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Abstract—Sound pathways in the enclosures of small earphones 

are very narrow. In such narrow pathways, the speed of sound 

propagation and the phase of sound waves change because of the air 

viscosity. We have developed a new finite element method that 

includes the effects of damping due to air viscosity for modeling the 

sound pathway. This method is developed as an extension of the 

existing finite element method for porous sound-absorbing materials. 

The numerical calculation results using the proposed finite element 

method are validated against the existing calculation methods. 
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I. INTRODUCTION 

ITH the many advancements in the performance of 

computers, CAE (Computer Aided Engineering) has 

been used extensively in recent years for acoustic analyses. 

However, the conventional analysis approach is still being 

predominantly used for relatively large structures or large 

equipment. For example, for a structure with a small volume of 

a few cubic centimeters, such as an earphone enclosure, very 

few methods of sound propagation analyses are available. In 

small earphones, enclosures are divided into several 

compartments, and the sound pathways connecting these rooms 

are often very narrow. The viscosity of air in these narrow 

pathways results in damping. Consequently, the speed of sound 

propagation decreases, and a phase delay occurs. Therefore, to 

carry out accurate acoustic analysis, we need to consider the 

effects of the “damping due to air viscosity” which are not 

considered in a conventional acoustic analysis.  

In this study, we have developed a new finite element 

method that includes the effects of the damping due to air 

viscosity in narrow places in the sound pathway. This has been 

developed as an extension of the acoustic finite element method 

proposed by Yamaguchi [1], [2] for a porous sound-absorbing 

material [3]. Moreover, we attempted numerical analysis in the 

frequency domain with our acoustic solver that uses the 

proposed finite element method. For the numerical 

calculations, we used a tube model having a circular cross 

section. Then, we compared the proposed finite element 
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method with the theoretical analysis, and with the generally 

used finite element analysis that does not include the effects of 

the viscosity of the air.  

II. NUMERICAL PROCEDURES  

We have developed a new finite element method that 

incorporates the air viscosity at small amplitudes. Fig. 1 shows 

the direct Cartesian coordinate system and a constant strain 

element of a three-dimensional tetrahedral. Here, ux, uy, and uz 

are the displacements in the x, y, and z directions at arbitrary 

points in the element.  

 

 

Fig. 1 Direct Cartesian coordinate system and a constant strain element 
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where E is the bulk modulus of elasticity of the medium, air. 

The time derivative of the particle displacement is expressed as 

u
．
. Therefore, the kinetic energy T

~
 can be expressed as 

follows: 
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where ρ is the effective density of the element. T represents a 

transpose. The viscosity energy D
~

 of a viscous fluid can be 

expressed as follows: 

 

M. Sasajima, M. Watanabe, T. Yamaguchi, Y. Kurosawa, and Y. Koike 

Acoustic Analysis with Consideration of Damping 

Effects of Air Viscosity in Sound Pathway 

W



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:6, 2013

1167

 

 

{ } { }dxdydzTD
T

e
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      (3) 

 

where { }T is the stress vector attributable to viscosity. The 

relationship between the particle velocity and the stress can be 

expressed as follows: 
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where u
．

x, u
．

y, and u
．

z are the particle velocities in the x, y, and z 

directions at arbitrary points in the element, and µ is the 

coefficient of viscosity of the medium. In the above equation,

{ }Γ  is the strain vector. The relationship between the particle 

velocity and the strain can be expressed by the constant strain 

element of a three-dimensional tetrahedral, as shown in Fig. 2. 
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Ve is the volume of the element and b1-d4 are constants. These 

constants can be expressed as follows:  
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Fig. 2 Relationship between particle velocity and strain 

 

where subscripts k, l, m, and n represent the circular rotation of 

1, 2, 3, and 4. Next, we consider the formulation of the motion 

equation of an element, for the acoustic analysis model that 

considers viscous damping. The potential energy V
~

 can be 

expressed as follows: 
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e
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where { }P  is the surface force vector. { }F  is the body force 

vector. And ∫Γ
Γd  represents the integral of the element 

boundary. The total energy E
~

 can be derived by using the 

following expression: 
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We can obtain the following discretized equation of an 

element by using Lagrange’s equations: 
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where eiu  is the i-th component of the nodal displacement 

vector { }eu  and eiuɺ  is the i-th component of the nodal particle 

velocity vector { }euɺ . We can obtain the following discretized 

equation of an element by substituting (1)–(7) in (9):  

