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Abstract—This paper presents the visual control flow support of 

Visual Modeling and Transformation System (VMTS), which 

facilitates composing complex model transformations out of simple 

transformation steps and executing them. The VMTS Visual Control 

Flow Language (VCFL) uses stereotyped activity diagrams to specify 

control flow structures and OCL constraints to choose between 

different control flow branches. This work discusses the termination 

properties of VCFL and provides an algorithm to support the 

termination analysis of VCFL transformations. 

 

Keywords—Control Flow, Metamodel-Based Visual Model 

Transformation, OCL, Termination Properties, UML. 

I. INTRODUCTION 

N VMTS [1] directed, labeled graphs are used to represent 

the internal structure of software models, and transformation 

steps (graph rewriting rules) specify the operational behavior 

of model processing. The VMTS supports editing metamodels, 

design models according to their metamodels, transforms 

models using graph rewriting techniques, and facilitates to 

check constraints specified in the metamodel during the 

metamodel instantiation and the transformation step 

constraints during the model transformation process [1]. 

VMTS is a UML-based [2] approach for model 

transformations. The technique is based on graph 

transformations [3], where UML class diagrams are used to 

represent the metamodels (graph grammars) of the input and 

the output of the transformations. The transformations are 

defined as controlled structure of elementary transformation 

steps.  

Graph rewriting [3] is a powerful tool for graph 

transformation with a strong mathematical background. The 

atoms of the graph transformation are rewriting rules, each 

rewriting rule consists of a left-hand-side graph (LHS) and a 

right-hand-side graph (RHS). Applying a graph rewriting rule 

means finding an isomorphic occurrence (match) of LHS in the 

graph to which the rule is applied (host graph), and replacing 

this subgraph with RHS. Replacing means removing the 

elements that are in LHS but not in RHS, and gluing the 

elements that are in RHS but not in LHS.  

Model transformation means converting an input model 
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available at the beginning of the transformation process to an 

output model. Several widely used approaches to model 

transformation uses graph rewriting as the underlying 

transformation technique. Previous work [1] has introduced an 

approach – metamodel-based rewriting rules –, where the left-

hand-side (LHS) and right-hand-side (RHS) graphs of the rules 

are built from metamodel elements. It means that an 

instantiation of LHS must be found in the host graph instead of 

the isomorphic subgraph of LHS. This metamodel-based 

approach facilitates to assign OCL constraint to pattern rule 

nodes (PRNs) – nodes of the rewriting rules. 

The Object Constraint Language (OCL) [4] is a formal 

language for the analysis and design of software systems. It is 

a subset of the UML standard [2] that allows software 

developers to write constraints and queries over object models.  

The motivation of the work presented in this paper is to 

support the control flow in visual model transformation 

systems and to define the conditions exactly which guarantee 

that if a transformation fulfills them it surely terminates or 

surely not. An algorithm – VCFL Termination Algorithm 

(VTA) – is worked out to support the termination analysis of 

VCFL transformations. The VTA is an offline algorithm, as an 

input it uses only the control flow model to make the decision. 

It means that the decision is independent from any host model. 

II. VISUAL CONTROL FLOW LANGUAGE 

One of the most important capabilities of a control flow 

language is the possibility to express a transformation as an 

ordered sequence of the rewriting rules. Classical graph 

grammars apply any production that is feasible. This technique 

is appropriate for generating and matching languages but 

model-to-model transformations often need to follow an 

algorithm that requires a more strict control over the execution 

sequence of the steps, with the additional benefit of making the 

implementation more efficient.  

The VMTS approach is a visual approach and it also uses 

graphical notation for control flow: Stereotyped Activity 

Diagram, which is a technique to describe procedural logic, 

business process, and work flow. In many ways, it plays a role 

similar to flowcharts, but the principal difference between it 

and flowchart notation is that activity diagrams support 

parallel behavior [5].  

