
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1061

Access Policy Specification
for SCADA Networks

Rodrigo Chandı́a and Mauricio Papa
Institute for Information Security

Computer Science Department, University of Tulsa
800 S. Tucker Dr., Tulsa, OK 74104

Abstract—Efforts to secure supervisory control and data acqui-
sition (SCADA) systems must be supported under the guidance of
sound security policies and mechanisms to enforce them. Critical
elements of the policy must be systematically translated into a format
that can be used by policy enforcement components. Ideally, the
goal is to ensure that the enforced policy is a close reflection of
the specified policy. However, security controls commonly used to
enforce policies in the IT environment were not designed to satisfy
the specific needs of the SCADA environment. This paper presents
a language, based on the well-known XACML framework, for the
expression of authorization policies for SCADA systems.

Keywords—Access policy specification, process control systems,
network security.

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) sys-
tems allow human operators to remotely observe the state of a
physical process and command actuators to effect change on
the process. Early SCADA systems, in most cases, consisted
of a mainframe computer, connected to a number of simple
remote devices. These devices had the ability to access sensors
and send commands to actuators located on the physical pro-
cess of interest. Modern SCADA systems comprise networks
of servers – providing opportunities for complex interaction
with expert personnel – connected to a distributed network
of remote intelligent devices. These intelligent devices control
sophisticated digital sensors and actuators.

A SCADA control network transports and delivers messages
from the central control facility to the remote devices and back.
A number of protocols exist for use in SCADA networks.
Common protocols include DNP3 [28], Modbus [19] and
IEC 61850 [10]. Most of these protocols originally relied on
serial links for transport. Vendors and standards organizations
have recently started to support Ethernet and TCP/IP as the
underlying transport layer. Modbus/TCP [18] and DNP3 over
TCP [29] are examples of standard protocols updated for this
purpose.

SCADA protocol design focused on operational function-
ality and relied on physical isolation for security. However,

This material is based on research sponsored by DARPA under agreement
number FA8750-09-1-0208. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of DARPA or
the U.S. Government.

the use of TCP/IP as a transport mechanism for control
messages may render a process control system vulnerable to
cyber attacks or malicious manipulation. For that reason, the
development of cyber security tools capable of mitigating the
risks (associated with both internal and external threats) has
been recognized as an important concern for any enterprise
SCADA system.

Most SCADA security standards deal with risk mitigation
and technical security controls at the central management
facility. This is in part due to the alarming trend of enter-
prises connecting, perhaps indirectly, SCADA systems to the
corporate network using TCP/IP. Securing the SCADA control
network at the field level has received comparatively less
attention. Anyone tapping to an unsecured field network would
be able to disrupt sections of the process under control. Large
scale SCADA systems frequently span large distances, making
it very difficult to secure the field network by employing phys-
ical means. Even for smaller SCADA installations complete
physical security is hard to accomplish. This makes cyber
security a critical component of the overall security posture
of SCADA systems.

Policy enforcement efforts at the central control facility
use procedures and controls similar to those available to
a typical IT network. However, policy enforcement at the
SCADA control network poses unique challenges not typically
faced in the IT world: (i) prevalent use of serial lines and
legacy protocols prevent the use of firewalls and network IDS
systems; and (ii) SCADA protocols, by design, operate under
the assumption of a trustworthy environment. This complicates
the implementation of authorization and authentication for
users and devices. Operators often lack the tools necessary to
enforce security policies and may be opposed to the imposition
of security controls that may negatively affect performance,
reliability and availability. These factors present a difficult
obstacle to overcome for the mitigation of security risks on
these networks.

The approach described in this paper addresses this concern
by proposing a framework that enables authorization policy
auditing and enforcement. A key element of the framework is
a policy description language specifically designed to protect
SCADA devices and networks. The main goal of this effort
and the proposed policy language is to provide a simplified
path from policies to enforcement, thus improving the overall
security posture of the SCADA control network.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1062

Fig. 1: Prototypical SCADA control network.

II. SCADA NETWORKS

SCADA systems typically consist of (i) a central facility
which hosts devices that presents readouts and schematic infor-
mation about the process state, along with controls to modify
process actuators (also referred as the Management Network);
(ii) a SCADA control network providing message transport
services and containing control devices as network endpoints;
and (iii) the process machinery, with sensors and actuators
operated by these control devices. Messages transported by the
SCADA control network primarily convey state information
of the process under control and, when required, they may
also convey instructions to modify actuator settings that effect
changes on the process.

Boyer [5] describes SCADA control networks as composed
by a Master Terminal Unit (MTU) connected to a number of
Remote Terminal Units (RTUs). The MTU generates reading
requests to update the information presented to the operators
and write requests to modify actuators upon operator request.
RTUs provide sensor readings from its inputs (reads) and
modifies actuator settings (writes) on its outputs upon request
from the MTU. Figure 1 depicts a simplified SCADA control
network.

