
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

562

Abstract—Proprietary sensor network systems are typically

expensive, rigid and difficult to incorporate technologies from other
vendors. When using competing and incompatible technologies, a
non-proprietary system is complex to create because it requires
significant technical expertise and effort, which can be more
expensive than a proprietary product. This paper presents the Sensor
Abstraction Layer (SAL) that provides middleware architectures with
a consistent and uniform view of heterogeneous sensor networks,
regardless of the technologies involved. SAL abstracts and hides the
hardware disparities and specificities related to accessing,
controlling, probing and piloting heterogeneous sensors. SAL is a
single software library containing a stable hardware-independent
interface with consistent access and control functions to remotely
manage the network. The end-user has near-real-time access to the
collected data via the network, which results in a cost-effective,
flexible and simplified system suitable for novice users. SAL has
been used for successfully implementing several low-cost sensor
network systems.

Keywords—Sensor networks, hardware abstraction, middleware
integration platform, sensor web enablement.

I. INTRODUCTION
plethora of sensing technologies has appeared with the
emergence of sensor networks. Because of hardware

incompatibilities and a lack of standards, difficulties have
arisen in the ability to integrate multiple sensing devices from
different manufacturers within the same network. While each
technology has its own benefits, there is a strong motivation
for a user to be able to mix these technologies within the same
architecture to make the most of their respective strengths.
This parallels the problems faced by early operating systems
where users demanded the ability to attach peripheral devices
(i.e., mouse, keyboard, printer, joystick, etc.) from competing
vendors without the need to have to engage in a complicated
configuration process. One of the best approaches towards
achieving the goal of a plug’n’play sensor network is to use a
middleware solution.

Middleware refers to software that sits between the
hardware and the higher-level application software and it
facilitates the communication between these different

J. Trevathan is with the School of Information and Communication

Technology, Griffith University, Brisbane, Queensland, 4111, Australia
(phone: 6107 3735 5046; e-mail: j.trevathan@griffith.edu.au).

T.S. Myers is with the School of Business (Information Technology),
James Cook University, Townsville, Queensland, 4811, Australia (phone:
6107 4781 6908; e-mail: trina.myers@jcu.edu.au).

technologies and systems. Sensor and instrument middleware
is an active research area [1]-[9]. The main requirement is that
middleware must be generic and not tied down to specific
sensor/instrument technologies (to reduce costs). Commonly,
hardware abstraction is fully integrated with the middleware
software [10].

This paper proposes the Sensor Abstraction Layer (SAL) –
a unique platform for developing low-cost heterogeneous
sensor networks. SAL allows a sensor network to use
technologies from multiple vendors to create a purpose-built
and typically less expensive system. SAL is a middleware
integration platform [11], which manages and abstracts
communications and interactions with sensor hardware. In a
middleware stack, SAL sits at the bottom, close to the sensors
it manages, and proxies all communications with these sensors
(Fig. 1). The upper middleware layers rely on the generic
interface provided by SAL to access and control sensors. This
interface can be used without the knowledge of technology
specifics, provided that sensor technologies device plug-ins
are registered with SAL (analogous to attaching a peripheral
device to a personal computer).

Fig. 1 The SAL Software Model

There are no existing solutions that support the creation of

low-cost heterogeneous sensor networks in current literature.
Therefore, the concept underpinning SAL is novel. SAL has
been successfully trialled in a sensor network system that was
deployed on the Great Barrier Reef [12]. SAL is also being

A Unique Solution for Designing Low-Cost,
Heterogeneous Sensor Networks Using a Middleware

Integration Platform
Jarrod Trevathan, Trina Myers

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

563

employed by the Smart Environmental Monitoring and
Analysis Technologies (SEMAT) sensor network system [13],
[14]. Finally, SAL is being used for a "smart home" initiative
to monitor household energy consumption. In each case, SAL
was able to create a sensor network system that was
dramatically less expensive than existing generic proprietary
solutions.

This paper is organised as follows: Section II provides
background on existing sensor network middleware solutions
and emerging standards. Section III gives an overview of
SAL’s functionality and internal architecture. Section IV
describes how SAL is used to manage a sensor network with
heterogeneous technologies. Section V discusses the XML
standards and sensor technologies supported by SAL. Section
VII describes sample applications where SAL has been
successfully used. Section VIII provides some concluding
remarks and avenues for future work.

II. RELATED WORK ON MIDDLEWARE AND SENSOR WEB
ENABLEMENT STANDARDS

A. Sensor Network Middleware
There have been various proposals for constructing sensor

network middleware. The following describes some of these
proposals.

Cougar Bonnet et al. [15] adopts a database approach
where sensor readings are considered to be in "virtual''
relational database tables. An SQL-like query language is
used to issue tasks to the WSN. First concrete experiments
show that even very simple protocols and algorithms can
exhibit surprising complexity at large scale.

Mate´ is an architecture for constructing application-
specific virtual machines that executes on top of TinyOS [5].
Developers can easily change instruction sets, execution
events, and virtual machine subsystems using this architecture.
Mate´ provides a simple programming interface to sensor
nodes. For example, a sense-and-send program can be written
with six instructions.