In Fig. 1 the control flow model of Prim’s algorithm is 

depicted which implements a greedy-choice strategy for 

minimum spanning tree. Starting with an empty tree (one 
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optional vertex with no edges), the algorithm repeatedly adds 

the lowest-weight edge (u,v) in input graph such that either u 

or v, but not both, is already connected to the tree. The pseudo 

code of the algorithm is as follows. 
 

PRIMSPANNINGTREEALGORITHM (Graph G) 

  1 Select an arbitrary vertex from G to start the tree from 

  2 while (there are still non-tree vertices) 

  3    Select the edge of minimum weight between a tree and non-tree vertex 

  4    Add the selected edge and vertex to the spanningTree  

  5 end while 

 

 
Fig. 1 The VCFL control flow of Prim’s spanning tree algorithm 

 

An arbitrary vertex from G to start the tree from is given as 

a pivot node. A pivot node is an input parameter of the control 

flow specified by the user. In the graph each vertex and edge 

has a property (IsSpanningTreeMember) which determines if a 

vertex or an edge has already been added to the spanning tree. 

In the decision object this property of the vertices is checked. 

If the graph contains at least one vertex which is not a member 

of the spanning tree, then the constraints contained by the 

decision select the path to SelectNextEdge rule, otherwise to 

the rule end.  

The first transformation step (SelectNextEdge) selects the 

neighbors of the tree vertices which are not members of the 

tree yet. It selects the vertex from the neighbor vertices which 

is connected to the tree with the edge of minimum weight, and 

sets the IsSpanningTreeMember of the selected vertex and 

edge to true. The ColorNewElements step obtains the selected 

vertex and edge as passed parameter between rules and 

modifies their color to red (other, more technical, 

transformation steps can also be defined). As a result of the 

transformation the minimal spanning tree will be red. The 

presented transformation does not modify the topology of the 

model but updates the attribute values.  

The VCFL is a visual language for controlled graph 

rewriting and transformation, which supports the following 

constructs: sequencing transformation steps, branching with 

OCL constraints, hierarchical steps, parallel executions of the 

steps and iteration. 

A. Sequencing Transformation Steps 

Sequencing transformation steps facilitates a transformation 

which contains the steps in an ordered sequence (S0, S1… Sn-1). 

Assume the case that the input model of the i
th
 step (Si) is the 

model Mi and the result of the Si is the Mi+1 (where 0 ≤  i ≤ n-

1). In this case the input model of the i+1
th
 step (Si+1) is the 

Mi+1. It means that during the execution of the step sequence 

each step works on the result of the previous step. (Obviously, 

except for the first step, which works on the input model.) The 

result of the whole transformation is the result of the last step 

(Sn). 

The interface of the transformation steps allows the output 

of one step to be the input of another step, in a dataflow-like 

manner. This is used to sequence expression execution. In 

VCFL this construction is referred as external causality. An 

external causality creates a linkage between a node contained 

by the RHS of the i
th
 step and a node contained by the LHS of 

the i+1
th
 step. This feature accelerates the matching and 

reduces the complexity, because the i
th
 step provides partial 

match to the i+1
th
 step. In our example we use external 

causalities to pass the selected edge and vertex from 

SelectNextEdge rule to ColorNewElements rule. 

B. Branching with OCL Constraints 

There are many scenarios where the transformation is to be 

applied, it depends on a condition, therefore a branching 

construct is required. In VCFL the OCL constraints assigned 

to the decision elements can choose between branch paths of 

optional numbers, based on the properties of the actual host 

model and the success of the last transformation step 

(SystemLastRuleSucceed). If the last transformation step fails, 

then the VCFL could use the values of the SystemLHSFailure 

and SystemRHSFailure system variables for the decision. 

These variables represent whether a failure has occurred, 

because there was no proper match (LHS failure: topologically 

not suitable host model or there is at least one constraint not 

satisfied in the LHS of the transformation step), or the 

transformation result was not sufficient (RHS failure: there 

was at least one constraint not satisfied in the RHS of the 

transformation step). 

In VCFL each branch has an exact OCL guard condition 

which is evaluated by the execution engine during the 

execution.  

