
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2683

1

Accelerating Integer Neural Networks

On Low Cost DSPs
Thomas Behan, Zaiyi Liao, Lian Zhao, Chunting Yang

Abstract— In this paper, low end Digital Signal Processors (DSPs)
are applied to accelerate integer neural networks. The use of DSPs
to accelerate neural networks has been a topic of study for some
time, and has demonstrated significant performance improvements.
Recently, work has been done on integer only neural networks, which
greatly reduces hardware requirements, and thus allows for cheaper
hardware implementation. DSPs with Arithmetic Logic Units (ALUs)
that support floating or fixed point arithmetic are generally more
expensive than their integer only counterparts due to increased circuit
complexity. However if the need for floating or fixed point math
operation can be removed, then simpler, lower cost DSPs can be
used. To achieve this, an integer only neural network is created in
this paper, which is then accelerated by using DSP instructions to
improve performance.

Keywords— Digital Signal Processor (DSP), Integer Neural Net-
work (INN), Low Cost Neural Network, Integer Neural Network DSP
Implementation.

I. INTRODUCTION

Integer Neural Networks (INNs) have been a topic of

research [1]-[3], usually with the goal to reduce hardware

complexity for implementation on Field-Programmable Gate

Arrays (FPGAs). INNs are, from hardware perspective, much

simpler, and so take up less space and consume less power.

However, FPGAs are not the only system that can benefit

from this research, many low cost micro-controllers also lack

the hardware to perform floating or fixed point calculations.

While these functions can be reproduced in software, this

entails a significant degradation in performance. The level of

performance degradation usually depends on the quality of the

compiler. In addition, there are now low cost micro-controllers

with DSP functionality. DSP operations have been used to

greatly improve the performance of neural networks [4], and

have been implemented in a diverse range of applications such

as motor control [5] and speed recognition [6]. This paper

aims to demonstrate the feasibility of INNs accelerated by

DSP instructions on low cost micro-controllers.

II. HARDWARE

There exists a wide selection of micro-controllers which

have DSP operations, but with ALUs that lack floating/fixed

Thomas Behan is a graduate student with the Department of
Electrical and Computer Engieering at Ryerson University, Canada
(email:thomas.behan@ryerson.ca)

Zaiyi Liao is with the Department of Architectural Science at Ryerson
University, Canada (email:zliao@ryerson.ca)

Lian Zhao is with the Department of Electrical and Computer Engieering
at Ryerson University, Canada (email:lzhao@ee.ryerson.ca)

Chunting Yang is with the Faculty of Information and Electronic
Engineering, Zhejiang University of Science and Technology, P.R.China
(email:yangct@zust.edu.cn)

Fig. 1. Simplified block diagram of MAC instruction.

point arithmetic. For the purposes of this paper any micro-

controller will work provided that its ALU can perform the

most basic DSP operations, in particular the Multiply ACcu-

mulate (MAC) instruction. For this paper the dsPIC30F2011 is

used as it is cheap while still meeting the minimum require-

ments. Typically the MAC instruction uses two registers as

pointers to hold the memory locations of the data, two registers

to hold the data taken from the memory and one accumulator

as shown in Fig. 1. The accumulator may be wider than

other registers to accommodate the large values that can be

generated by a MAC instruction. On the dsPIC30F2011 the

accumulator is 40bits rather than the usual 16bit, this makes it

much less likely for the accumulator to overflow. The pointers

automatically post increment to the next memory locations so

that they are ready for the next call of the MAC instruction.

The MAC instruction is used to perform convolution in typical

DSP systems expressed as,

(f ∗ g)(n) =
∞∑

m=−∞

f(m) · g(n−m). (1)

The operation provided by the MAC instruction is the sum

of the product to two vectors, accumulated over successive

iterations represented as,

a← a + b× c. (2)

The output of a neuron can be expressed as,

Output = f(Net). (3)



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2684

2

Net = Inputs×Weights (4)

It happens that the largest portion of the time required to

calculate the above output is in the multiplication and accu-

mulation of inputs and weights, that is, calculating the net (4)

of a neuron. In a neural network the input and weight vectors

operate similar to two waveforms conducting convolution, but

produce one output rather than another waveform.