Impala is a middleware designed for use in the ZebraNet
project, supports control in the application itself by exploiting
mobile code techniques to change the functionality of the
middleware executing at a remote sensor [6]. The key to
energy efficiency for Impala is for the sensor node
applications to be as modular as possible, enabling small
updates that require little power during transmission.

MiLAN (Middleware Linking Applications and Networks)
has an architecture that reaches the network protocol [3].
MiLAN is intended to sit on top of multiple physical
networks. It acts as a layer that allows network-specific plug-
ins to convert MiLAN commands to protocol-specific ones
that are passed through the usual network protocol stack.
Therefore, MiLAN can continuously adapt to the specific
features of whichever network is being used in the
communication.

Mires is a publish/subscribe middleware with the goal of
reducing the overhead of passing messages up through the

network [8]. Mires takes a message-oriented approach due to
the low availability of resources and processing capacity of
sensor nodes. Applications can subscribe to data sources (i.e.,
sensors). When information becomes available, a data source
publishes it and all subscribers are then free to view the data.

Hasiotis et al. [11] take a high-level approach, where a
sensor network is regarded as a source of information similar
to a relational database. The generic API offers abstracted
methods to query devices and to locate them. However, there
is no support for automated detection and sensor-specific
features. Handziski et al. [16] present the Hardware
Abstraction Architecture (HAA), which uses a three-layered
software stack that is implemented on MSP430 embedded
platforms running TinyOS1. The bottom layer deals with raw
hardware and offers a basic set of methods. The methods
become more and more generic towards the top layer. To deal
with the many hardware disparities, HAA maintains a
complex set of interfaces and a versioning system, and resorts
to software emulation to compensate hardware deficiencies.

The Linked Stream Middleware (LSM) initiative [17] is a
platform that brings together the live real world sensed data
and the Semantic Web in a unified model. The LSM provides
an extensive range of functionalities: different wrappers to
access stream sources and transform the raw data into linked-
stream data; data annotation and visualisation; and live
querying over unified linked data.

The challenges in designing and implementing WSN-
middleware include the conflict between distributed
computing and embedded sensor devices, the degree of
application-specific requirements, and the Quality of Service
(QoS) [18]. Distributed computing should support scalability,
reliability and heterogeneity when designing dynamic network
topologies. To support and optimize a broad range of
applications, may lead to compromises in functionality versus
efficiency. The QoS of various applications must be
considered because the limited resources affect the
performance requirements of all running applications [18].
Here we discuss the development of SAL and the alignment to
these challenges.

B. Sensor Web Enablement (SWE)
The Open Geospatial Consortium (OGC) Sensor Web

Enablement (SWE) group [19] are developing common
standards to:
• Discover sensor systems observations and observation

processes;
• Determine a sensor's capabilities and quality of

measurements;
• Access sensor parameters, allowing software to process

and geo-locate observations;
• Retrieve real-time or time-series observations and

coverage in standard encodings;
• Task sensors to acquire observations of interest; and
• Subscribe and publish alerts issued by sensors or sensor

1 http://www.tinyos.net/

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

564

devices based on certain criteria.
This common interface is achieved by developing a

standard XML-based web service that can be invoked in either
a REST or SOAP/WSDL methodology. The goal of providing
a web service interface is to create a SensorWeb, and to begin
standardizing the discovery and communication protocol
between various heterogeneous sensors. The process begins
with sensors seamlessly integrating other sensors together into
a global network.

Where possible, SAL’s architecture adheres to the SWE
standards to harness the aforementioned desirable qualities of
a sensor web enabled system.

III. OVERVIEW OF SAL

A. Design Goals
The design goals for SAL are as follows:

• Create a simplified middleware architecture, which allows
the sensors to be more “portable” by removing
technology dependent code [2];

• Create a low-overhead split design, which allows SAL to
run on limited processing-power embedded platforms;

• Provide guaranteed compatibility and interoperability
with future middleware technologies by using emerging
standards as defined by SWE;

• Provision for basic data processing, sensor auto-discovery
and configuration, and local caching of data to account
for unreliable network links;

• The ability to turn any source of information into a virtual
sensor (or “pseudo sensor”), which is fully integrated into
the rest of the sensor network;

• Provide a two-way communication channel with sensors
so sensor-specific commands can be issued and their
results collected and passed up the hierarchy;

• Provide remote real-time control over sensors and near-
real time streaming of data collected from sensor devices;
and

• Create an inexpensive alternative to proprietary systems
with the ability to mix and match hardware from different
vendors, and the capacity to run on commonly available
computing devices with limited computational
capabilities.

For the purposes of this paper, SAL is written in Java and is
implemented on a Linux-based operating system.

B. SAL Functionality
The functionality provided by SAL can be grouped in three

distinct categories:
1. Hardware management;
2. Hardware discovery; and
3. Hardware control.

Hardware management functions allow users to manage
sensor networks under SAL’s supervision. Typical
management tasks include adding and removing sensors,
editing and changing a sensor's configuration, and setting up
special channels for real-time reports on hardware status.

