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A Two-Species Model for a Fishing System with

Marine Protected Areas
Felicia Magpantay and Kenzu Abdella

Abstract—A model of a system concerning one species of demer-
sal (inshore) fish and one of pelagic (offshore) fish undergoing fishing
restricted by marine protected areas is proposed in this paper. This
setup was based on the FISH-BE model applied to the Tabina fishery
in Zamboanga del Sur, Philippines. The components of the model
equations have been adapted from widely-accepted mechanisms in
population dynamics. The model employs Gompertz’s law of growth
and interaction on each type of protected and unprotected subpop-
ulation. Exchange coefficients between protected and unprotected
areas were assumed to be proportional to the relative area of the
entry region. Fishing harvests were assumed to be proportional to
both the number of fishers and the number of unprotected fish. An
extra term was included for the pelagic population to allow for the
exchange between the unprotected area and the outside environment.
The systems were found to be bounded for all parameter values. The
equations for the steady state were unsolvable analytically but the
existence and uniqueness of non-zero steady states can be proven.
Plots also show that an MPA size yielding the maximum steady state
of the unprotected population can be found. All steady states were
found to be globally asymptotically stable for the entire range of
parameter values.

Keywords—fisheries modelling, marine protected areas, sustain-
able fisheries, Gompertz Law

I. INTRODUCTION

M
ARINE protected areas (MPAs) are areas of seas that

have harvest regulations to prevent over-fishing. The

usual restrictions are quota limits or total bans in fishing

within an MPA. This style of management has the advantage

of protecting the marine habitats as well as providing a shelter

for juvenile fish to replenish the population [1]. Some famous

MPAs can be found flourishing in the United States, Caribbean

islands and Australia [2]. In the Philippines, arguably one of

the fishing hotspots of the world, MPAs have proven to be

a successful fishery management tool that can be effectively

managed by local communities and municipal governments

[3], [4], [5], [6]. They have also been found to promote tourism

and scuba-diving in these areas thus providing a source of

income to locals alternate from fishing [7].

In this study, the fishing system was based on the descrip-

tions of the Tabina fishery in Zamboanga del Sur, Philippines

as used in the FISH-BE (Fisheries Information for Sustaining

Harvests Bio-Economic) Model [4], [8]. A simple model

of a two-species fishing system regulated by MPAs is now

proposed. The focus of this study is on analyzing the dynamics

of this model and the stability of the stable states. Economic

factors were not considered but numerical results were used
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to show how the population of the protected and unprotected

subpopulations vary with the size of the MPA. The stability

of this equilibrium was also considered using a Lyapunov

function. The fishery system consists of one demersal pop-

ulation which remains close to the shore, and one pelagic

which lives offshore. This being the case, the habitats of the

two groups (and their respective MPAs) were considered sepa-

rately, although they may overlap in practice. Each type of fish

has a protected and unprotected subpopulation. Asymmetric

exchange is allowed between the subpopulations, with the

exchange coefficient being proportional to the relative area

of the entry region. In addition, the pelagic fish population is

allowed to have fish coming in from outside the system.

Two types of fishers were taken into account. Municipal

fishers focus on catching demersal fish while commercial fleets

target pelagic fish. Some amount of crossover between their

catches were allowed but this was always assumed to be

small. It was also assumed that the distribution of resources

throughout the fishery is uniform so that the carrying capacity

of any fraction of the entire area is equal to that fraction

multiplied by that the total carrying capacity. Thus the carrying

capacity of an MPA that is a fraction M of the total area is

MK, where K is the total carrying capacity. For the case of

uneven distributions, one might instead define M to be the

fraction of the total resources encompassed by the MPA.

The rate of growth and intra-specific interactions of the fish

populations was controlled by the Gompertz law of growth

and interaction. This was chosen instead of the simpler logistic

equation because it allows for the slow growth of very small

populations. This choice is further discussed in the section on

Related Work.

The systems were found to be bounded for all parameter

values (Theorem 1). The equations for the steady states turned

out to be unsolvable analytically but the existence of a unique

non-zero steady state can be proven (Theorem 2). All steady

states were found to be globally asymptotically stable for the

entire range of parameter values (Theorem 7).

Plots also show that the there is an optimal MPA size that

would yield the maximum steady state for the unprotected

population. This optimal MPA size can be found by taking

the derivative of the unprotected population size with respect

to MPA size and setting this to zero. Although not shown, the

result would be a system of equations that can be numerically

solved for a given set of parameter values.

Russ and Alcala (1996) have suggested that in the case

of large predatory fish in the Apo Island reserve of Central

Philippines, fish do not display significantly varied distribu-

tions outside of the MPA during the early years of protection
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[5]. During the 9th to 11th years however, it was found

that the populations were denser the closer they are to the

MPAs suggesting significant effects of spillover. This will not

be considered in this model but it would be an interesting

aspect to investigate further in future studies. It might be taken

into account for instance by considering a non-homogenous

distribution of the unprotected subpopulation which is denser

when it is close to the MPA.

II. RELATED WORK

The FISH-BE model has been applied to the Tabina fishery

in studies by Licuanan et al. [4] and Castillo et al. [8]. This

FISH-BE model implements graphically-oriented modelling

software and can be generalized to other fishery situations

in the Philippines. The FISH-BE model may be used to

determine optimal MPA size as well as good governance

practices when it comes to managing the reserves. Baskett et

al. [9] also provides comprehensive information on monitoring

and designing reserves based on a compilation of theoretical

models.