Because of this similarity the MAC instruction can acceler-

ate a neural network in much the same way as it accelerates

convolution, by decreasing total number of instructions needed

to perform the operation. Therefore, the efficiency can be

increased and the amount of time needed to simulate a neuron

can be decreased.

III. NEURAL NETWORK

A. Feedforward

The values for the weights are limited by the micro-

controller to 16 bits (representing values from -32 768 to

+32 767). Further restricting the range of values for the

weights may provide additional benefits in training the neural

network [2]. However it has no effect on the speed of the

neural network and so was not implemented. For an activation

function a stretched hyperbolic tan (tanh) is used. Normally

tanh provides values from -1 to 1 which is not acceptable for

an INN. This is also true for other popular activation functions

such as the logistic sigmoid. To get around this problem tanh

must be stretched to include more integer numbers. Then once

the tanh function is stretched it must also be quantized for use

in a Look Up Table (LUT). Quantizing the sigmoid along

with the use of integer weights present the primary problem

of INNs in that they limit the expressive power of the network

as described in [3]. However, it also provides the advantage

of using LUTs, which are much faster than performing the

calculations even if the hardware supports floating or fixed

point math operations. The activation function used is shown

as

Y = 16× tanh

(
X

4

)
(5)

which is then quantized to the nearest integer number. Fig. 2

shows the original stretched tanh and the quantized version

that is used in the LUT.

B. Backpropagation

Serious challenges arise when implementing backpropaga-

tion on an INN. The most serious problem is the lack of

weight update mitigation. In a normal neural network, the

rate at which the weights change is mitigated by the decimal

numbers from the backpropagation itself as well as a learning

rate factor η . However without these attenuating factors the

weight updates are just the product of two integers, which

makes the system unstable because the weight updates can

never decrease in magnitude. This is especially true for small

LUTs where a large weight update can cause the output swing

from one end of the LUT to the other in a single update. When

this happens the weights can trap the neuron at the extremes

of the activation function. Another source of difficulty is the

Fig. 2. Stretched tanh and quantized stretched tanh.

derivative of the stretched tanh function. The extremities of

the derivative of the stretched tanh function approach zero as

shown in Fig. 3.

Fig. 3. Derivatives of stretched tanh and quantized stretched tanh functions.

When the derivative is quantized, all of the values are

rounded to the nearest integer and values less then 0.5 become

zero. This can be seen in Fig. 3 where the quantized values

drop to zero as the Net values approachs the extermes. This

means that for a large portion of the net values f’(net) are

zero.

∆w = ηδ (6)

The weight updates (6) are normally determined by the back-

propagated error of the weight, δ, and the learning rate η.

δo = (t− o)f ′(Net)y (7)

Through the delta rule we can determine the backpropagated

error for the output weights (7). The error is determined by the

difference between the target output t, and the actual output o,

multiplied by the derivative of the activation function f ′(Net)
and the input assosiated with the weight being updated. In the



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2685

3

case of the output neuron, the input is the output y of a lower

layer neuron. This δo is then used to determine the weight

update (6). However if the Net value is near the extremes

of the input space, then f ′(Net) will become zero if the

quantized sigmoid is used. The result is that backpropagated

error δo becomes zero (7). This causes weight update ∆w to

also become zero (6), meaning that the weight will not update

and the network will not move towards a solution.

Without the use of the derivative of the stretched tanh

function, normal backpropagation cannot be performed. While

there are many approaches to this problem, the goal of using

only integers restricts the use of many of these methods. A

simple solution is to use a fixed interval for the weight update

as done in [7]. In [7] the integer value one is used as the

interval.

δ = Net× Input

∆w =

{
1 if δ > 0

−1 if δ < 0
(8)

By using a simplified backpropagation (8), the sign of the

weight update interval is determined to ensure that the fixed

update interval moves the network towards a stable solution.

In this case, δ = Net × Input because the derivative of

tanh is symetrical about the y-axis and the magnitude is

ignored. This method is very simple and provides an integer

only approach but suffers from some significate drawbacks.

First, if the initial weights are far from a solution it will

take many more epochs to reach the solution, because the

proper magnitude of the weight update is not determined. Also,

because all of the weight updates are the same magnitude, the

network has a propensity to get caught in weight update loops.