Hardware discovery functions allow users to express search
queries to find sensors matching a specific criterion. To this
end, SAL maintains a SensorML document for each sensor
(see Section V A). These documents are used to resolve
lookup queries (among other things). Hardware discovery
functions are also used to find out about hardware capabilities
(such as sensor nodes and gateways).

Hardware control functions allow users to pilot sensors
(i.e., control/operate sensors). SAL enhances sensor
capabilities by providing transparent support for any sensor-
specific commands. To achieve this, SAL encapsulates sensor-
specific commands into generic ones. Generic commands
have a unique format, which is sensor-technology
independent. This way, users wanting to pilot a sensor need
not worry about the sensor technology of the node. They only
need to invoke a generic command and SAL will then
translate it into the appropriate sensor-specific one.

C. The Client/Agent Architecture
SAL’s software is divided in two separate parts to produce

an efficient and scalable application capable of running on
resource-limited sensor gateway platforms:
1. A SAL agent; and
2. A SAL client.

An agent connects directly to the sensor hardware. The user
interacts with the client (via a user interface) to control and
receive data from the agent. There can be potentially many
agents within the system each controlling its own set of sensor
devices. There is a one-to-many relationship between a client
and agents. A single client can manage and support multiple
agents, but an agent can only be managed by one client (Fig. 2
(A)).

1) SAL Agents
The SAL agent runs on the sensor gateway platform. This is

the core feature of SAL, which implements only essential low-
level sensor-access related functions. The agent handles the
details involved in communicating with the hardware and
must therefore have the appropriate software stack required to
establish this communication. In a typical scenario, an agent
registers a client on start up. It then waits for sensor
commands from the client, executes them and returns a result.
The agent setup is suitable for operation on low-powered and
low-cost computer devices.

Figs. 2 (B) and (C) illustrate the extended scenarios that the
agent/client setup up offers. Each agent can have its own array
of heterogeneous sensor technology for which it is
responsible. In turn, the client can control multiple agents,
each of which can be different types of computing devices
with different hardware specifications (Fig. 2 (B)).
Alternately, agents can in turn be used as intermediate sources
of information where one agent treats another agent as if it
was a sensing device in its own right (Fig. 2 (C)). This is
useful in the situation where an intermediary device with
higher computational power or expensive communications
capabilities is required to temporarily store and retransmit data

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

565

on behalf of less capable devices.

Fig. 2 Scalable SAL Hierarchy involves: (A) one-to-many relationships between one SAL-client and many SAL-agents; (B) clients can control

multiple agents, each with different types hardware specifications; and (C) agents can be intermediate sources of information

2) The SAL Client
The SAL client is the user-visible part of SAL. A user can

interact with the client via a Graphical User Interface (GUI) or
a text-based interface. Essentially, the SAL client is a library
of functions, which can be invoked to trigger specific actions
on sensors managed by an agent. The following high-level
features have been implemented in the SAL client in order to
keep the agent lightweight (in terms of storage and
computation requirements):
• The client is responsible for scheduling access to sensors.
• Multiple concurrent accesses to the same sensor must be

coordinated. To reduce the load and request processing
time on the agent merging multiple requests into a single
one is sometimes required. The client then duplicates the
generated response as many times as required.

• A SAL client also provides sensor search-related
functions. Search queries can be sent to an agent to find
sensors matching specific criteria. The SAL client can
offer basic quality checking and data processing
functions. For example, checks can be performed on the
raw readings given by a sensor to ensure the reading is
valid.

• A client can also process raw readings to extract results
that are more meaningful. Information about data
processing and quality checking is sensor-specific and is
stored in that sensor’s SALSensorML document
(explained further later).

3) Local/Remote Agents and Communications
There are two scenarios for the placement of agents within

the SAL system: local and remote. Firstly, an agent may be
local in that the agent and client are both contained on the
same device. A local SAL agent instance on a sensor gateway
runs in its own Java Virtual Machine (JVM). The SAL agent
interface (SAL API) is only available in that JVM. To use the

interface, a client application must be run in the same JVM as
the agent. This approach has the added advantage of low-
overhead method calls and low latency. Alternately, an agent
may be remote in that the agent and client are running on
different independent computing devices. A remote SAL
agent is an instance of a SAL agent whose interface has been
exported using Java Remote Method Invocation (RMI). All
methods in the SAL API of a remote agent can be called from
a separate JVM over a network connection. In reality, many
sensor networks may be a hybrid potentially containing at
least one local agent and multiple remote agents.

The client and agents communicate over the network using
User Datagram Protocol (UDP). UDP is a connectionless
protocol and its datagrams are more compact than the
alternative connection-oriented Transport Control Protocol
(TCP). UDP is suited to SAL as there is no requirement for
the reliable transport of data that is offered by TCP, which
introduces high overhead and use of bandwidth. As agents and
clients communicate over possibly long distance unreliable
network links, agents constantly monitor the state of their
connections with the client. The agent stores all data locally if
the client becomes unreachable. When network connectivity is
re-established, the cached data is uploaded. The cache is then
flushed of any outstanding or incomplete data.

