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 
Abstract—An active islanding detection method using disturbance 

signal injection with intelligent controller is proposed in this study. 
First, a DC\AC power inverter is emulated in the distributed generator 
(DG) system to implement the tracking control of active power, 
reactive power outputs and the islanding detection. The proposed 
active islanding detection method is based on injecting a disturbance 
signal into the power inverter system through the d-axis current which 
leads to a frequency deviation at the terminal of the RLC load when the 
utility power is disconnected. Moreover, in order to improve the 
transient and steady-state responses of the active power and reactive 
power outputs of the power inverter, and to further improve the 
performance of the islanding detection method, two probabilistic 
fuzzy neural networks (PFNN) are adopted to replace the traditional 
proportional-integral (PI) controllers for the tracking control and the 
islanding detection. Furthermore, the network structure and the online 
learning algorithm of the PFNN are introduced in detail. Finally, the 
feasibility and effectiveness of the tracking control and the proposed 
active islanding detection method are verified with experimental 
results. 

 
Keywords—Distributed generators, probabilistic fuzzy neural 

network, islanding detection, non-detection zone.  

I. INTRODUCTION 

SLANDING detection is an essential protection requirement 
for distributed generators (DGs) for personnel and equipment 

safety. The islanding phenomenon for the DG is defined when 
the DG continues to operate with local loads when the utility 
power is disconnected [1]. The islanding phenomenon usually 
occurs when the load power and the output power of the DG are 
balanced, i.e., the load power is entirely supplied by the DG. At 
this time, if the utility power is failed or interrupted, the 
disturbances of frequency and voltage of the DGs cannot be 
detected with the standard of IEEE1547or UL1741 [2], [3]. The 
islanding phenomenon will damage the power systems and the 
safety of maintenance staffs. Thus, all DG equipment is 
required to present an effective islanding detection method [4]. 

In the past decade, many literatures [5]-[8] have been 
proposed to prevent islanding phenomenon caused by DGs. In 
[5], the active frequency drift method was proposed to add dead 
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time into the output current of the power inverter and resulted in 
current and voltage distortion at the point of common coupling 
(PCC). Thus, when the utility power is failed or interrupted, the 
frequency can drift beyond the non-detection zone (NDZ). In 
[6], the proposed active islanding detection method is based on 
injecting a negative-sequence current through the power 
inverter by means of unified three-phase signal processor. The 
signal cross-correlation index between the injected reactive 
power and the frequency deviation at the PCC is proposed to 
detect the islanding phenomenon in [7]. A positive feedback 
anti-islanding scheme using q-axis injection method was 
proposed. The method injects a disturbance signal, which 
contains the difference of terminal voltage, into the active 
power axis (q-axis). When the utility power is failed or 
interrupted, it can accelerate the voltage to drift beyond the 
NDZ [8]. However, the proposed method is based on the active 
power disturbance method for islanding detection which 
inherently has larger NDZ compared with the reactive power 
disturbance method for islanding detection [9]. 

Recently, the study about the integration of artificial neural 
network and fuzzy has been proposed in many research fields. 
The fuzzy neural network (FNN) owns the abilities of 
prediction, modeling, training, and solving problems with 
uncertainty [10]. Moreover, FNN does not require 
mathematical models and has the ability to approximate 
nonlinear systems [11]. Furthermore, nowadays, the new 
intelligent controllers, probabilistic neural network (PNNs), 
have also been proposed in the literatures [12]-[15]. The PNN is 
a feed-forward neural network and is a direct neural network 
implementation of Bayes classification rule and Parzen 
nonparametric probability density function (PDF) estimation 
[12]. In addition, the PNN has an inherent parallel structure, a 
fast training process, and guaranteed optimal classification 
performance if a sufficiently large training set is provided [13]. 
Therefore, the PNN can handle the uncertainties in industry 
applications effectively, and it has been widely used in 
nonlinear mapping, pattern classification, and classification and 
fault detection [14], [15]. Owing to the above advantages of 
PNN and FNN, the PFNN, which integrates the characteristics 
of PNN and FNN, has been proposed in some applications, 
such as stochastic modeling and control problems. In [16], the 
PFNN is capable of solving the uncertainties in industry 
applications.  

In this study, a grid-connected three-phase DG system using 
the adopted PFNN controllers is researched for the tracking 
control and the islanding detection. First, a DC source power 
inverter is emulated the DG system to implement the tracking 
control of active power, reactive power outputs and the 
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theorem [12] in consideration of the group of fuzzy grade 
being independent variables as shown in (12). Thus, the 
input and the output of this layer are described as: 
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where I
lP  and I

l  are the input of rule layer; klw  is the 

connective weight between the probabilistic layer and the rule 
layer which is set to be 1;  jlw  is the connective weight 

between the membership layer and the rule layer, which is also 

set to be 1; O
l  is the output of the rule layer. 

5. output layer (layer 5): In this layer, the input and the output 
of the node are obtained as: 
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where iNy )(  is the output of the PFNN; lw  is the 

connective weight between the rule layer and the output layer. 

B. Online Learning Algorithm 

According to the supervised learning algorithm, the 
parameter learning can be achieved by online regulate the 
connective weights between the output layer and rule layer, and 
the mean and standard deviation of the membership functions 
using the BP algorithm to minimize a given energy function. 
Hence, in order to describe the online learning algorithm of the 
PFNN, first the energy function E  is defined as: 
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where the factor 1  is the learning rate. The connective weight 

lw  is updated by the followings: 
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3. layer 2: The error terms to be propagated are obtained by: 
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By using of the chain rule, the update laws of center and 

center’s width of the triangle are computed as follows: 
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where 2  and 3  are the learning rates. The center of the 

triangle jm  and center’s width of the triangle j  are updated 

according to: 
 

jjj mNmNm  )()1(                     (23) 
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The exact calculation of the sensitivity of the system 

)(/ NyE   which is contained in )(/ NyPinv   and 

)(/ NyQinv   cannot be determined due to the uncertainties of 

the plant dynamic such as parameter variations and external 
disturbances. To overcome this problem and to increase the 
online learning rate of the network parameters, the delta 
adaptation law is adopted as: 

 

)()( NeANeo                              (25) 
 

where A  is a positive constant. 

IV. EXPERIMENTATION 

The block diagram of the grid-connected power inverter 
system for the islanding detection method is provided in Fig. 4, 
where dcC , dcV , dci  are capacitor, DC link voltage and current 
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