Some weight update loops can be avoided by using an odd

number of samples so that the final weight update cannot equal

zero, otherwise it is possible for all of the weight updates to

equal zero and halt the learning process. However the method

remains very suspectable to weight update loops, therefore it

is often necessary to make multiple attempts with different

initial weights. For backpropagation implementations that are

not restricted to integer calculations, there are other methods

[7], [8] that can produce integer solutions while avoiding some

of these problems.

IV. IMPLEMENTATION

For comparison, a 2-2-1 network is used as shown in Fig.4.

The drawbacks of the backpropagation method, particularly

the need for many weight reinstallations, make it unsuitable for

online training. Therefore the network is trained offline on a

computer. Once the computer has found a solution the weights

from the computer’s network are programmed into the network

on the dsPIC30F2011. The four possible input combinations

are tested to ensure that the network is performing the XOR

operation correctly. For timing purposes, a simulator is used

because it can track the number of clock cycles needed to

execute the program. This provides the most accurate timing

measurement.

The output for this neural network is given by:

Fig. 4. 2-2-1 Neural Network

Outk = f(
∑

wjk ×Outj) (9)

Outj = f(
∑

wij ×Outi) (10)

Outi = xi (11)

Neurons in the output layer (9) and the hidden layer (10)

must calculate a net value given as

Net =
∑

W ×Out (12)

which is passed to the activation function. While on DSP

systems the MAC instruction is used to provide acceleration

for convolution in (1), in this system it is used to accelerate

the calculation of the net value for a neuron given in (12).

For this reason, the net calculation code will be the main

focus of the testing, all other parts of the code are identical.

The network also runs with floating point inputs and weights

to demonstrate the performance degradation caused by using

floating point operations on the dsPIC30F2011, which lacks

floating point hardware. The main program is written in C

and the function for determining the net of the neuron is

programmed in both C and assembler (to directly access the

DSP operations). The program is executed in three variations:

Integer variables with DSP instructions, integer variables but

without DSP instructions, and variables as floats without

DSP operations (which the chip cannot do). The program is

re-complied each time, and the number of clock cycles to

complete the net calculation, one neuron firing, and the whole

sample set is recorded.

V. RESULTS

A. Data Collection

The test results are shown in Table I. All results are shown

in Clock Cycles (CC). Values that are averaged are rounded up

the nearest whole clock cycle. Each clock cycle takes 33.3ns

when the dsPIC30F2011 is operated at its maximum clock

speed of 120MHz. Net Calculation shows how many cycles

are required to determine the net of a neuron. This value is

an averaged value across one sample. The shortest execution

time is highlighted with bold face numbers.



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:12, 2008

2686

4

TABLE I

EXECUTION TIME IN CLOCK CYCLES

INN with DSP INN no DSP Floating Point

Net Calculation 21cc 87cc 776cc

One Neuron 49cc 115cc 923cc

Whole Sample Set 717cc 1509cc 11996cc

One Neuron shows the time required to determine the output

of a neuron. This value is the average across one sample. It

shows that using the LUT requires 28-29 clock cycles when

using integer values, however for floating point it takes much

longer. Also because floating point values cannot be used to

address memory locations the output is always zeroed and the

same position of the lookup table is always accessed. This

means that the output for the floating point neural network is

never correct. However this prevents the floating point method

from being converted to an integer or having to calculate the

activation function. Both of which would significantly decrease

performance and bias the results against floating point.

Whole Sample Set is the execution time to run through all

four possible input combinations. These values include the

time taken to change the input values and perform a while

loop, as well as various other operation not directly related to

the neural net.

B. Discussion

From Table I, we can see that INN with DSP is the fastest

method, more than twice as fast as INN in all aspects. The DSP

operations provide a 4 × speed increase when calculating the

net of a neuron. Showing that DSP operations do significantly

increase the performance. The calculation of the net value for a

2 input (plus bias) neuron when using DSP operations accounts

for less than half of the overall execution time. The additional

clock cycles are due to accessing the LUT and function

calls. For the calculation of the whole sample set the speed

increase afforded by the DSP operations has been diluted

because of all of the other operations that must be performed.