4) Use Case
A typical SAL use case is as follows:

1. A SAL client creates an instance of a local SAL agent or
obtains a reference to a remote agent via the RMI proxy.

2. Whether local or remote, the SAL agent interface is
implemented by both references returned by the RMI
proxy.

3. The client may want to subscribe to specific events (such
addition/removal of sensors).

4. The client obtains a list and description of sensors

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

566

managed by the agent to save a couple of method
invocations just to stay up-to-date.

5. Loop over the following steps:
a. The client identifies which sensor to control and asks the

agent for a list of capabilities supported by that sensor.
This list is merely a collection of commands (and their
descriptions) that can be sent to the sensor to trigger a
pre-determined behaviour.

b. The client picks a command and instructs the agent to
execute it.

6. The result of the command is sent back to the client.
7. Just before exiting, the client releases the SAL agent and

then terminates.

IV. PILOTING SENSORS
This section explains how different sensor technologies are

abstracted by SAL so that sensor network software can be
technology-independent. How the generic methods in the SAL
API can be translated into sensor-specific ones are shown.
The low-level details of the hardware communication and
control are explained, and then the abstraction process. Then,
a detailed description of a SAL agent’s software layers is
given. Lastly, SAL’s automated sensor detection features are
discussed.

A. Accessing the Hardware
From a sensor gateway’s point of view, enabling

communication with sensor nodes can be broken down into a
series of steps. This modular approach gives SAL the
flexibility to support newer technologies.
• A sensor node typically connects to a computer through a

special controller called a native controller. The native
controller is responsible for “translating” the sensor’s
electrical interface into that of the computer’s I/O port (an
I/O port can use a wireless communication medium).

• Sensor devices based on the same underlying technology
share the same electrical interface. The interface defines
the required communication medium, how many pins the
sensors contain, how the pins are used. The electrical
interface also specifies what the resulting topology looks
like if multiple sensors can share the same communication
medium.

• Access to an I/O port and its connecting physical medium
is managed by the port controller. The controller
translates the port’s electrical interface to that of the data
bus, connecting the computer's main components (e.g.,
RAM, CPU, etc.). Typical I/O ports can be used to attach
sensor trees. This includes serial, parallel, FireWire, USB,
Ethernet, PCI, i2c and GPIO ports, which are hardware
endpoints that allow bits of information to be sent and
received over a physical medium.

Notably, this model applies to both wired and wireless
sensor nodes. Wireless sensor networks also have their own
data sinks, which, typically, can either be network-reachable
and queried using a high-level protocol (such as SNMP,
HTTP or FTP), or connectable directly to a sensor gateway

through an I/O port. This model communicates with a sensor
node because the software stack (SAL with the operating
system) needs to know how to communicate with all
controllers involved. This function is handled by separate
software layers in one of the following three ways:
1. The operating system kernel usually includes drivers for

common I/O port controllers found on recent platforms;
2. Software code to pilot native controllers can either be

included in the kernel (in the form of a driver); or
3. They can be implemented as a user-space application or

library of functions.
Regardless of which form of controller, a native controller

driver relies on interfaces and methods provided by I/O port
controller drivers in the kernel.

The task of sending a generic command (as provided by the
SAL API) to a sensor and reading its response is divided into
multiple logical blocks. The following four steps are required:
1. The generic command must be translated into a native

command the sensor understands.
2. The native command is passed on to the native controller

driver, which encapsulates it using the appropriate
protocol.

3. The resulting data unit is passed on to the port controller
driver.

4. After further encapsulation, the I/O port controller
physically transmits the data to the native controller over
the physical medium as a series of bits.

The process happens in the opposite order when a sensor
generates a response.

Fig. 3 Software Layers in SAL

B. Sensor Abstraction
Abstracting and hiding hardware-specific details is a

complex task. Fig. 3 illustrates how the work is divided
among three software layers. The top Agent layer is a simple
layer, mainly responsible for handling the communication
with SAL clients. It receives packets, parses them, calls
appropriate methods in the underlying communications layer,
and sends back a response containing the results of the call.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

567

The Agent layer also maintains the state of connections with
the SAL client, which allows ongoing data streams to be
stored in the local cache (also implemented at this level) when
network disruptions occur.

The job of the Communications layer is twofold, it provides
hardware management methods to configure and set up
hardware parts and it provides hardware control methods.
These methods translate a generic command (as provided by
generic methods in the SAL API) into one that can be
transmitted to and understood by a sensor’s native controller
(referred to as a native command).

To achieve this, the Communications layer is divided into
two sub-layers, the Abstraction sub-layer and the Protocol
sub-layer. The Abstraction sub-layer acts as an adapter layer.
It implements generic methods matching the set of generic
commands provided by SAL. Each generic method then calls
appropriate sensor-specific methods provided by the
underlying Protocol sub-layer to carry out the tasks set in the
generic command. In contrast, the Protocol sub-layer is
sensor-dependent because it implements the native
communication protocol used to “talk to and address” native
controllers and their attached sensors. Software code at this
layer is usually provided by a third party (e.g., the device
vendor, an open source project, etc.), although it could be
implemented from a specification document in a homemade
software block when the communication protocol is trivial
(serial devices for instance). When a generic command is
received, the SAL Agent layer parses it and calls the
appropriate abstraction layer method matching the generic
command. The abstraction sub-layer acts as an adapter to the
protocol layer and translates SAL generic methods into
sensor-specific ones.