When a step is connected to more than one follow-up steps, 

then maximum one of the branch conditions is allowed to be 

true. It means that the conditions must not have any common 

part. This restriction ensures that the control flow execution of 

the VCFL is deterministic. 

We applied VCFL in several case studies (e.g. generate user 

interface from resource model and user interface handler code 

from statechart model for mobile platform [6]) which require 

control flow support, and all of them could be solved without 

non-determinism. But VCFL provides an interface for 

nondeterministic control flow as well. 

C. Hierarchical Steps 

The VCFL supports hierarchical specification of the 

transformation steps. High-level steps can be created by 

composing a sequence of primitive steps and can be viewed as 

separate transformation modules. 

A high-level rule can contain several simple rules, hiding 

the details which could be unimportant on a specific 

abstraction level and represents the contained rules as coherent 

units. 

Often the OCL constraints assigned to a decision object do 
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not cover all possible cases. It could result that in certain cases 

none of the branch paths is selected, in this case the parent step 

of the actual transformation handles the control flow: breaks 

the execution of the transformation on the actual level and 

continues the transformation on the parent level. 

D. Iteration (Tail Recursion) and Parallel Executions of 

the Steps 

The iteration is achieved with the help of the decision 

objects and the OCL constraints contained by them. A decision 

object evaluates the assigned constraints and based on the 

results selects a flow edge which could be a follow-up or a 

backward edge as well (Fig. 1).    

Recursion could be solved with the combination of the 

iteration and external causalities. A high level rule can call 

itself, where external causalities represent the actual 

parameters of the recursive call. 

Flattening the state machine is an example when we have to 

apply recursive algorithm that first calls flattening on its 

children before flattening itself. 

The parallel execution of the independent transformation 

steps is under implementation, it will supported by the Fork 

and Join elements. 

In VCFL if a transformation step fails and the next element 

in the control flow is a decision object then it could provide 

the next branch based on the OCL statements and the value of 

the SystemLastRuleSucceed variable. If no decisions can be 

found, the control is transferred to the parent state, if there is 

no parent state, the transformation terminates with error. 

III. TERMINATION PROPERTIES 

The termination properties of a transformation need to be 

discussed. The difference between a transformation and a 

finite sequence of steps is that a finite sequence of steps always 

terminates, but a transformation, can contain infinite number 

of steps. Our aim is that VCFL transformations terminate, 

therefore an algorithm has been worked out to support the 

early detection of the infinite loop and the validation of the 

control flow that from each step can reach an end step. 

In the VCFL a transformation step has two specific 

attributes: Exhaustive and MultipleMatch. Recall that applying 

a graph rewriting rule means finding a match of the LHS in the 

host graph and replacing this subgraph with the RHS. An 

exhaustive transformation step is executed continuously as 

long as the LHS of the step could be matched to the host 

model. The MultipleMatch attribute of a rule allows that the 

matching process finds not only one but all occurrence of the 

LHS in the host model, and the replacing is executed on all the 

found places. 

Definition (VCFL Transformation): A VCFL 

Transformation is a stereotyped UML activity diagram. A 

VCFL Transformation T defines a strict order of the contained 

transformation steps TSTEPS...SS,S 1-n10 ∈∈ , where S0 is 

the start step of the T. Transformation T contains OCL 

constraints, assigned to decision objects to choose between 

different control flow branches and external causalities 

between transformation steps to support parameter passing. 

 Definition (Termination of VCFL transformations): A 

VCFL transformation T for a finite input model G0 terminates, 

if there is no infinite derivation sequence from G0 via 

transformation steps TSTEPS ∈ , where starting from S0 

(start step of the T) steps STEPS  are applied as it is defined 
by the transformation T. 

For non-exhaustive and also for exhaustive transformation 

steps, the MultipleMatch attribute of the steps does not modify 

the termination of the VCFL control flows for optional finite 

input model G0. 

The termination checker algorithm has to differentiate 

between certain cases. It has to take into consideration whether 

the VCFL transformation contains loops with decision object 

or exhaustive transformation steps. 