However even at this stage the DSP operations provide a 2×
performance increase over an INN without DSP operations.

Performing operations with floating point variables produces

very poor results. Calculating the net value with floating point

takes longer than the other two methods by a large margin.

The INN without DSP is 7.9× faster than floating point

for calculating the whole sample set. While the INN with

DSP is 16.7× faster than floating point when calculating the

entire sample set. This performance most clearly demonstrates

the utility of INNs on low cost micro-controllers, especially

those with DSP functions. For this reason neural networks

using floating point operations, while possible on low end

micro-controllers are often not practical for implementations

with timing constraints. Neural networks using floating or

fixed point are best implemented on chips that can support

these operations, despite their cost and power consumption.

Lastly it should be noted that because all of the performance

improvement comes from the calculation of the net values,

the performance scales relative to the total number of neural

connections rather than the total number of neurons. This

means that the relative performance gain increases as the

number of connections inside the neural network increases.

The 2-2-1 network is one of the simplest networks having

only 9 connections, and so the relative performance increase

should be considered modest.

VI. CONCLUSION

An INN has been implemented on a micro-controller with

an ALU lacking floating point arithmetic and has been accel-

erated by using DSP operations. Also, a purely integer method

for implementing backpropagation has been demonstrated.

However the integer backpropagation was not implemented

as it does not benefit from DSP operations. The results show

that using DSP operation greatly enhanced the performance

of the INN. Both the INN with DSP operations and the

INN without DSP operations were significantly faster than the

neural network using floating point on the dsPIC30F2011. The

performance increase also scales favorably. As the complexity

of the network increases, the performance gap between INNs

with DSP and INNs without DSP also increases. Finally, the

primary objective of this paper has been demonstrated: that if

a neural network solution can be found using only integers,

then an INN can be implemented on a micro-controller and

accelerated with DSP operations. This eliminates the need

for floating point circuitry, and can greatly reduce the cost

and power consumption without increasing complexity of the

system.

ACKNOWLEDGMENT

This work is supported by Ontario Centre of Excellence

(OCE) under grant number EE50196.

Thanks to Richard Rzeszutak for proof reading and debugging.

REFERENCES

[1] A. H. Khan and E. L. Hines, “Integer-weight neural nets,” Electronics

Letters, vol. 30, no. 15, pp. 1237–1238, 1994.
[2] V. P. Plagianakos and M. N. Vrahatis, “Neural network training with

constrained integer weights,” in Evolutionary Computation, Proceedings

of the 1999 Congress on, vol. 3, 1999, p. 2013.
[3] S. Draghici, “Some new results on the capabilities of integer weights

neural networks in classification problems,” in Neural Networks, 1999.

IJCNN ’99. International Joint Conference on, vol. 1, 1999, pp. 519–524.
[4] J. Onuki, “Ann accelerator by parallel processor based on DSP,” in Neural

Networks, 1993. IJCNN ’93-Nagoya. Proceedings of 1993 International

Joint Conference on, vol. 2, 1993, pp. 1913–1916.
[5] M. Mohamadian, E. Nowicki, F. Ashrafzadeh, A. Chu, R. Sachdeva,

and E. Evanik, “A novel neural network controller and its efficient DSP
implementation for vector-controlled induction motor drives,” Industry

Applications, IEEE Transactions on, vol. 39, no. 6, pp. 1622–1629, 2003.
[6] S.-C. Chen, C.-C. Hsu, and W.-Y. Wang, “DSP-based fuzzy neural

network and its application in speech recognition,” in Systems, Man, and

Cybernetics, 1999 IEEE International Conference on, vol. 6, 1999, pp.
110–114.

[7] J. Tang, M. R. Varley, and M. S. Peak, “Hardware implementations
of multi-layer feedforward neural networks and error backpropagation
using 8-bit pic microcontrollers,” in Neural and Fuzzy Systems: Design,

Hardware and Applications (Digest No: 1997/133), IEE Colloquium on,
1997, pp. 2/1–2/5.

[8] H. Y. Xu, G. Z. Wang, and C. B. Baird, “A fuzzy neural networks
technique with fast backpropagation learning,” in Neural Networks,

International Joint Conference on, vol. 1, 1992, pp. 214–219.


