0
0
0
0

4
5
0
0
0

5
0
0
0
0

5
5
0
0
0

6
0
0
0
0

6
5
0
0
0

7
0
0
0
0

7
5
0
0
0

8
0
0
0
0

Solid : Cost/40, Dashed : Population

0

1000

2000

3000

4000

5000

6000

7000

8000

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

Solid: Deformation, Dashed: Collaboratin

Dotted: Decomposition and Combination

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:1, 2015

252

avoids randomized change to relatively stable connectivity
patterns.

ACKNOWLEDGMENT

This work was funded by the Deanship of Scientific
Research at Salman bin Abdulaziz University, Alkharj - Saudi
Arabia, under the research project No. 94/T/33, during the
main author’s sabbatical leave from Jordan University of
Science and Technology in the year 2012/13.

REFERENCES
[1] Goldberg DE (1989) Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley, Reading, MA, USA.
[2] Kennedy J, Eberhart RC (2001) Swarm Intelligence. MorganKaufmann,

San Francisco.
[3] Ong YS, Lim MH, Chen XS (2010) Research Frontier: Memetic

Computation Past, Present and Future. IEEE Computational Intelligence
Magazine 5(2):24–36.

[4] ChenXS, OngYS, LimMH, TanKC (2011) A Multifacet Survey on
Memetic Computation. IEEE Trans Evolutionary Computation
15(5):591–607.

[5] Price K, Storn R, Lampinen J (2005) Differential Evolution: APractical
Approach to Global Optimization. Springer, Berlin.

[6] Dorigo M, Stutzle T (2004) Ant Colony Optimization. The MITPress,
Cambridge, MA, USA.

[7] Geem ZW, Kim JH, Loganathan GV (2001) A New Heuristic
Optimization Algorithm: Harmony Search. Simulation 76(2):60–68.

[8] Lam AYS, Li VOK (2010) Chemical-Reaction-Inspired Metaheuristic
for Optimization. IEEE Trans Evolutionary Computation 14(3):381–
399.

[9] E. Rashedi, H. Nezamabadipour, and S. Saryazdi, "GSA: A
Gravitational Search Algorithm." Journal of Information of Science 179,
2232-2243, 2009.

[10] Rose Alqasem, Taisir Eldos, “An Efficient cell Placement Algorithm
Using Gravitational Search Algorithms”, Journal of Computer Science 9
(8): 943-948, 2013.

[11] Scott Kirkpatrick, ”Optimization by simulated annealing: Quantitative
studies”, Journal of Statistical Physics, Vol 34, Issue 5-6, 975-986, 1984.

[12] Jin Xu, Albert Y.S. Lam, Victor O.K. Li, "Chemical Reaction
Optimization for the Grid Scheduling Problem," IEEE Communications
Society, publication in the IEEE ICC, 2010.

[13] Albert Y.S. Lam and Victor O.K. Li, "Chemical Reaction Optimization
for Cognitive Radio Spectrum Allocation, "IEEE Communications
Society, Proceedings of Globecom, 2010.

[14] A. Y. S. Lam, V. O. K. Li, and J. J. Q. Yu, “Real-Coded Chemical
Reaction Optimization,” IEEE Trans Evolutionary Computation, Vol.
16, No. 3, 339–353, Jun. 2012.

[15] K. Helsgaun, An Effective Implementation of the Lin-Kernighan
Traveling Salesman Heuristic, European Journal Operations Research
126, 106-130, 2000.

[16] Y. Chen, P. Zhang, Optimized Annealing of Traveling Salesman
Problem from the nth-Nearest-Neighbor Distribution, Physica A:
Statistical Mechanics and its Applications, Vol. 371, Issue 3, 627-
632,2006.

[17] C.-N. Fiechter, A Parallel Tabu Search Algorithm for Large Traveling
Salesman Problems, Discrete Applied Mathematics 51, 243-26, 1994.

[18] M. Albayrak, N. Allahverdi, N.: Development a New Mutation Operator
to Solve the Traveling Salesman Problem by Aid of Genetic Algorithms,
Expert System Applications 38 , 1313-1320, 2011.

[19] N. Mladenović, P. Hansen, Variable neighborhood search,
Computational Operations Research 24, 1097-1100, 1997.

[20] J.C. Créput, A. Koukam, A Memetic Neural Network for the Euclidean
Traveling Salesman Problem. Neurocomputing 72,1250-1264, 2009.

[21] C.F. Tsai, C.W. Tsai, C.C. Tseng, A New Hybrid Heuristic Approach
for Solving Large Traveling Salesman Problem, Information Science.
166,67-81, 2004.

[22] X.H. Shi, Y.C. Liang, H.P.Lee, C. Lu, Q.X. Wang, Particle Swarm
Optimization-Based Algorithms for TSP and Generalized TSP,
Information Proceeding Letter. 103,169-176, 2007.

[23] Helmi Md Rais, Zulaiha Ali Othman, Abdul Razak Hamdan, “Improved
Dynamic Ant Colony System (DACS) on symmetric Traveling
Salesman Problem,” International Conference on Intelligent and
Advanced Systems,43-48, 2007.

[24] Ahmed Rabie Ginidi Ginidi, Ahmed M. A. M. Kamel, Hassen Taher
Dorrah, “Development of New Fuzzy Logic-based Ant Colony
Optimization Algorithm for Combinatorial Problems, “Proceedings of
the 14th International Middle East Power Systems Conference, Cairo
University, Egypt, 2010.

[25] Wolpert DH, Macready WG (1997) No Free Lunch Theorems for
Optimization. IEEE Trans Evolutionary Computation 1(1):67–82.