At the bottom of the stack is the EndPoint layer. This layer
is tightly coupled to the I/O hardware ports available on the
gateway. This layer takes care of transporting the sensor
native commands (as produced by the Protocol sub-layer) to
the native controller. Software code at this layer is normally
included in the operating system kernel, and SAL only needs
to make sure it is available and properly configured.

Fig. 3 illustrates the concept of Logical port. A Logical port
combines an endpoint, a protocol, and its abstraction. This
port groups the data structure and methods used to
communicate with a sensor tree under a single element. Each
sensor is associated with a Logical port. SAL uses the Logical
port’s generic methods to communicate with the sensor.

1) Advantages of the Abstraction Approach
Splitting the task of communicating with sensors presents

three main advantages: decreased configuration effort,
layering to promote independence of tasks, and remote
accessibility. These stem from the fact that the aforementioned
layers naturally follow the hardware and software boundaries
existing in a Linux operating system.

Firstly, the amount of effort required to add support for a
new instrument technology is minimal and is only a matter of
creating a Logical port; the EndPoint layer software is found

in the kernel. Software at the Protocol layer, which is specific
to sensor technology, is widely available, usually in the form
of device drivers, user-space libraries or programs. At the
Abstraction layer, a simple adapter must be written to wrap
the protocol layer software and provide generic methods.

The amount of code required to write for a new technology
only depends on how many generic methods are exposed by
SAL. In very few cases, there is no pre-existing protocol-level
software because a trivial one can be easily created from the
device’s specifications. Here, a homemade implementation
spans both the Protocol and the Abstraction layers. This
implementation provides a SAL generic interface (Abstraction
layer) and translates them into direct calls to the low-level
function in the EndPoint layer. Communications over serial
ports are an example where an implementation can be written
to fill in the gap.

Secondly, configuring the logical ports is made easier
because each layer carries out specific tasks independently of
each other. Each EndPoint and Protocol block in a logical port
has its own parameters that control communications. These
parameters are described in a document referred to as a
platform configuration document (see Section V C).

Finally, this model allows literally any source of
information accessible to the platform (remotely controllable
or not) to be turned into an instrument manageable by SAL.
These are referred to as pseudo sensors. For example, SAL’s
communication layer includes support for the Simple Network
Management Protocol (SNMP) so that objects managed by an
SNMP agent appear as sensors. In the same fashion, operating
system state information such as load average,
idle/system/user time and free memory is also made available
in the form of pseudo-sensor fully integrated with the rest of
the network.

C. Automated Sensor Detection
Runtime automatic sensor detection and configuration (also

known as hot-plug) is highly hardware dependent. One direct
consequence of the communication model explained in the
previous subsection is that sensor auto-discovery is possible
only when both port and native controllers allow it.

Some I/O ports, such as USB and IEEE 1394/Firewire,
support hot-plug natively without the need to reboot the
platform. Newly connected native controllers are detected and
reported by the operating system. In most cases, if a driver is
available, it will also be loaded in the operating system. Some
other I/O ports support hot-plug but do not advertise
connected devices (serial ports for instance), while other I/O
ports may require the platform to be restarted altogether (e.g.,
PC104 ports).

Depending on the native controller (and therefore on the
sensor technology too), SAL may not yet be able to use the
newly connected sensors. Some sensor (1-wire sensors for
instance) advertise themselves so they can effectively be
discovered by SAL and used straight away. However, others
(e.g., analogue sensors connected to a LabJack I/O USB
converter) cannot be discovered since the native controller

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

568

(i.e., the LabJack interface) does not allow sensor polling and
discovery. In this case, manual intervention is required in

order to use the sensors.

Fig. 4 Logic for New Sensor Discovery

To conclude, only some sensing technologies have support

for full sensor auto-discovery, which is an advanced feature
that is heavily hardware dependent. When a new sensor is
connected to an existing logical port, if the native controller is
unable to advertise it, then SAL must be configured manually
with the new sensor information before it can be used. If the
native controller is able to advertise the new sensor, then it
can be detected and used straight away by SAL. Fig. 4
illustrates the logic for auto discovery of sensors. Further
refinement of auto discovery remains the focus of future work.

V. SENSOR WEB ENABLEMENT AND SAL XML STANDARDS
SAL abstracts the multiple heterogeneous sensor

technologies and interfaces under a single generic API. To
achieve this, there is a need for common ways of describing
two important actors in the architecture – sensors and
hardware platforms. Most of the time, users (and developers)
have no knowledge of functions and features supported by
various sensors and sensor gateways. SAL must have a
standard way to convey information about a sensor's name,
capabilities, supported commands and generated readings. In
addition, the sensor gateway's hardware capabilities and
current configuration also need to be specified in a standard
format to facilitate automated configuration.

