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 
Abstract—Aerospace, mechanical, and civil engineering 

infrastructures can take advantages from damage detection and 
identification strategies in terms of maintenance cost reduction and 
operational life improvements, as well for safety scopes. The 
challenge is to detect so called “barely visible impact damage” 
(BVID), due to low/medium energy impacts, that can progressively 
compromise the structure integrity. The occurrence of any local 
change in material properties, that can degrade the structure 
performance, is to be monitored using so called Structural Health 
Monitoring (SHM) systems, in charge of comparing the structure 
states before and after damage occurs. SHM seeks for any 
"anomalous" response collected by means of sensor networks and 
then analyzed using appropriate algorithms. Independently of the 
specific analysis approach adopted for structural damage detection 
and localization, textual reports, tables and graphs describing possible 
outlier coordinates and damage severity are usually provided as 
artifacts to be elaborated for information extraction about the current 
health conditions of the structure under investigation. Visual 
Analytics can support the processing of monitored measurements 
offering data navigation and exploration tools leveraging the native 
human capabilities of understanding images faster than texts and 
tables. Herein, a SHM system enrichment by integration of a Visual 
Analytics component is investigated. Analytical dashboards have 
been created by combining worksheets, so that a useful Visual 
Analytics tool is provided to structural analysts for exploring the 
structure health conditions examined by a Principal Component 
Analysis based algorithm. 
 

Keywords—Interactive dashboards, optical fibers, structural 
health monitoring, visual analytics.  

I. INTRODUCTION 

ANY critical domains, such as aerospace, civil 
infrastructures, and automotive, take advantage from the 

utilization of composite materials, featured by their unique 
mechanical properties. Indeed, the combination of two or 
more different materials can result in a single composite 
material showing better performances than its constituting 
parts. On the other hand, damage could arise when those 
materials were subject to low/medium energy impacts. In this 
sense, in last decades the critical need of detecting possible 
damage at its early stage has come out in order to cope with 
maintenance reduction costs and, primarily, consequent safety 
issues. SHM aims at detecting, locating, and estimating 
damage in structures at the early occurrence in order to avoid 
unwanted failure. Typically, SHM systems collect, explore, 
and analyze data from structures in order to determine their 
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health status seeking for deviations from known nominal 
conditions. 

Different types of sensors have been exploited in SHM. 
Recently, fiber-optic sensors (FOS) [1] have experienced 
widespread interest, because they are suitable to long cabling, 
that fits well to need of covering critical regions with higher 
risk of damage, for example, over aircraft surface. Optic fibers 
support high density of sensors collecting high volume of data 
though for short recording intervals, and assuring more 
reliable damage identification corresponding to positions 
uncovered by traditional sensors. It is worth underlining that 
damage detection is not as mature as strain sensing, so 
innovative algorithms to detect and locate damage from strain 
are to be conceived [2]. Data-driven methods aim at deriving 
damage information from structure strain response mapping 
by applying different loads: more significant information 
comes from sensors located close to the damage region and 
high-resolution sensor network is required. As an example, 
aircraft monitoring can need hundred meters of optic fiber, 
causing large strain measurement datasets to be analyzed and 
adequate algorithms are to be designed. PCA [3] is one of the 
most pervasive statistical techniques used for SHM. The main 
dynamics of a system can be identified by PCA, removing 
redundant or noisy data. This multivariate statistical technique 
can discover patterns and trends that would otherwise remain 
hidden in the data and reduce the size and complexity of data 
samples at the same time. In [4], the authors proposed a PCA-
based algorithm for skin-stringer debonding detection and 
location using friendly box-and-whisker plots [5] to identify 
outliers. The algorithm was developed using the R statistical 
programming language [6]. 

Source data coming from the strain monitoring system and 
analytical algorithm outputs are typically provided as tables, 
leaving the domain expert bearing the burden of exploring and 
interpreting information about damage identification and 
localization. Effective presentation of hundred rows and 
columns of data can surely help in the task of inferring 
knowledge from tabular data following the Visual Analytics 
lifecycle depicted in Fig. 1. 