 

[ ]{ } [ ]{ } [ ]{ } { }eeeeeee fuCjuKuM =++− ωω 2
       (10) 

 

We use { } { }ee uju ω=ɺ  in this equation because a periodic 

motion having angular frequency ω is assumed. [ ]eM , [ ]eK , 

[ ]eC  and { }
e

f  are the element mass matrix, element stiffness 

matrix, element viscosity matrix, and nodal force vector, 

respectively. 
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III. EXPRESSIONS FOR DAMPING IN POROUS MATERIALS 

In the motion equation (10), we use the following model 

having a complex effective density, and a complex bulk 

modulus of elasticity in the element stiffness matrix [ ]eK , and 

the element mass matrix[ ]eM  [1]–[4]. 

 

ρ ⇒
IR jρρρ +=*
            (11) 

E ⇒  
IR jEEE +=*
               (12) 

 

where j denotes the imaginary component. Note that ρR and ρI 

are the real and imaginary parts of ρ*, respectively. Here ρR is 

the density of air inside the porous sound-absorbing material 

and ρI is related to the flow resistance of air inside the 

sound-absorbing material. We consider the resistance to the air 

flow at a high frequency by using the complex density. The 

variables ER and EI are the real and imaginary parts of E*, 

respectively and EI is related to the hysteresis between the 

sound pressure and the volume strain. The dissipated energy 

due to EI is converted into heat energy corresponding to the 

enclosed area of the hysteresis curve obtained in one cycle; this 

is known as the attenuation effect. 

As a result, the equations of the sound field in the element 

that includes damping are formulated using complex linear 

simultaneous equations. 

 

[ ] [ ]( ){ } [ ] [ ]( ){ } [ ]{ } { }2

e e e e e e e e eR I R I
M j M u K j K u j C u fω ω− + + + + =   

(13) 

 

where [ ]
ReK and [ ]

IeK are the real and imaginary parts of 

[ ]eK , respectively and [ ]
ReM and [ ]

IeM are the real and 

imaginary parts of [ ]eM , respectively. All nodal particle 

displacements can be calculated by solving (13) for the particle 

displacement. Furthermore, the strain and the sound pressure of 

each element can be calculated from the nodal particle 

displacements. 

IV. CALCULATION 

A. Damping Analysis by the Three Dimensional Finite 

Element Method  

To verify our method, we carried out an acoustic damping 

analysis for tubes using three-dimensional finite elements 

model. When we made this model, we use HyperMesh v11.0 

(Altair Engineering Inc.) at meshing. As shown in Fig. 3, this 

model is 1/4 solid model symmetrical about x-z plane and x-y 

plane. And the air inside the tube is modeled using 

three-dimensional tetrahedral elements having four nodes. The 

number of divided elements was 33 in the axial direction, and 

10 in the radial direction. Both ends of the tube were closed. 

The radius of model was 0.5 mm. The length of the tube was 

16.6 mm. 

 

 

Fig. 3 Three-dimensional tube for finite element method 

 

 

Fig. 4 The distribution of particle displacements contour and the 

isosurface view 

 

We selected the effective density ρR = 1.2 kg/m
3
, coefficient 

of viscosity µ = 1.82 × 10
–5

 N•s/m
2
, real part of the complex 

volume elasticity ER = 1.4 × 105 Pa, and sound propagation 

speed c = 340 m/s for air. As the boundary conditions, the 

particle displacements of all nodes on the outside in contact 

with the tube were fixed, except for the plane of symmetry.  

Fig. 4 shows the contours of the calculated particle 

displacements and the isosurface view of the model tube for the 

proposed finite element method, near the resonance conditions 

(10,000 Hz and 20,000 Hz). As can be seen, the magnitude of 

the displacement of the particles changes significantly near the 

outside of the tube. However, the displacement is flat close to 

the center of the tube.  
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B. Damping Analysis by Theoretical Analysis  

We have carried out theoretical analysis of the resonant 

response of the tube for comparison and verification of the 

proposed finite element method. We consider a straight duct 

with circular cross section. In this case, the frequency response 

of the pressure can be expressed by the following general 

expression,  

 

0

cos ( )

sin

j t k x l
P j cv e

kl

ωρ
−

= −                  (14) 

 

where ρ is density of the air, c is the speed of sound, ｌis the 

length of the tube, ｘ is a position of reference point,  ｋ is ω/

ｃ. v0 is an excitation velocity, and ｔis time. 