The mark-up languages described in this section fulfill this
role: SALSensorML is used to describe sensors;
CommandML is used for sensor command descriptions; and
PCML describes capabilities and features supported by a
platform, and its current configuration.

A. SALSensorML
The purpose of a SALSensorML document is to model

processes by which sensors transform observable phenomena
to data [1]. SAL uses the information contained in a

SALSensorML document, for example, the valid range of
readings to provide basic quality checks. Furthermore, SAL
extends the OGC SWE SensorML standard with its own
specific tags.

The goal of a SensorML document and its SAL extension is
to provide SAL with the information required to:
1. Find a Sensor: All sensors can be referred to using their

unique identifier. This allows sensors to be found
anywhere in an architecture with multiple SAL agents,
regardless of their location.

2. Address a Sensor: SAL must translate the sensor's unique
identifier into the sensor’s native name to explicitly
define the address. This is possible because a SensorML
document provides a mechanism to match a unique
identifier to a native name.

3. Send Commands to a Sensor: All commands supported by
a sensor are listed in a CommandML section. Each
command is listed along with a description of its input
and output parameters.

SAL extends SensorML with the following:
• Unique Sensor Identifier: a SAL-generated string, which

unambiguously identifies sensors. A three-level
hierarchical namespace is used to ensure unicity.

• Native Sensor Addressing Information: SAL needs
information on how to address a sensor in its own native
naming scheme. The required information depends on the
sensor. Some sensor technologies provide sensors with
unique names (e.g., 1-wire and SNMP sensors for
instance), while some others do not (such as LabJack
sensors). Native addressing information are used for the
following examples:

1. SNMP Sensors: SAL needs to know the SNMP agent
(identified by its IP address), the object identifier of the
element, and any other SNMP parameters required (such

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

569

as the community string, etc.).
2. 1-Wire Sensors: SAL needs the 1-wire address of the

sensor (and possibly the sensor on the 1-wire bus).
3. LabJack Sensors: SAL uses the LabJack connector name

to refer to the connected sensor.
• Sensor commands: a list of commands supported by this

sensor in CommandML.

B. CommandML
CommandML (CML) documents provide a common

description, arguments and results of all the commands
supported by a sensor and tie SAL generic commands to
sensor-specific commands. Users who wish to pilot to find out
about a particular sensor’s capabilities typically retrieve the
sensor’s CML document. The document allows them to create
semantically correct commands that can be sent to a SAL
agent for execution. A CML document is technology-specific
and is generated from a template by SAL’s communication
layer when a new sensor is added. The sensor can then be
customised by the instrument owner.

C. PCML
Platform Capabilities and Configuration Markup Language

(PCML) provides the language used to report and describe
hardware platforms, which facilitates SAL’s hardware
management functions. SAL manages a wide variety of
sensors so a common format to represent a platform’s
hardware and software capabilities is required. The purpose of
a PCML document is to describe the hardware and software
setup of a platform. The hardware capabilities are reported as
a list of supported EndPoints and protocols. All possible
configuration settings and associated values of the hardware
are also listed. The hardware configuration document is
similar to the previous one and reports a list of EndPoints and
protocols, along with their current configuration settings.

D. Currently Supported Sensor Technologies
Table I lists the sensor technologies that are presently

supported by SAL. That is, device drivers have been created
that allow these sensors to work with the SAL system.
Notably, this list will grow, as SAL is further developed to
support new technologies based on the needs of the sensor
network deployments that currently use SAL (described in
Section VI).

VI. REAL WORLD SAL IMPLEMENTATIONS
This section describes three real-world sensor network

applications where SAL is currently deployed and is being
used for further development of sensor network systems.
These applications provide evidence for the versatility,
suitability and cost-effectiveness of SAL in designing non-
proprietary sensor networks. Table II provides an overview of
the technical specifications for the three projects and a
comparison of the costs.

TABLE I
SENSOR TECHNOLOGIES CURRENTLY SUPPORTED BY SAL

Instrument Connection Plug-in
name

Sensor
auto-

detection

Adapter
auto-

detection
Operating

system data
Local

filesystem
OSData
Protocol

Yes Yes

SNMP devices Ethernet SSNMP
Protocol

Yes No

1-wire sensors USB exp. Owfs
Protocol

Yes Yes

V4L video
sources

Any (relies on
local

filesystem)

V4L
Protocol

Yes Yes

Ambient
Systems

wireless sensor
nodes

Serial AS
Protocol

Yes No

Gumstix USB / Serial - -
Java SunSPOT USB SALSpot Yes Yes

Odyssey USB / Serial Ody
Protocol

Yes Yes

TABLE II

TECHNICAL SPECIFICATIONS AND COST COMPARISON
Project Hardware Sensors Scale Cost
Davies
Reef

Single Board
Computer

Light, temperature Small $995

SEMAT Gumstix Overo
Air COM

Light, temperature,
pressure, salinity

Medium
– large

$4,000
per
buoy

Smart
Home

Seeeduino Stalker,
personal computer

Temperature,
humidity

Small -
medium

$100

A. Davies Reef
A prototype of SAL was implemented and deployed on a

single board computer to manage a network consisting of 30
sensors at Davies Reef [12]. Davies Reef is part of the
Australia’s Great. Barrier Reef located in North Queensland.
The SAL prototype was used as a proof of concept, mainly to
validate the network model used by SAL and the hardware
abstraction. In this scenario, SAL managed sensors relying on
four different technologies: 1-wire devices (temperature and
humidity sensors), a serial device (battery charge controller),
an SNMP device (microwave link modem) and pseudo
sensors (OS status). The system cost $995 AUD.