A. VCFL Control Flows with Non-Exhaustive 

Transformation Steps 

Proposition: A VCFL transformation T, which contains 

only non-exhaustive transformation steps )( 1-n10 ...SS,S and 

does not contain loops for an optional finite input model G0 

always terminates. 

Proof: The transformation T contains finite number of 

transformation steps ( ∞<∧= nSTEPSn # ). 1-ni 0 |i ≤≤∀  

STEPSS i ∈  is executed at the most once because it is a non-

exhaustive step. 

If the multiple match attribute of a step STEPSS i ∈  is 

true, all occurrence of the Si
LHS

 is searched and the replacing is 

executed for all found matches, but the step Si is executed only 

once. The number of the found matches (mi) is also finite 

because of the finite input model G0. 

1-ni 0 |m  n i ≤≤∞<∧∞<  therefore ∞<=∑
−

=

1n

0i

ii mk . 

The number of the steps executed by transformation T is finite 

and T terminates. 

B. VCFL Control Flows with Exhaustive Transformation 

Steps 

Definition: (⊆ ).
nm GG ⊆  if and only if Gn has a 

topologically isomorphic subgraph GI to Gm, and in the GI and  

in the Gm the corresponding nodes and edges have the same 

meta-type, attributes, attribute values and OCL constraints. 

An exhaustively applied rule using external causalities gives 

itself input model and parameters. For an exhaustive rule the 

algorithm has to take into consideration the attribute 

modifications and the generated and deleted elements. An 

exhaustive transformation step must contain either attribute 

modification or element deletion to prevent that the same 

match be found again and again by the matching process. A 

solution can be also if there is a create type causality and an 

OCL constraint which holds before the creation and become 

false afterwards, therefore it prevents to find the same match 

again on the same place. For example an OCL constraint can 
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validate the existence of a neighbor node. In Fig. 2 the 

presented transformation step connects a married and 

unemployed man to a company. The unemployed property is 

checked by the const_employer constraint. After the execution 

of the step in the next iteration the matching process does not 

match the same pattern again because of the not satisfied 

constraint. 

 

 
Fig. 2 An example metamodel and a Create Termination Step 

 

Definition (Create Termination Step – CT Step): A Create 

Termination Step S has only create type internal causalities, it 

contains an optional OCL constraint C1 in S
LHS

, which must to 

stand for the host models matched to the S
LHS

 and as a result of 

the step execution the condition required by the constraint C1 

becomes false.  

Definition (Create Termination Step with constraint C2 – 

CT Step with C2): A Create Termination Step S has only 

create type internal causalities, it contains the OCL constraint 

C2 in S
LHS

, which must to stand for the host models matched to 

the S
LHS

 and as a result of the step execution the condition 

required by the constraint C2 becomes false.  

The difference between a CT Step and a CT Step with C2 is 

that in first case the step can have optional number of 

constraints and an arbitrary one of them has to fulfill the 

condition, while in the second case the given constraint (C2) 

has to comply it. 

Obviously, this rule property is important only for 

exhaustive rules or rules which are in loops, because the 

creation can prevent to find the same match again on the same 

place and it helps to avoid infinite loops. 

 

Proposition: Let the transformation step Si be an exhaustive 

step. If 
RHS

i

LHS

i SS ⊆ and the step Si has a match M on an 

optional input model Gi the step Si never terminates for the 

input model Gi. 

Proof: The step Si has a match M on the input model Gi it 

generates its output (Gi
1
) with the Si

RHS
. 

RHS

i

LHS

i SS ⊆ , 

therefore the Si
LHS

 has match in Gi
1
. The step Si is an 

exhaustive step and it always has match on the result model of 

the previous iteration, therefore the Si never terminates for the 

input model Gi. 

 

Proposition: Let the transformation step Si be an exhaustive 

step which does not contain deletion and modification type 

internal causalities and Si is not a CT step. Assume that T is 

transformation and TS i ∈ , the input model of the 

transformation T is the model G0, and the input model of the 

step Si is the model Gi. If the Si
LHS

 has a match M on model Gi, 

the transformation T never terminates for the input model G0. 