The architecture assumes the MTU frequently communi-
cates with Human Machine Interface (HMI) devices and other
supporting devices on the management network. One or more
operators – expert personnel trained to manage the process
under control – use the HMIs to determine the process state
and command process actuators. This is abstracted as a single
box at the left side of Figure 1.

Many common SCADA protocols use a request-response
message exchange pattern to control the transmission of
messages between the MTU and RTUs. Request-response
protocols force an RTU to only generate a message as a direct
response to a request. This provides a simple way to deal with
congestion control issues and to recuperate from transmission
errors. Typical examples of these protocols include DNP3 [28],
Modbus [20], [17] and proprietary protocols implemented by
each vendor such as ROC [9] and BSAP [8]. Note that these
protocols sometimes provide alternative exchange patterns. For
example, devices using the DNP3 protocol may spontaneously
generate messages to convey alarm conditions, and Modbus
requires devices to not reply to broadcast messages; but these
are exceptional conditions rather than normal communication
modes. Other types of process control such as Distributed

Control Systems (DCS) use protocols for process control
based on other exchange patterns. Controller Area Networks
(CAN) [7], for example, use publish-subscribe patterns to
control message distribution.

Modern SCADA systems operate within the environment of
an enterprise. Communication occurs via paper-based proce-
dures or system-to-system communication. Figure 2 presents
a high level representation of a modern SCADA control
network within an enterprise (loosely based on the ISA-95
standard [13]). A corporate network contains enterprise man-
agement systems used by billing, sales and procurement; and
systems for production management and process optimization.
Corporate systems require selected sensor readings for billing,
procurement and performance analysis purposes, and provide
high-level guidance for the operation of the process equipment.

Current security standards and SCADA security practi-
tioners consider connectivity to the the corporate network a
security risk which needs to be addressed. A DMZ (a De-
Militarized Zone) implements a common measure for the
mitigation of these risks [6]. The DMZ is a subnetwork located
between trusted and untrusted networks. The DMZ is separated
from the other networks by firewalls. The DMZ contains only
hosts which require connectivity to both trusted and untrusted
networks. The firewalls limit the traffic to the minimum
necessary, and prevent any traffic to flow between the trusted
and untrusted network. This serves to isolate the trusted
network from dangerous traffic and allow administrators to
focus security measures on the hosts located within the DMZ.

The SCADA system comprises the management network
and the control network. The management network hosts the
process management services. These include HMIs, historians,
patch management systems and protocol servers acting as
MTUs. These are the main systems used by operators to
determine current process status, alarm conditions and mod-
ify actuator settings. One or more MTUs interconnect these
systems to the control network.

The control network provides communication to the RTUs.
This network, mostly designed to convey messages between
the MTUs and the RTUs, also provides protocol translation
facilities. RTUs directly interface with sensors and actuators
on the process machinery.

Gateways address the problem of converting messages be-
tween different protocols. Situations where two parts of the
network use different protocols abound. Protocols used in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1063

Fig. 2: Schematic representation of a typical SCADA control network.

the management network typically differ from those used in
the control network; a merger between two enterprises may
require an existing management facility to connect to a new
network; vendors may obsolete equipment over time, making
different devices (using a different protocol) a less expensive
proposition than acquiring the current models; or even by
design, a chosen vendor for a type of devices (intelligent
measurement sensors) might require a protocol not appropriate
for the communication links used to communicate with the
MTU.

TCP/IP [24] has become a common protocol for carrying
messages over long and short distances. Its ease of use and low
cost make it an attractive alternative. SCADA protocols need
special consideration when using TCP/IP as its underlying
transport.

Encapsulation provides a simple solution for the transport
of serial messages over TCP. A TCP connection to a terminal
server, at a predetermined port, replaces the serial link; TCP
messages encapsulate the serial messages, allowing transport
over an IP network. The terminal server receiving the connec-
tion acts as a gateway by converting messages between the
TCP stream and a serial link.

Vendors and standards organizations also provide mech-
anisms and specifications for direct transport of SCADA
messages over TCP/IP, e.g., Modbus/TCP standard [18].

A. SCADA Network Reference Model

To design the proposed policy enforcement architecture,
a reference model for a SCADA network was needed. This
network contains a management network, a control network
and a physical process under control. The proposed archi-
tecture concentrates on policy enforcement for the control
network. It does not contemplate a detailed architecture for the
management network beyond what is presented in this section.

The SCADA network contains one MTU connected to one
gateway. This gateway provides protocol translation and rout-
ing as needed to interconnect the MTU to one or more SCADA
sites. A SCADA site contains a set of RTUs interconnected by
a single network. In most cases a multidrop serial link provides
connectivity between the gateway and the RTUs. Figure 3
shows a depiction of the SCADA control network model.

Fig. 3: A Model for a typical SCADA control network.

The model contemplates a hierarchical organization for
message distribution. All messages start at the MTU, which
sends the message to the gateway. The gateway then routes
and, if necessary, translates the message to the appropriate
site network. All RTUs in the SCADA site might observe
the message, but only the one matching the destination takes
action. If the destination field in the message specifies a
broadcast address, all RTUs accept the message and take ac-
tion. After performing the requested action the receiving RTU
responds to the message; unless the message was destined to
a broadcast address and the protocol prohibits responses for
such messages.