SHM can take advantage from improved expressiveness of 
presented analysis results achieved applying Visual Analytics 
techniques. In [7], the combined PCA and box-plot algorithm 
outcomes have been integrated with the Visual Analytics 
approach to let domain experts navigate an image of the 
structural component under test, collecting information about 
occurrence and location of possible damage, corresponding to 
box-plot outliers, and significant strain statistical indices. 
Indeed, available information about the current health state of 
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the structure can be explored by users customizing the 
experience of investigating for patterns, trends, and 
correlations on their own. The VA application was developed 
using Tableau Desktop [8]. 

 

 

Fig. 1 Visual Analytics lifecycle [9] 
 

In the present paper, more information is made available for 
navigation and exploration to the domain expert, integrating 
the collected strain data from the monitoring system within the 
interactive interfaces based on the structure image. In this 
way, the user can intuitively go further in the investigation of 
correlations and patterns connecting source and elaborated 
strain data.  

II. STATE OF THE ART 

Towards the end of nineties, a group of visionary 
researchers guessed the need of an innovative approach for 
data analytics to fill the gap between the existing Information 
Visualization capabilities and the increasing complexity of 
analytical needs emerging in the modern society. 

A strong stimulus to innovative analytical solutions came 
from the dramatic 9/11 events, leading to government 
investments in the National Security domain. In such a 
context, the definition of Visual Analytics as “the science of 
analytical reasoning facilitated by interactive visual 
interfaces” was born in 2005 [10]. Visual Analytics is 
intended as a multidisciplinary research area [11]-[13], 
integrating Data Management and Analysis, Statistics, Spatio-
temporal Data Processing, Visualization, and Human-machine 
Interaction, which aims at providing users innovative 
experiences in exploring and understanding information based 
on meaningful interactions through friendly interfaces.  

The European Union started investing on VA for security 
and safety needs at the beginning of the 2000s as well [14]-
[17]. 

A preliminary timeline of the VA development up to 2012 
can be found in [18], highlighting the expected growth of VA 
domains and applications in subsequent years. In fact, VA 
applications have gone further in many different domains. 

Healthcare is a critical domain featured by a number of 
variables that surpass the limits of human cognition. VA is 

regarded as a valuable key enabler for transforming the 
constantly growing health-related data in actionable 
knowledge [19]. A recent systematic scoping review of VA 
supporting mental healthcare systems is illustrated in [20]. 
Also, relevant commercial vendors as IBM, Tableau, and SAS 
offer solutions for healthcare [21]-[23]. 

Within the aviation safety domain, Boeing [24], [25] has 
investigated the issue of bird strikes over planes using VA to 
analyze the spatio-temporal distribution of incidents, which 
can cause severe damage in proportion of 1:20000 flights. 
Such a safety issue for aviation is also coped using VA 
methods and tools in [26]. 

An application of VA to a civil infrastructure as a bridge is 
discussed in [27] involving IBM Cognos* 8 business-
intelligence software: visualizations of sensor data and 
analytics results support monitoring and interpretation of the 
bridge structure minimizing the required effort by allowing the 
drill down of summarized data. VA has been applied to SHM 
issues recently as well, still within the civil infrastructure 
monitoring: a preliminary approach using parallel axis plots of 
strains data collected by sensors located on a bridge is 
investigated in [28], illustrating the importance of 
visualization in understanding trends and patterns in data. 
Commercial products for the SHM of civil infrastructure have 
been created by Globvision [29], integrating data visualization 
capabilities as well. No VA application to the SHM for aircraft 
structure is known to the authors. 

III. SHM SYSTEM ARCHITECTURE 

In the present work, a Visual Analysis component is 
integrated within the SHM system composed by the structural 
specimen, the strain monitoring system and the PCA-based 
analysis algorithm as sketched in Fig. 2. 