B. Smart Environment Monitoring and Analysis
Technologies (SEMAT)

The Smart Environment Monitoring and Analysis
Technologies (SEMAT) project is driven by the need to create
a low cost intelligent sensor system for undertaking
environmental measurements and monitoring activities [13],
[14]. SEMAT has been deployed for monitoring aquatic and
coastal environments. The analysis of the collected data has
been transformed into information that can be used for
management and planning. The specific goals for SEMAT
include: underwater wireless communications, short-range
wireless power transmission, plug-and-play of sensor
technologies, minimal deployment expertise, near real-time
analysis tools and intelligent sensors (refer to [14] for further
information).

SAL formed a core component of two SEMAT

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

570

deployments that took place in Deception Bay and Heron
Island in Australia during 2011 and 2012 respectively. During
both deployments, five buoys were developed, each running a
Gumstix Overo Air COM (Computer On Module). Odyssey
data loggers where integrated into the system via the use of a
SAL plug-in and seven data streams where recorded per buoy
(temperature, light, pressure and salinity – at varying vertical
profiles). A buoy cost approximately $4,000 Australian
dollars to construct with sensors accounting for 45% of this
total.

The two SEMAT deployments illustrate how SAL can be
used successfully to prototype sensor network designs and
create low cost sensor networks using heterogeneous
technologies (i.e., different sensor types and hardware).
Several future large-scale SEMAT deployments are planned
for monitoring the health of waterways around resort islands
in Fiji and Vietnam’s Mekong Delta. For these deployments,
SAL will be expanded with further sensor technologies of
differing types, vendors, precision and cost.

C. Home Monitoring
SAL has also been trialled in a low-cost and easy-to-

maintain environmental monitoring WSN that is suitable for
deployment into a home environment. The system utilised a
homeowner’s existing personal computer and Internet
connection to collect temperature data from sensors attached
to an Arduino-based platform. SAL was ported to the
Windows operating system to enhance the end-user
experience. Data was automatically transferred from the
sensing platform to a central database whenever a network
connection to the personal computer was detected. The
sensors used were custom-build DS18B20 digital temperature
sensors (worth less than $2). The cost for a basic sensor
network is less than $100. Such a system has important
ramifications for researching more effective use of electricity
in the home.

VII. CONCLUSIONS
This paper presented SAL – a middleware integration

platform for sensor networks. SAL aggregates multiple sensor
networks and provides a generic, hardware-independent
interface to manage and control sensors. SAL is unique in that
there are no existing solutions that offer this approach for
designing heterogeneous sensor networks that can use
technologies from multiple vendors. This approach offers the
following benefits:
• A flexible interface to integrate disparate sensor

technologies.
• The removal of compatibility obstacles that hamper the

addition of sensors that are best suited (and priced) for a
specific task.

• A lightweight system for devices with limited processing
power, battery life, and storage capacity.

• New technologies can be quickly incorporated with
minimal amount of changes to software code.

• A SAL-managed sensor can be a single transistor-like

device, a discrete wireless node or a part of a larger
instrument.

• Sensors are automatically detected and configured where
supported by the technology.

• Forward compatibility due to adherence to the SWE
standards proposed for sensor network systems.

• Remote operation of the sensor network and near real-
time streaming of the data collected.

Prototype systems have been successfully deployed at
Davies Reef and as part of the SEMAT initiative at Deception
Bay and Heron Island (Australia). SAL has also been trialled
as part of a "smart home" initiative to monitor parameters to
design more energy efficient households. These projects
illustrate SAL’s versatility for differing applications and how
SAL enables the construction of inexpensive heterogeneous
systems. SEMAT’s success will potentially make SAL a
standard lower middleware solution for many upcoming
marine sensor network deployments around South East Asia
and the Pacific region.

Further work involves improving the user interface for the
SAL client and moving towards stricter adherence with SWE
Standards. Furthermore, as SAL continues to evolve, more
software plug-ins will be developed that will increase the
number of sensor devices that are compatible with SAL.

ACKNOWLEDGMENT
The authors would like to acknowledge the contribution of

Gilles Gigan for the initial development of the SAL concept
and Professor Wayne Read for his advice and expertise. We
would also like to thank all the members of the SEMAT team.

REFERENCES
[1] G. Aloisio, D. Conte, C. Elefante, G. P. Marra, G. Mastrantonio, and G.