The model network also contemplates a number of excep-
tions to this hierarchical message distribution. Some RTUs
directly send and receive messages to other entities. The other
party in this case may either be a RTU in the same site,
a local HMI on the same site, another entity on a different
site, or even an entity on a separate control network. These
exceptions model common situations such as operators and
workers that need local supervision and control of process

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1064

machinery; RTUs that require direct communication to another
RTU without intervention from the management network;
and vendors and contractors which require remote access for
maintenance and troubleshooting.

Without loss of generality this SCADA model leaves out
the situation where a MTU connects to several gateways. For
the purposes of this research, these are modeled as separate
SCADA control networks where each network contains a
separate MTU.

SCADA security standards provide guidance on managing
security in the management network. The ISA organization
has published documents to help practitioners secure process
control networks networks. These documents provide a model
for the segregation of systems into security zones [14] and a
collection of technologies to help operators select appropriate
security controls [15]. More recently, NIST has published a
draft document [26] that collects industry wide practices to
guide the mitigation of security risk. Options for the mitigation
of security threats on the SCADA control network are still
limited. The AGA-12 standards [1], [2] require the use of
encryption for the control network and define a specific proto-
col for the protection of serial links. As wireless technologies
make inroads into SCADA control networks, more operators
require the use of encryption over 802.11 links. Finally, some
standard protocols including DNP3 [29] and IEC 62351-
5 [11] have been extended to include secure authentication
and encryption in the protocol. Security policy enforcement at
the field level remains an open problem.

III. POLICY MODELS AND AUTHORIZATION POLICIES

Information security policies provide high-level plans to
satisfy goals for the protection of the information handled by
an enterprise [3]. As such, these policies reduce risk related to
the information handled by the enterprise by describing goals
of procedures, determining assets to protect, placing limits on
controls to implement, guiding product selection, delineating
best practices to follow during software development, and
other practices and controls.

Enterprises enforce the implementation of policies using
procedures and technical controls. Technical controls provide
automated mechanisms to implement the objectives stated in
the policies. These controls range from door locks to event
correlation software.

Security policies also guide the development of practices,
procedures and controls to minimize risk on SCADA systems.
The main concern for these systems lies not in data loss, but on
loss of control. As a result, most security and safety measures
relate to the appropriate handling of process events, abnormal
conditions, safety procedures that minimize downtime, pro-
duction losses, and safety of personnel and the general public.
Security from malicious activity has traditionally been a sec-
ondary concern in the industrial environment. In particular,
operators avoid technical and management controls that may
impede the operation of SCADA devices or prevent personnel
from performing its duties.

Authorization policies, a specific part of security policies,
form a central part of this research. XACML [22] provides

an example of a generic language for the expression of
authorization policies that can also be used to mechanize
policy evaluation. Section IV describes this language that
provides the inspiration for our design of a policy language
targeting SCADA systems. Existing implementations [27] for
policy evaluation are readily available.

Authorization policies provide rules to determine whether
a subject can perform an action on a specific resource, given
the current environment. For example, a SCADA policy may
allow only a specific group of HMIs and MTUs (subjects)
to start and stop (actions) an engine (the resource) but only
during a certain part of the day (environmental condition).

Several solutions exist that attempt to centralize and ease
the management of enterprise-wide authorization policies.
Directory services such as NIS [25] and LDAP [32] allow
enterprise-wide management and distribution of authorization
information for authorization decisions. However, each system
still makes its own authorization decisions based on its own
implementation of authorization policies. Such policies might
not align with the actual policies defined by the enterprise. For
example, a policy may limit plant workers from accessing an
HMI when not in their shifts, but the HMI may not take this
parameter into account when restricting operator login. Mech-
anisms to express flexible authorization policies throughout the
enterprise are only now appearing, with XACML [22] being
one of the most domain independent (see Section IV).

SCADA systems usually follow a policy that allows open
access for any personnel present near the equipment. The
implicit assumption is that only authorized personnel are
allowed into the central control facility and near other sensitive
- and frequently dangerous - areas of a plant; access in this case
is controlled by physical means. Moreover, having operators
spend time supplying credentials to access an HMI is deemed
a safety risk. Access control for messages between devices has
traditionally been deemed unenforceable, even though SCADA
traffic is generally well defined, repetitive and unchanging
under normal operations. Interrupting traffic may adversely
affect the reliable operation of the process.

IV. EXTENSIBLE ACCESS CONTROL MARKUP LANGUAGE
- XACML

XACML (eXtensible Access Control Markup Language) fa-
cilitates the expression of interoperable authorization policies
[22]. This language allows the definition of specific access
control policies for diverse resources, subjects and actions in
a common language irrespective of the actual implementa-
tion. An access request is granted or denied by combining
enterprise-wide policies with attributes of the subject, action,
resource and environment involved in the access attempt.
Enterprises using XACML define authorization policies based
on their own requirements rather than being forced to follow
what specific systems implement. Work into the definition
of XACML started during April 2001 [4] by the OASIS
Foundation [23] under Technical Committee XACML. OASIS
published the first version of the document in February 2003
[21]. The current version is 2.0 [22], published in February
2005.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1065

Fig. 4: XACML architecture.