The proposed SHM system has been tested over an 
orthotropic carbon fiber, whose skin has a rectangular shape, 
230 mm long (stringer direction), 350 mm wide and 4.5 mm 
thick. The skin’s laminate is symmetrical and balanced with a 
total number of 24 plies. The panel has been subjected to a 
single 15 J impact, located at the center of the skin, to cause a 
“barely visible impact damage”. Then the panel has been 
excited using an increasing load up to 800 N and the strains 
have been recorded by means of the fiber optic bonded along 
the stringer perimeters, as highlighted by the yellow line in 
Fig. 3. The fiber is 1 meter long and supports 731 sensors with 
an inter-distance of 2.6 mm; the system records strain 
measurements at 40 Hz frequency. 

IV. SOURCE DATA 

A. Data Understanding 

The strain measurements of the current structure, recorded 
by the monitoring system, have been collected as a .xlsx file 
including a sheet containing 371 sensors as rows and 598 
timestamps as columns. Gathered data from just one meter of 
optic fiber recording for less than 3 minutes exceed 2.5 MB. 
Then those measurements have been compared with the 
strains from the healthy structure using the PCA-based 
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algorithm [4], which provides a textual report, using 
Rmarkdown [30], and a .csv file containing some statistical 
indices, the discrepancies between the healthy and current 

structure states projected onto a few selected principal 
components, and the outlier classification. 

 

 

Fig. 2 SHM system architecture 
 

 

Fig. 3 Aircraft panel specimen with fiber optics bonded (yellow line) 

B. Data Preparation 

In order to set fiber optics sensor positions on the image of 
the aircraft panel specimen, the geo-reference of the sensors 
on the picture is needed. So, the coordinate system has been 
defined over the image and the specific sensor coordinates (x, 
y) have been calculated. An enriched .xlsx file of PCA-based 
analysis results is obtained adding two columns reporting the 
(x, y) coordinates of the sensor position. Moreover, 
monitoring data and elaborated analysis results have been 
combined in order to provide to the domain expert an 
integrated approach for information exploration and 
navigation. Source strain data are needed to be transformed 
from the matrix format to fields in a columnar table using the 
pivoting transformation, which replicates the sensor row for 
each value of timestamps; then geo-referenced coordinates of 
sensor positions can be added to the table. Besides, the custom 
data type for DateTime format including milliseconds, suitable 
for scientific data, has been defined over the timestamp 
column to get corresponding time series representation. 

V. VISUAL ANALYTICS APPLICATION 

A. Design 

To design a VA application able to meet the user needs is 
fundamental to address some aspects well illustrated in [9], 
called “the seven essential elements of true visual analytics 
applications”. The objective is to promote exploration, 
analysis, and collaboration beyond simple visualizations, by 

offering querying, exploring, and visualizing as a single 
process. The human brain’s ability to interpreter figures faster 
than text is leveraged by shifting and linking among different 
visualizations. 

It is of fundamental importance to focus on audience’s 
questions, answers to provide, and new potential emerging 
inspired questions. Each visualization has to suit a purpose 
and its content has to be selected coherently as the kind of 
charts as well. Within the charts, the most important 
information is recommended to be displayed over the x-y 
axes, the less important data can be integrated using shapes, 
color, and size. Another important aspect to be taken into 
account is avoiding information overloading in a visualization 
putting too many data in it; it is preferable to link among 
different visualizations so that the user can take advantage of 
the interconnected views profitably. Different charts can be 
combined in dashboards, in which the most relevant 
information is suggested to be available at the upper left 
corner, while charts to be filtered are better located at the 
bottom. No more than three or four charts in a single 
dashboard and presence of legends are considered as good 
design choices. More effectiveness of dashboards can be 
achieved using highlighting and filtering. Exhaustive guides to 
choose all the above listed elements can be found in [31], [32]. 