 

 

Fig. 5 Three-dimensional tube model and velocity Vc(y) 

 

In this equation, we introduce the complex sound speed 
*c

and the complex effective density
*

cρ  to include the 

attenuation due to the viscosity of the air. We replace the speed 

of sound and the density with the complex sound speed and the 

complex effective density as shown below. 

 

ρ ⇒
*

cρ                             (15) 

 c ⇒ 
*c                             (16)  

 

Using the two substitutions above in equitation (14) and 

using the notation of Craggs and Hildebrant [5], the effective 

density can be written as  

 

ω
ρρ

j

Rc
c +≡∗

0
                                  (17) 

 

where 
0ρ is mass density, and 

cR is flow resistance. The real 

part of the complex effective density 
*

cρ  is the density of the 

air related to the inertial force. Imaginary part is a term that 

represents the viscous resistance or resistance to flow. In 

addition, the flow resistance per unit area Rc in the high 

frequency region can be expressed as follows, using the 

capillary flow theory [6].  
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where b is the diameter of the circular cross section tube. And k1 

is expressed as follows: 

 

µ
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where κ is the bulk modulus, p0 is atmospheric pressure and γis 

the specific heat at constant volume. For the case of the 0.25 

mm radius tube, the complex density and complex sound 

velocity are shown in Figs. 6 and 7 respectively. 

 

 

Fig. 6 Density trend for the three-dimensional tube model 

 

 

Fig. 7 Velocity trend for the three-dimensional tube model 
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Fig. 8 Pressure versus frequency response for a three-dimensional tube model (Diameter is 0.5 mm for the model tube) 

 

 

(a) Proposed FEM                               (b) Theoretical method 

Fig.9 Effect of diameters compared between Proposed FEM and Theoretical method at 10,000Hz 

 

 

(a) Proposed FEM                            (b) Theoretical method 

Fig.10 Effect of diameters compared between Proposed FEM and Theoretical method at 20,000Hz 
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By calculating the frequency response of (13) using the 

values of these parameters, the theoretical solution that includes 

the viscosity is obtained. 

C. Verification and Comparison of the Proposed Method 

We have analyzed frequency responses of the proposed finite 

element method (Proposed FEM), and compared it with the 

above described theoretical method (Theoretical method) that 

includes the viscosity, and with the conventional acoustic finite 

element method (Conventional FEM) that does not include the 

attenuation. Fig. 8 shows the comparison of the analysis results 

for a model tube of radius 0.5 mm. The condition of excitation 

was the constant displacement excitation. From Fig. 8, we 

determined the effect of damping on the calculated results by 

using the proposed FEM and the theoretical method cases. The 

conventional FEM does not show attenuation for the resonance 

peaks. 

In addition, we analyzed the resonant responses with 

different tube diameters using both the proposed FEM and the 

theoretical method cases. Fig. 9 shows the effect of diameters 

of circular tube models on the response, for the proposed FEM 

and the theoretical method cases at around 10,000Hz. And Fig. 

10 shows the effect of diameters of circular tube models on the 

response at around 20,000Hz. The diameter b of the circular 

tubes were 0.5 mm, 0.8 mm, and 1.0 mm. The condition of 

excitation was the constant displacement excitation. As can be 

seen from Fig.9 and Fig.10, when the tube diameter is narrow, 

the resonance peak decrease because flow resistance increases. 

This trend is the same for both methods. 

A comparison of the results of the proposed method with that 

of the theoretical method shows that the proposed method 

shows slightly larger attenuation. We think this is coming due 

to the influence of the mesh size and order near the boundary 

layer. As a result of the first order elements used in this analysis, 

the mesh size was somewhat larger near boundary layer that 

had large change of displacement. 

V. CONCLUSION 

We have developed a new acoustic finite element method 

that considers the effects of damping by the viscosity of air. We 

compared calculation results of sound pressure versus 

frequency characteristics using the proposed method with that 

of the theoretical method, and the conventional acoustic finite 

element method without viscosity of air. 

 The comparison shows that the general shapes of the 

characteristics are very close. For future, we are planning to 

extend this research further, to fully understand the damping 

effects of air on sound waves. Thereby, we hope to establish a 

technology that allows consideration early in the design stage, 

and to provide excellent sound solutions. 
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