Policy Decision
Point (PDP)

Evaluates a XACML policy and produces
an authorization decision.

Context Handler Acts as an intermediary between the
PDP and all external resources. Converts
between each entity native format and
XACML with the PDP. [31]

Policy Enforcement
Point (PEP)

Stands between an access requester and a
resource. Produces decision requests and
enforces authorization decisions. [31]

Policy Information
Point (PIP)

Provides attribute values to be used by the
PDP for policy decisions.

Access Requester Some entity requesting access to a re-
source for the execution of a specific
action.

Resource A service, system component or data.

Attribute Sources A set of entities that provide attributes on
demand for the environment, resources,
actions or subjects.

A. Authorization Model

The XACML standard uses a simple architecture (summa-
rized in Figure 4) as a basis for the definition of roles involved
in the processing of XACML documents. This architecture is
not mandatory, it serves as a representative environment where
XACML operates.

Under this architecture, a Policy Enforcement Point
(PEP) [31] stands between a resource and an access requester
(see Table I). The PEP validates any credential and attributes
provided by the access requester, but defers any access deci-
sion to the PDP.

As the native format for decision requests may not be
XACML, all such requests pass through the Context Handler
before reaching the PDP as a XACML decision request.
Figure 5 shows the sequence of messages generated by the
architecture elements from the moment when the PDP sends
a decision request.

From the decision request the PDP determines the set of
policies necessary to provide a response. This in turn deter-
mines action, subject, resource and environmental attributes
needed for the resolution of the predicates contained in the
relevant set of policies that apply to the decision. The decision
request contains some of the attributes, the PDP queries the

Fig. 6: Relationship of XACML top level elements.

Context Handler for a resolution of the remaining ones. The
Context Handler attempts the resolution of said attributes by
forwarding attribute queries to one or more Policy Information
Points (PIPs). Optionally, the resource also sends the resource
content to the Context Handler to augment the resource
attributes available for the decision. The Context Handler then
sends a response with all the attributes it gathered to the PDP.
Finally, the Context Handler forwards the response to the PDP
in its native format. The decision response may optionally
contain a clause stating obligations the PDP must carry before
granting access. If the PDP cannot fulfill the obligations clause
access should be denied.

B. Policy Structure

XACML defines several elements that form the overall
authorization policy (Figure 6). A policy set defines a set
of policies to evaluate for a policy decision. A policy set
may contain a number of policies or several policy sets either
directly or by reference. A policy, contains one or more rule
sets, which in turn contain one or more rules. Policy sets
also define which of the available algorithms to use for the
combination of individual policy decisions. Similarly, rule
sets define which of the available algorithms to use for the
combination of individual rule evaluation results.

Rules are expressions that return a value when evaluated.
When a rule cannot be evaluated due to attributes mentioned
with undefined values, it returns an indeterminate result. Avail-
able elements in a rule include boolean operators, relational
operators, arithmetic operators, string handling functions, set
operators, XPath selection, conditional evaluation, references
to other rules and attribute values. For a rule to provide a
decision, its rule set must evaluate to a boolean result of true.
Otherwise the result is not applicable.

Each policy set and policy may contain a clause expressing
the conditions under which the policy set or policy apply. This
expression, allows a PDP to quickly determine which policies
do not apply for the decision and avoid evaluating the policy
sets, policies and rule sets contained within.

PEPs are responsible to interpret policy decisions, allow or
prevent access, and take appropriate actions. Permit and deny
decisions have obvious meanings, but each PEPs may interpret
not applicable and indeterminate decisions in different ways.

XACML provides a flexible way to organize policy state-
ments, a rich set of operators and a mechanism to identify

TABLE I: Entities in the XACML architecture

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1066

Fig. 5: Messages exchanged by elements of XACML model.

values from external repositories. This language allows the ex-
pression of versatile policies abstracted from implementation
details. SCADA devices, having a wide variety of competing
implementations can benefit from using this language as
an unifying option for the expression and enforcement of
authorization policies.

On the other hand, XACML as a descendant of XML is
primarily a machine oriented language. As such, direct human
interaction is not one of its features. Directly maintaining a
XACML policy is not a reasonable expectation. XACML’s
many features also add complexity. Users of XACML may
not need all its features. For this reason, our approach uses
its own policy language (loosely modeled after XACML). A
compiler from the policy language to XACML allows the
use of a subset of XACML features to perform the policy
evaluation functionality.

V. POLICY LANGUAGE

This section describes a policy language created for the def-
inition of policy statements that conform to the overall policy
of the enterprise. A Policy Decision Point (PDP) evaluates
each of these statements upon the reception of an authorization
request from a Policy Enforcement Point (PEP), as shown in
Figure 7. The results of these evaluations are combined to
produce an overall authorization decision which is returned
to the PEP. Policy statements reference a set of attributes.
To evaluate policy statements, the PDP obtains actual values
associated with these attributes from the authorization request
and from a set of attribute repositories.