Proof:The step Si is an exhaustive transformation step, it is 

executed as long as the Si
LHS

 has match on model Gi. The Si 

has a match M, which is not modified by the rule – there is no 

deletion, attribute modification and Si is not a CT step –, 

therefore the matching process finds the match M in each 

iteration. The step Si never terminates for the input model Gi 

and T never terminates for the input model G0. 

C. Combining VCFL Transformation Steps 

The goal of the transformation step combination is to create 

a single step SC from optional number of transformation steps 

k1jj ...SS,S
+

. The combined step can equivalently replace the 

original steps, because it produces the same result. In the 

termination analysis we can use the combined step instead of 

the original transformation steps. It facilitates to replace the 

steps contained by a VCFL loop with their combined 

transformation step. The result of the replacement is similar to 

an exhaustive transformation step, with the difference that it 

has a decision object. 

The combination algorithm takes not only the topology of 

the steps into consideration but also their internal- and external 

causalities and the meta-types of the nodes and edges as well. 

The algorithm works based on the double pushout (DPO) 

approach [7] [8]. 

An example for transformation step combination is depicted 

in Fig. 3.  

D. Termination Properties of VCFL Loops 

A loop contains n transformation steps (where n>0) and a 

decision object. A decision object evaluates the assigned 

constraints on the actual host model and based on the results 

selects a flow edge which could be a follow-up or a backward 

edge as well. 

The main difference between a loop with only non-

exhaustive rules and an exhaustive rule is the exit condition. A 

transformation leaves an exhaustive rule if there is no more 

match, while in the case of a loop the decision object 

determines about the exit.  If a loop consists of non-exhaustive 

rules the rule combination algorithm combines them and 

makes the decision about the termination based on the 
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combined rule and the OCL constraints of the decision object. 

 
Fig. 3 An example for transformation step combination 

 

An exhaustive rule is itself a specific loop, therefore if a 

loop contains exhaustive rules then it is a loop of loops. The 

algorithm examines separately the exhaustive rules and if each 

of them terminates then analyses the whole loop. 

 

Proposition: Assume that the transformation T contains a 

loop L, let SC be the combination of the transformation steps 

L...SS,S k1jj ∈+
. The input model of the transformation T 

is the model G0, and the input model of the step SC is the 

model GC. If 
RHS

C

LHS

C SS ⊆  and the step SC has a match M 

on input model GC the transformation T never terminates for 

the input model G0. 

Proof: The transformation step SC has a match M on input 

model GC it generates its output model 
1

C

RHS

C

1

C GSG ⊆| . 

RHS

C

LHS

C SS ⊆ , therefore the SC
LHS

 has match on model 
1

CG . 

The step SC represents a loop and it always has match on the 

result model of the previous iteration, therefore the SC never 

terminates for the input model GC and the transformation T 

never terminates for the input model G0. 

E. VCFL Termination Algorithm 

The pseudo code of the VCFL termination algorithm is the 

following. 

 
VCFLTERMINATIONALGORITHM(Transformation T): retValue 

  1 if T does not contain loop or exhaustive step then return retValue.true 

  2 foreach Transformation Step S in T 

  3    if S is exhaustive and RHS of the S contains the LHS of the S then 

return retValue.false 

  4    if S is exhaustive and S does not contain modify or deletion  and S is not 

an ST step then return retValue.false 

  5 end foreach 

  6 foreach Loop L in T 

  7    combinedStep = COMBINETRANSFORMATIONSTEPS(transformation steps 

of the L) 

  8    if RHS of the combinedStep contains the LHS of the combinedStep then 

return retValue.false 

  9 end foreach 

10 return retValue.undecided 

 

For an optional VCFL transformation T the termination 

algorithm validates the following. 

1. If transformation T does not contain loop or exhaustive 

transformation step then T terminates. 

2. If TS ∈  is an exhaustive transformation step and 
RHSLHS SS ⊆  the transformation T does not 

terminate. 

3. If TS ∈  is an exhaustive transformation step, S does 
not contain delete and modify type internal causalities 

and S is not a CT step then the transformation T does 

not terminate. 