Quarta, "Globus Monitoring and Discovery Service and SensorML for
Grid Sensor Networks," in Proceedings of the 15th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Manchester, United Kingdom 2006, pp. 201-206.

[2] R. Bramley, K. Chiu, T. Devadithya, N. Gupta, C. Hart, J. C. Huffman,
K. Huffman, Y. Ma, and D. F. McMullen, "Instrument monitoring, data
sharing, and archiving using common instrument middleware
architecture (CIMA)," Journal of Chemical Information and Modeling,
vol. 46, pp. 1017-1025, 2006.

[3] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, "Adaptive protocols
for information dissemination in wireless sensor networks," in
Proceedings of the 5th annual ACM/IEEE international conference on
Mobile computing and networking (MobiCom '99), Seattle, WA, USA,
1999, pp. 174-185.

[4] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo,
"Middleware to support sensor network applications," Network, IEEE,
vol. 18, pp. 6-14, 2004.

[5] P. Levis and D. Culler, "Maté: A tiny virtual machine for sensor
networks," in Proceedings of the 10th international conference on
Architectural support for programming languages and operating systems,
San Jose, California, USA, 2002.

[6] T. Liu and M. Martonosi, "Impala: a middleware system for managing
autonomic, parallel sensor systems," in Proceedings of the ninth ACM
SIGPLAN symposium on Principles and Practice of Parallel
Programming (PPoPP 2003), San Diego, California, USA, 2003, pp.
107-118.

[7] K. Römer, O. Kasten, and F. Mattern, "Middleware challenges for
wireless sensor networks," ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 6, pp. 59-61, 2002.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:4, 2014

571

[8] E. Souto, G. Germano, G. Vasconcelos, M. Vieira, R. Nelson, C. Ferraz,
and J. Kelner, "Mires: a publish/subscribe middleware for sensor
networks," Personal and Ubiquitous Computing, vol. 10, pp. 37-44,
2006.

[9] V. Venkatesh, P. Raj, and V. Vaithayanathan, "A Device Middleware-
Based Smart Home Environment for Ambient Health Care," Global
Trends in Computing and Communication Systems, vol. 269, pp. 144-
153, 2012.

[10] M. M. Wang, J. N. Cao, J. Li, and S. K. Dasi, "Middleware for wireless
sensor networks: A survey," Journal of computer science and
technology, vol. 23, pp. 305-326, 2008.

[11] T. Hasiotis, G. Alyfantis, V. Tsetsos, O. Sekkas, and S.
Hadjiefthymiades, "Sensation: a middleware integration platform for
pervasive applications in wireless sensor networks," in Proceedings of
the 2nd European Workshop on Wireless Sensor Networks., Istanbul,
Turkey, 2006, pp. 366-377.

[12] C. Huddlestone-Holmes, G. Gigan, and I. Atkinson, "Infrastructure for a
sensor network on Davies Reef, Great Barrier Reef," in 3rd International
Conference Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP 07), Melbourne, Australia, 2007, pp. 675-679.

[13] R. Johnstone, D. Caputo, U. Cella, A. Gandelli, C. Alippi, F. Grimaccia,
N. Haritos, and R. E. Zich, "Smart Environmental Measurement &
Analysis Technologies (SEMAT): Wireless sensor networks in the
marine environment," in ICT-Mobile Summit, Stockholm, Sweden,
2008.

[14] J. Trevathan, R. Johnstone, T. Chiffings, I. Atkinson, N. Bergmann, W.
Read, S. Theiss, T. Myers, and T. Stevens, "SEMAT – The next
generation of inexpensive marine environmental monitoring and
measurement systems," Sensors, vol. 12, pp. 9711-9748, 2012.

[15] P. Bonnet, J. Gehrke, and P. Seshadri, "Querying the physical world,"
Personal Communications, IEEE, vol. 7, pp. 10-15, 2000.

[16] V. Handziski, J. Polastre, J. H. Hauer, C. Sharp, A. Wolisz, and D.
Culler, "Flexible hardware abstraction for wireless sensor networks," in
Wireless Sensor Networks, 2005. Proceeedings of the Second European
Workshop on, Istanbul, Turkey, 2005, pp. 145-157.

[17] D. Le-Phuoc, H. N. M. Quoc, J. X. Parreira, and M. Hauswirth, "The
Linked Sensor Middleware: Connecting the real world and the Semantic
Web," in Presented in the Semantic Web Challenge 2011, 10th
International Semantic Web Conference (ISWC 2011), Bonn, Germany,
2011.

[18] R. Beaubrun, J.-F. Llano-Ruiz, and A. Quintero, "An Approach for
Designing and Implementing Middleware in Wireless Sensor Networks,"
Sensors and Transducers Journal, vol. 14-2, pp. 150-163, 2012.

[19] M. Botts, G. Percivall, C. Reed, and J. Davidson, "OGC® Sensor Web
Enablement: Overview and High Level Architecture," in GeoSensor
Networks. vol. 4540/2008 Berlin: Springer Berlin / Heidelberg, 2008,
pp. 175-190.