This language defines two kinds of policy statements; those
that produce a “permit” decision and those that produce a
“deny” decision. The evaluation of a policy statement pro-
duces one of three decisions: its stated decision (“permit” or
“deny”), “not applicable” or “indeterminate.” A result of “not
applicable” indicates that the policy statement did not produce
its stated decision. A result of “indeterminate” indicates that
a problem occurred during the evaluation that prevented the
determination of the policy statement applicability. The ex-
pected behavior of the evaluation is to either determine that

the policy is applicable (producing its stated result) or “not
applicable.” Indeterminate results provide information on the
cause of the problem and help debug errors in the definition of
policy statements and problems with the definition of stored
attributes. The applicability of a policy statement is determined
by the computation of boolean expressions contained inside.

The PDP determines the overall decision by combining the
individual results from each statement using a pre-defined
heuristic. A suitable heuristic is presented in Section V-B.

In addition to the authorization result, policy statements
deemed applicable also contribute obligations to the overall
decision result. These obligations prescribe actions the PEP
must execute before granting or denying authorization. Obli-
gations are associated to the “permit” or “deny” value declared
within its containing policy statement. The PDP discards
obligations that do not match the overall “permit” or “deny”
result.

The following two subsections describe relevant parts of the
policy language and the heuristic to use for the combination
of evaluation results.

A. Policy Statement

A policy statement contains up to four sections. (i) The
attributes section declares the attributes used within the policy
statement. (ii) The precondition specifies combinations of
attribute values necessary to proceed with the evaluation of
the remaining sections of the policy statement; the policy
statement is deemed “not applicable” otherwise. (iii) The
condition section specifies the result to return (“permit” or
“deny”) and a boolean expression that determines the policy
statement applicability (true produces the stated result and
false produces “not applicable”); this is the only mandatory
section. (iv) Finally, the obligation section lists instructions
for the PEP to execute when the policy statement is deemed
applicable and the result of its evaluation matches the overall
authorization decision. Problems in the evaluation of (ii) or
(iii) produce a result of “indeterminate.”

The following rule expands the start symbol of the grammar
into the symbols which in turn expand to each of the policy

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1067

Fig. 7: Participants of the policy evaluation process.

/* Attributes section */
using

subject uri subject_id
action uri action_id

uri parameter
resource uri resource_id
environment time timestamp

/* Precondition section */
when

action action_id = uri("modify")
parameter = uri("temperature")
or
action_id = uri("modify")
parameter = uri("pressure")

resource resource_id = uri("boiler")
/* Condition section */
deny if

not subject_id = uri("master") and
timestamp > time("16:00") and
timestamp < time("17:00")

/* Obligation section */
then

log("% attempted to access the
boiler temperature", subject_id)

Fig. 8: An example of a policy statement.

sections:

policy → symbols? scoping? action consequence? EOF, (1)

where symbols expand to the attributes section, scoping
expands to the precondition section, action expands to the
condition section and consequence expands to the obligation
section.

The grammar allows the expression of parts of an autho-
rization policy such as “only the master station can modify
the boiler temperature and pressure between 4:00 PM and
5:00 PM.” The policy statement in Figure 8 would allow such
operations, assuming the PEP and the attribute repositories
provide the referenced attributes. Here we also assume that
other policy statements allow the master to modify the boiler
temperature and pressure regardless of the time.

The following sections define a machine readable language
to express the symbols, scoping, action, and consequence
sections of a policy statement.

Attributes Section A non-trivial policy statement makes
reference to attributes associated to subject, action, resource
or environment. This section of a policy statement provides

a compact notation for the attributes referenced in a policy
statement, independent of the underlying implementation.

symbols → “using” (var def)∗ (2)
var def → “subject” data type SYM subject xacml spec?

(3)
→ (“action” | “resource” | “environment”)

data type SYM xacml spec? (4)

Attributes are written as a white space separated list of
attribute declarations after the keyword “using” (rule 2).
Each attribute declaration stemming from the grammar symbol
var def defines whether the attribute belongs to subject,
action, resource or environment, its data type, its name,
and optionally implementation dependent parameters. These
implementation dependent parameters are represented by the
symbols xacml spec and subject xacml spec in rules 3
and 4. They associate the attribute with the naming parameters
used by the underlying implementation. For example, the
attribute subject_id in Figure 8 could require an imple-
mentation dependent specification like:

/* Attributes section */
using

subject uri subject_id
= ("urn:scada-policy:subject-identifier")

...

Here a subject attribute of type URI named subject_id
is declared. This declaration explicitly instructs the PDP to use
the name urn:scada-policy:subject-identifier
when referring to the subject_id.