4. If TL∈  is a loop and SC is the combination of the 

transformation steps L...SS,S k1hh ∈+
 and 

RHS

C

LHS

C SS ⊆  the transformation T does not 

terminate. 

If the rule contains create type internal causality, the 

algorithm checks whether the host model with the newly added 

elements contains new possible match places. The algorithm 

takes into consideration the topology, node and edge types 

and, the attributes, the attribute values and also the propagated 

OCL constraints. 

During the combination of steps S1 and S2, the S1
RHS

 and the 

S2
LHS

 could have more than one matching variation. The 

algorithm checks all the possible variations in point of VCFL 

view (external causalities, meta-types). 

In the case of loops the exit conditions (topology, attribute 

value by modify internal causalities and 

SystemLastRuleSucceed) are also checked by the algorithm. 

VTA is an offline algorithm; the termination in many cases 

depends not only on the VCFL transformation model but also 

on the actual host model. A simple constraint could be itself a 

significant difference between two steps or an attribute value 

between two models. The problem is not trivial. There are 

certain cases when the algorithm can make a sure decision 

based on the VCFL transformation, and there are other cases 

when not. 

IV. RELATED WORK 

Many approaches have been introduced in the field of graph 

grammars and transformations to capture graph domains; for 

instance, the GReAT [9] [10], the PROGRES [11] [12], the 

Fujaba [13] [14] and the VIATRA [15]. These approaches are 

specific to the particular system, and each of them has some 

features that others do not offer. 

The GReAT framework is a transformation system for 

domain specific languages (DSL) built on metamodeling and 

graph rewriting concepts. The sequencing of the rewriting 

rules, parameter passing (external causalities) and the 

recursion are similar in GReAT and in VCFL. 

GReAT distinguishes primitive and test rules. The primitive 

rules of the language are to express the steps of the 

transformations. A test rule is a special expression and it is 

used to change the control flow during execution. A test rule 

has only LHS. If a test rule is successful (the matching was 

successful), the rule after the test node is executable. 
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PROGRES is a visual programming language in the sense 

that it has a graph-oriented data model and a graphical syntax 

for its most important language constructs. The control 

structure of the PROGRES has the atomic, the boolean and the 

non-deterministic character. 

Similarly to GReAT, PROGRES also has test rules, which 

have only LHS graphs and test the result of the step but do not 

modify the host graph.  

In FUJABA the combination of activity diagrams and 

collaboration diagrams (story-diagrams) are used to express 

control structures. Story-diagrams are a visual programming 

language that facilitates the specification of complex 

application-specific object structures. Moreover, FUJABA 

extended story-diagrams by statecharts to so-called story-

charts. Story-charts use statecharts and activity diagrams to 

define complex control flows and collaboration diagrams to 

specify the entry, exit, do, and transition actions that deal with 

complex object-structures [14]. 

VIATRA uses abstract state machines to define the control 

flow of the system. 

In [16] a termination criteria for model transformation is 

presented. The criteria is based on dividing the grammar in 

deleting or non-deleting layers. The introduced principles offer 

visual and formal techniques based on rules, in such a way that 

model transformations can be subject to analysis. 

In [17] a contribution towards solving the termination 

problem for rewriting systems with external control 

mechanisms is given. It extends the concept of transformation 

unit to high-level replacement systems. For high-level 

replacement units, several abstract properties based on 

termination criteria are stated and proved. 

V. CONCLUSION 

This paper has provided a control flow technique for model 

transformations based on graph transformations. The 

transformations are represented in the form of explicitly 

sequenced transformation steps. We have shown the 

fundamental concepts of the VCFL approach. 

As it was presented, a control structure language needs a 

sequence as well as a conditional branch mechanism, 

hierarchy, parallel executions and iteration constructs. VCFL 

has all these control structures in a deterministic 

implementation. 

Termination is an important issue for model 

transformations. In this work we discussed the termination 

properties of the VMTS Visual Control Flow Language. We 

stated and proved several termination criteria for 

transformation steps, loops and transformations. An algorithm 

to validate the termination is also provided. 
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