B. Tools 

The geo-referencing of the aircraft panel picture in .jpg 
format has been realized using the Tableau Drawing Tool 
[33]. It is a web-based utility to allow to draw shapes on either 
user own images or on maps and then output the data for use 
in Tableau. Once the picture is loaded in the tool, the points 
corresponding to the beginning and the end of each of the four 
segments of the optic fiber along the four stringer caps is 
drawn and the associated coordinates are shown as a list that 
can be copied. Starting from the extreme points of each 
segment the coordinates of the remaining sensors can be 
derived using the known sensor inter-distance.  

The VA application for supporting the SHM of the aircraft 
panel specimen has been developed using Tableau Desktop 
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[8], which is one of the most widespread Visual Analytics 
solutions worldwide. It is ranked as the second “Analytics and 
Business Intelligence Platform” for completeness of vision 
and ability to execute in the corresponding Gartner Magic 
Quadrant [34]. Tableau offers many graphs to be combined in 
effective worksheets including filters, highlights, legends and 
parameters and advanced features to create dashboards from 

them. 

C. Worksheets 

Primarily, the worksheet “Strain data table”, in Fig. 4, 
reporting the 371x685 table of source monitored strain data is 
provided so that the user can start using the application from a 
very familiar display. 

 

 

Fig. 4 Strain data table worksheet 
 
The subsequent two worksheets offer the representation of 

the recorded strain both along the whole fiber at different 
timestamps and for each sensor along the monitoring time 
interval. The worksheets have been named “Strain optic fiber” 
(Fig. 5) and “Strain sensor series”. In the former worksheet, 
sensors are positioned as columns and strain data as rows and 
the specific timestamp is represented using a specific color as 
the legend on the right side indicates. Besides, filtering on 
timestamps is provided by choosing time interval on a scroll 
bar in the upper right corner. Moreover, highlighting of a 
specific timestamp that can be selected by clicking on the 
corresponding line on the chart and multiple selection can be 
set using the Ctrl button. Similarly, in the latter worksheet, 
timestamps are positioned as columns and strain data as rows 
and the specific sensor is represented using a specific color as 
the legend on the right indicates. Moreover, filtering on 
sensors is provided by ticking sensor IDs from a list on a 
scroll bar; highlighting of a specific sensor that can be selected 
by clicking on the corresponding line on the chart and multiple 
selection can be set using the Ctrl button. 

The worksheet for the aircraft panel image navigation has 
been created selecting the picture as background from the Map 
menu in Tableau Desktop. The maximum and minimum 
values of the coordinates (x, y) have to be inserted as 

properties using the values elaborated by the Tableau Drawing 
Tool. Then the X, Y dimensions corresponding to the geo-
referenced sensor coordinates are selected as columns and 
rows, respectively. The dimension related to sensor ID is 
inserted as textual information adding coordinates and outlier 
classification from the PCA algorithm. In this way, 
information about the sensor ID, its position and the damage 
evaluation are rapidly prompted moving the cursor over the 
image. Moreover, the outlier classification is introduced as 
filter, so that the user can easily visualize the location of 
possible damage setting the filter to the TRUE value, or the 
aircraft panel parts still healthy setting the filter to the FALSE 
value. In addition, the outlier classification is also shown using 
the red color for TRUE values and the green one for the 
FALSE values. The worksheet has been named as the panel 
code: PNL2-123447 (Fig. 6). 

The differences between the healthy and current structure 
states projected onto the first three principal components and 
the maximum, mean, and minimum strain data are depicted in 
two separate worksheets “Diff1, Diff2, Diff3” (Fig. 7), “MAX, 
MEAN, MIN”, using size to provide information about the 
outlier classification outcomes: bigger circles stand for TRUE 
values, smaller ones represent FALSE values. In addition, 
three worksheets “Box-plot Diff1”, “Box-plot Diff2”, “Box-
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plot Diff3” representing the box-plots for differences between 
the healthy and current structure states projected onto the first 

three principal components are built, visualizing outlier 
classification outcomes using red and green colors.  