Precondition Section Authorization policies may contain
numerous individual policy statements. One of the main issues
for a PDP is to quickly reduce the number of statements
to evaluate. This section allows the expression of conditions
on attribute values to determine whether the policy statement
evaluation should proceed to the next section, where more
complex expressions may occur. This section allows a Policy
Decision Point (PDP) to implement efficient indexing and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1068

retrieval of statements which may apply to a decision.

scoping → “when” (scope element)∗ (5)
scope element → “subject” scope disj (6)

→ “action” scope disj (7)
→ “resource” scope disj (8)
→ “environment” scope disj (9)

scope disj → scope conj (“or” scope conj)∗ (10)
scope conj → scope oper+ (11)
scope oper → symbol (“=” | “<”| “>”| “<=”| (12)

“>=”) constant (13)
→ “regexp” “(” symbol “,” constant “)”

(14)

Rules 6 to 9 group attribute specifications by attribute
type (subject, action, resource and environment). Semantic
checks (not shown) ensure that subject, action, resource and
environment groups appear at most once. These in turn contain
a disjunction of clauses separated by the “or” keyword. Each
clause contains a list of relations between attributes (on the
left hand side) and constants (on the right hand side). These
lists form logical conjunctions where all attribute values must
match the related constants. For multi-valued attributes (see
Section V-A), the operations match if any value matches the
constant.

Policy statement evaluation continues to the condition sec-
tion only if this section evaluates to true; otherwise the
evaluation produces a result of not applicable.

For example, this precondition (from Figure 8)
/* Precondition section */
when

action action_id = uri("modify")
parameter = uri("temperature")
or
action_id = uri("modify")
parameter = uri("pressure")

resource resource_id = uri("boiler")
...

allows to proceed with the evaluation of the policy statement
only if resource_id, and action_id match the specified
values, and the parameter being modified is either the
pressure or the temperature.

This is equivalent to the expression:
resource id = uri(“boiler”) ∧ ((action id =

uri(“modify”) ∧ parameter = uri(“temperature”)) ∨
(action id = uri(“modify”)∧ parameter = uri(“pressure”)))

Condition Section This section describes core components
of the policy statement. It defines the type of decision (“per-
mit” or “deny”) the policy statement produces (rule 15). It also
defines under which combination of attributes and constants
the policy statement is applicable (based on the expression in
rule 16).

action → (“permit” | “deny”) condition (15)
condition → “if” expression (16)

The expression within this section must return a boolean
data type. A result of true causes the policy statement to
evaluate to the action defined in rule 15. A result of false
causes the policy statement to evaluate to not applicable.

The following condition section (taken from Figure 8)
declares that evaluating the policy statement as applicable
produces a “deny” decision. This happens only if the previous
precondition is true and the subject id is equal to “master”
and the request timestamp occurs between 4:00 PM and
5:00 PM.

/* Condition section */
deny if

not subject_id = uri("master") and
timestamp > time("16:00") and
timestamp < time("17:00")

Obligations This optional section mandates actions the PEP
must execute after the policy statement is deemed applicable.
These obligations will be executed by the PEP only if the result
of “permit” or “deny” from this policy statement matches the
overall result (obtained after evaluating and combining the
results of all the policy statements). For example, the “log”
obligation in Figure 8 will be executed by the PEP only if the
policy statement is applicable and the result of combining the
evaluation of all policy statements also produces a “deny.”

consq → “then” (consq expr)∗ (17)
consq expr → “log” “(” STRING (“,” expression)∗ “)”

(18)
→ “forward” (19)
→ “store” “(” bag symbol “,” expression “)”

(20)
→ “exec” “(” (bag symbol “,”)∗ STRING “)”

(21)

The “log” obligation in rule 18 causes the Policy Decision
Point (PEP) to register a message in the log using a specific
message and values. These values result from the evaluation
of expressions based on the same context used for the rest of
the policy statement. Occurrences of the wild-card “%” are
substituted with the result of the evaluation. Occurrences in
excess of the number of expressions are substituted with the
string “(undefined)”. Expressions in excess of the number
of wildcards are ignored.

The “forward” obligation in rule 19 causes the PEP
to forward the request to a higher level PEP for further
processing. The mechanism for the transmission and the effect
this has on the other PEP is up to the implementation.

The “store” obligation in rule 20 causes the PEP to modify
an attribute repository by storing the result of an expression
into a specific attribute. This allows the encoding of state into
the policy statements.

The “exec” obligation in rule 21 allows the definition
of other consequences as a script to execute under some
predefined scripting language. The script has access to all the
attributes used to evaluate the policy statement.

Expressions Expressions provide the ability to compose
attribute values using predefined functions. The main use of
functions is to generate a boolean value to determine the
applicability of a policy statement. Expressions are also used to
provide the values used in the obligations section of the policy
statement. The policy language defines the usual boolean,
relational and arithmetic operators, shown in Table II. The
compiler automatically casts integers into doubles as needed.

The language recognizes constants of type integer, dou-
ble, boolean and string. For all other data types (uri, date,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1069

Name Notes

or
and
“not”
<, >, <=, >=, = All data types may be tested for equality
+
-
*, /, “mod” “mod” only accepts integer parameters
∼, function “∼” provides set equality
- (negative)
()

time, dateTime, dayTimeDuration, yearMonthDuration, ipAd-
dress and dnsName) the language provides a function of
the same name as the data type. These functions take a
string as a parameter and returns the corresponding data
type. An URI constant, for example, may be expressed as
uri("http://example.com").

Multi–valued Attributes Authorization requests and repos-
itories may provide multiple values for a single attribute. This
is represented in the language with the concept of a bag. Bags
are unordered collections of values with possibly non-unique
entries of the same data type.1

Multi-valued attributes provide an useful abstraction. For
example, a subject may hold the roles of “master” and “slave”
at the same time; or a resource may allow both “read” and
“write” actions.

Several functions return or take bags as parameters. The one
function and the bag function, for example, allow the conver-
sion between a multi-valued and a single-valued environment.

The language regards attributes and expressions as single
valued or as bags depending on the context under which the
attribute is referenced. The compiler allows the conversion
between bags and single values at run-time, with the caveat
that bags in single valued contexts must hold only one value.
An error occurs otherwise, producing indeterminate as the
statement evaluation result.

The following statement shows an expression where the an
attribute addresses is referenced first as a bag and then as a
single value:

size(addresses) = 1 and addresses = 5000

The size function takes a bag and returns the number of ele-
ments it contains. This protects the evaluation of addresses
= 5000. The equality operator takes single values on both
sides; an “indeterminate” result would occur if addresses
contained multiple values when evaluating the equality.

B. Policy Statement Combination

The PDP combines the results of the evaluation of policy
statements to generate an authorization response. A “default
deny” strategy provides safe defaults in case of errors or
unexpected situations, such as all policy statements producing
a not applicable result.

1The functions isSubset, intersection and union remove duplicate entries
from its parameters before producing its result.

We chose the “deny-overrides” algorithm, described in
the XACML standard [22, pp. 133–134], to combine policy
statement decisions.

The result is “deny” when any single policy statement
evaluates to “deny” or “indeterminate”; else, the result is
“permit” when at least one statement evaluates to “permit”;
otherwise, the result is “not applicable” as all statements are
“not applicable.” The PDP is encouraged to interpret a “not
applicable” result as a “deny”. The PDP also collects all
obligations produced by the statements. Only obligations from
statements deemed applicable, and whose result is the same
as the authorization response are kept.

As a convenience, a separate group of policy statements
are set up to have no influence on the overall decision, but
contribute its obligations to the pool of obligations to execute.
These statements are similarly evaluated for applicability, and
contribute obligations only if the evaluation result matches the
authorization response.

As defined, the language allows the expression of obliga-
tions. These specify actions the PEP must execute as a result
of allowing or preventing actions in the enterprise. Obligations
are collected from policy statements that contribute to the
overall decision and a special set of statements that do not
influence the overall authorization decision, but contribute
obligations to the authorization response.

VI. CONCLUSIONS

SCADA systems offer specialized facilities to integrate dis-
tributed control systems into centralized interfaces operated by
trained personnel. Increasing interconnection of these systems
with external networks, mixed use of current and legacy
technology and traditional unawareness of computer security
issues motivate the creation of new security solutions tailored
for these systems.

We created a policy language for the definition of policy
statements. These policy statements allow the implementation
of an authorization policy tailored to a SCADA system,
where each policy statement provides a condition for either
the authorization or the denial of a SCADA message. The
proposed policy language for SCADA systems will be used to
better define a policy evaluation architecture that can be used
for compliance evaluation or authorization enforcement. Our
plan is to ensure that such an architecture, based on the concept
of Policy Enforcement Points (PEP), allows the composition of
these PEPs into hierarchical structures that follow the topology
of the SCADA network.

REFERENCES

[1] American Gas Association, Cryptographic Protection of SCADA Com-
munications Part 1: Background, Policies and Test Plan, Technical Report
AGA Report No. 12 (Part 1), Draft 5, American Gas Association, April
2005.

[2] American Gas Association, Cryptographic Protection of SCADA Com-
munications; Part 2: Retrofit Link Encryption for Asynchronous Serial
Communications, Technical Report AGA Report No. 12 (Part 2), Draft,
American Gas Association, November 2005.

[3] Scott Barman, Writing Information Security Policies, New Riders, Indi-
ana, November 2001.

[4] Karl Best, OASIS TC Call for Participation: XACML, OASIS
XACML Mailing List (http://lists.oasis-open.org/archives/xacml/200104/
msg00000.html), April 2001.

TABLE II: Policy language operators and precedence

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:6, 2010

1070

10

[5] Stuart A. Boyer, SCADA: Supervisory Control and Data Acquisition,
Third Edition, ISA – Instrumentation, Systems and Automation Society,
2004.

[6] British Columbia Institute of Technology (BCIT), Good Practice Guide
on Firewall Deployment for SCADA and Process Control Networks,
Technical Report, National Infrastructure Security Coordination Centre
(NISCC), London, United Kingdom, February 2005.