 

 

Fig. 5 Strain optic fiber worksheet 
 

 

Fig. 6 Panel PNL2-123447 worksheet 
 

Unfortunately, the integration of R scripts into Tableau is 
limited to aggregated measures so it was not possible to 

integrate into Tableau the parametric box-plot whiskers 
calculation as defined in [7]. Consequently, users can easily 
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verify that the PCA-based algorithm exploits stricter 
conditions over the outlier definition with respect to standard 

box-plots. Indeed, red points occurred between the standard 
lower and upper whiskers as well. 

 

 

Fig. 7 Diff1, Diff2, Diff3 worksheet 

 

Fig. 8 Strain data dashboard 
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Fig. 9 Panel Box-plots dashboard 
 

 

Fig. 10 Source and Post-processing data charts dashboard 
 

Within each worksheet, the user can get information about 
data moving the cursor over the charts so that tagged 
information is immediately prompted. Besides, the user can 
export selected data on a chart as .csv file for further 
investigation.  

D. Dashboards 

The worksheets have been assembled in interactive and 

integrated dashboards aiming at providing to user navigation 
and exploration of available information offering different 
points of view. 

To introduce the users to the VA approach, the dashboard 
“Strain data dashboard” (Fig. 8) containing the source data 
table and the strain data both for the whole optic fiber at a 
fixed timestamp and for each sensor during the whole 
monitoring time interval is developed. The user can point to 
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detailed cells in the table to highlight corresponding 
information on the charts. 

 

 
 

 

Fig. 11 Panel Diff1-2-3 dashboard 
 

The dashboard “Panel Box-plots Dashboard” (Fig. 9) lets 
investigate the outlier classification navigating the aircraft 
panel image, so that the user can easily associate information 
related to possible damage location and health discrepancy of 
the current state of the structure with respect to the nominal 
state. In this way, precious feedbacks from the domain experts 
about the algorithm estimates can be derived. In addition, the 
“Source and Post-processing data charts dashboard” (Fig. 10) 
including source strain data, post-processing discrepancies 
between current and nominal structure states, and statistical 
indices has been created to let the user compare information 
from raw and elaborated data. The “Panel strain data 
dashboard” prompts similar comparison raw data vs 
elaborated data but using the navigable aircraft panel picture. 

The last two dashboards “Panel Diff1-2-3” (Fig. 11), “Panel 
MAX MEAN MIN” show the integration of the panel image 
and the charts of discrepancies between current and nominal 
structure health states and of maximum, mean, and minimum 
values of strain data, both for each sensor. The outlier 
classification is represented using adequate colors. So, the user 
can focus on details selecting single sensors or portion of fiber 
both on the image or on the charts, getting the corresponding 
information rapidly highlighted. 

VI. CONCLUSION 

The present work represents an approach of integrating VA 
in the SHM of aircraft structures. Easy-to-use interactive 

interfaces are provided to explore source strain data and 
analytical algorithm outcomes in an integrated manner, taking 
advantage of intuition coming from the navigation of the 
structure image. 

Future work could investigate other VA environments than 
Tableau to overcome the limited integration between R and 
Tableau based exclusively on Calculated Fields corresponding 
to aggregated data. 

It is worth underlining that the approach proposed in the 
present paper can be helpful for SHM whatever specific 
analysis technique is used to detect possible damage 
comparing healthy and current states of structures. In this 
sense, the VA module integration can be extended to other 
SHM solutions than the one using the PCA-based algorithm 
elaborated by the authors. 

In end, further advancements could be achieved 
investigating the application of augmented analytics to the 
SHM issues, to assist a wider audience with data preparation, 
insight generation and insight explanation to augment how 
people explore and analyze issues in analytics for SHM. 
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