[7] CAN in Automation, CAN in Automation (CiA): Controller Area Net-
work (CAN) (http://www.can-cia.org/), November 2008.

[8] Emerson Process Management, Network 3000 Communications Applica-
tion Programmers Reference, Technical Report D4052, Emerson Process
Management, Watertown, Connecticut, USA, October 2007.

[9] Emerson Process Management, ROC Protocol User Manual, Bulletin
A4199, Emerson Process Management, Houston, Texas, USA, June 2007.

[10] IEC, Communication Networks and Systems in Substations, IEC 61850-
SER, IEC, August 2007.

[11] IEC, Power Systems Management and Associated Information Exchange
– Data and Communications Security, Part 1: Communication Network
and System Security – Introduction to Security Issues, IEC TS 62351-5,
IEC, May 2007.

[12] Innominate Security Technologies AG, Industrial IT Security With Fire-
wall and VPN Hardware – Home – Innominate (http://www.innominate.
com), November 2008.

[13] Instrumentation Systems and Automation (ISA) Society, Enterprise–
Control System Integration Part 1: Models and Terminology, Technical
Report ANSI/ISA-95.00.01-2000, American National Standards Institute
(ANSI), July 2000.

[14] Instrumentation Systems and Automation (ISA) Society, Security for In-
dustrial Automation and Control Systems Part 1: Terminology, Concepts
and Models, Technical Report ANSI/ISA-TR99.00.01-2007, American
National Standards Institute (ANSI), 2007.

[15] Instrumentation Systems and Automation (ISA) Society, Security Tech-
nologies for Industrial Automation and Control Systems, Technical Re-
port ANSI/ISA-TR99.00.01-2007. American National Standards Institute
(ANSI), 2007.

[16] Merriam-Webster, Policy, in Merriam-Webster Online (http://www.
merriam-webster.com/dictionary/policy), July 2008.

[17] Modbus IDA, Modbus Application Protocol Specification (http://www.
modbus.org/specs.php), April 2004.

[18] Modbus IDA, Modbus Messaging on TCP/IP Implementation Guide
(http://www.modbus.org/specs.php), June 2004.

[19] Modbus-IDA, Modbus-IDA: the Architecture for Distributed Automation
(http://www.modbus.org/), October 2008.

[20] Modbus-IDA, Modbus Over Serial Line Specification – Implementation
Guide (http://www.modbus.org/specs.php), February 2002.

[21] OASIS, eXtensible Access Control Markup Language XACML Version
1.0, Technical Report, OASIS, February 2003.

[22] OASIS. eXtensible Access Control Markup Language XACML version
2.0, Technical Report, OASIS, February 2005.

[23] Organization for the Advancement of Structured Information Standards
(OASIS), Oasis Foundation Web Page (http://www.oasis-open.org/home/
index.php), June 2008.

[24] Jon Postel, Transmission Control Protocol, RFC 793 (Standard), Septem-
ber 1981.

[25] Hal Stern, Managing NFS and NIS, O’Reilly and Associates, Inc.,
Sebastopol, California, USA, 2001.

[26] Keith Stouffer, Joe Falco and Karen Scarfone, Guide to Industrial
Control Systems (ICS) Security, NIST Special Publication 800-82, Final
Public Draft, NIST, September 2008.

[27] Sun Microsystems, Sun’s XACML implementation (http://sunxacml.
sourceforge.net/), November 2008.

[28] Mike Thesing, Transporting DNP V3.00 Over Local and Wide Area
Networks, Technical Report, DNP Users Group, December 1993.

[29] Mike Thesing, DNP3 Specification Volume 7: IP Networking, Technical
Report, DNP Users Group, 1998.

[30] Xin Wang, Guillermo Lao, Thomas DeMartini, Hari Reddy, Mai Nguyen
and Edgar Valenzuela, XrML – eXtensible Rights Markup Language, in
XMLSEC ’02: Proceedings of the 2002 ACM workshop on XML security,
ACM, New York, New York, USA, pp. 71–79, 2002.

[31] Andrea Westerinen, John Schnizlein, John Strassner, Mark Scherling,
Bob Quinn, Shai Herzog, An-Ny Huynh, Mark Carlson, Jay Perry
and Steve Waldbusser, Terminology for Policy-Based Management, RFC
3198, November 2001.

[32] Kurt D. Zeilenga. Lightweight Directory Access Protocol (LDAP):
Technical Specification Road Map, RFC 4510, June 2006.

Rodrigo Chandı́a He received his Ph.D. in Computer Science at the Univer-
sity of Tulsa in 2009. Dr. Chandia currently works as a Software Engineer at
Google, Inc. perfecting the Google Web Toolkit. His areas of interest are: agile
software development, compilers, network security and computer security.

Mauricio Papa He received his M.S. (Electrical Engineering) and Ph.D.
(Computer Science) degrees at The University of Tulsa in 1996 and 2001
respectively. Dr. Papa is an Associate Professor of Computer Science and
the Director of the Institute for Information Security (iSec) at The University
of Tulsa. His areas of interest are: process control systems security, network
security and distributed systems.