The dynamics of MPAs has been the subject of many

studies. Dubey et al. [10] presented a model of MPAs with

logistic growth and constant coefficient of exchange between

protected and unprotected subpopulations. This model dis-

cussed optimal harvesting policy using Pontryagin’s Maximum

Principle. Kar and Misra [11] modified this model to include

a predatory fish species that is confined to the unprotected

region. Greenville and MacAulay [12] also tackled a two-

species fishing model with a predator-prey relationship but

using a different approach. They also allowed for stochastic

effects concluding that the variation in fishing harvest is

lowered by the use of MPAs.

In the studies by Kar [13] and Pradhan and Chaudhuri [14]

the populations were assumed to follow the Gompertz law of

growth and interaction. Pradhan and Chaudhuri explains how

this describes fish populations better than the logistic equations

and compares their results with the Schaefer model. This

paper also employs Gompertz law to describe the population

growth for the same reasons and because the use of this law

in biological populations merits further study.

The fishing model by Kar [13] also investigates the in-

fluences of environmental noises on the growth parameters

and the inclusion of delay in the governing equations. Delay

accounts for the regulation on capturing juvenile fish, a rule

that has been implemented in many MPAs. These factors are

not included in the current study but may be incorporated in

future work.

Shirai and Harada [15] used an asymmetric exchange

between protected and unprotected subpopulations in their

model. This study follows their assumption that the coefficient

of exchange between regions is proportional to the relative

area of the entry region. Armstrong and Skonhoft [16] also

assumes asymmetric exchanges but instead of relative areas

these were proportional to the relative population densities.

This study also allowed for different growth rates between the

two subpopulations.

Many studies based on mathematical models have found that

MPAs have the potential to be very effective at increasing the

fishery yields [12], [15], [17], [18]. There are fewer studies on

the comparison of this method with other fishery management

tools. One was that by Nowlis [19] in which he compared

the short and long-term effects of three major methods of

fishery regulation: the use of MPAs, the temporary closures of

entire fisheries and the maintenance of the fish levels above

a minimum size limit. Nowlis used mathematically based

computer simulations and found that give certain conditions,

there is a wide range of circumstances in which the use of

MPAs is the method that maximizes the harvests [19].

III. SYSTEM DESCRIPTION

For each type of fish (demersal and pelagic) the subpopu-

lation currently living in protected areas and those living in

unprotected areas will be considered separately. Crossover of

fish catch between the municipal and commercial fishers is

allowed but this is kept very small. Table I gives the list of

variables and parameters that will be considered.

TABLE I
DESCRIPTION OF VARIABLES AND PARAMETERS

Variables and Parameters

X demersal population in non-protected area
XM demersal population in protected area
Y pelagic population in non-protected area

YM pelagic population in protected area
YE pelagic population of exterior

Mx, My proportion of protected area *
Kx, Ky carrying capacity *
rx, ry rate of growth *

α exchange coefficient between X and XM

β exchange coefficient between Y and YM

γ exchange coefficient between Y and YE

N1 number of municipal fishers
N2 number of commercial fishers

p1, p2 fishing coefficient of X **
q1, q2 fishing coefficient of Y **

* Subscripts x and y correspond to demersal and pelagic respectively
** Subscripts 1 and 2 correspond to municipal and commercial respectively

A. Governing Equations

The governing equations are given in (1)-(4).

dXM

dt
=rxXM ln

(

MxKx

XM

)

− α((1 − Mx)XM − MxX)

(1)

dX

dt
=rxX ln

(

(1 − Mx)Kx

X

)

+ α((1 − Mx)XM − MxX)

− p1N1X − p2N2X

(2)

dYM

dt
=ryYM ln

(

MyKy

YM

)

− β((1 − My)YM − MyY )

(3)

dY

dt
=ryY ln

(

(1 − My)Ky

Y

)

+ β((1 − My)YM − MyY )

− q1N1Y − q2N2Y

+ γ(YE − Y )

(4)
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Equations (1)-(4) might be simplified to include fewer

parameters, and the systems for demersal (XMX) and pelagic

(YMY) might actually be analyzed separately. In fact, the two

systems actually have the same form when γ = 0. The analysis

will be made on the two separate systems however and using

all of the given parameters because of the physical significance

of the values. This is also done to keep the model open to

extensions such as maximizing the total catch of N1 or the

N2 fishers.

In the governing equations the first term comes from Gom-

pertz’s law [13], [14]. It is assumed that the carrying capacity

of any fraction of a population habitat behaves as described

in the Introduction. It should be noted that because of this,

each subpopulation follows Gompertz law with their respective

carrying capacities but the total population does not.

The exchange from protected to unprotected subpopulations

is assumed to be proportional to the relative area of the

unprotected region, while that from unprotected to protected

is proportional to the relative area of the protected region [15].

The fishing terms in the unprotected populations are based on

a predator-prey model of the total catch being proportional

to the total possible meetings between the two populations.

The only structural difference between the demersal and

pelagic equations is the extra exchange term for Y with the

surroundings. The system is illustrated in Figure 1.

N1 catch

Y

X

γ (YE − Y )

p1N1X

q1N1Y q2N2Y

p2N2X

YE

α ((1 − Mx) XM − MxX)

β ((1 − My) YM − MyY )

N2 catch

YM

XM

Fig. 1. Illustration of the flow

B. Boundedness

It is natural to expect the populations to be bounded between

zero and its carrying capacity. As it turns out however, A is

greater than one because of the contribution of YE .

Theorem 1. The XXM and Y YM systems are bounded as

follows.

0 < XM < MxKx , 0 < X < (1 − Mx)Kx

0 < YM < AMyKy , 0 < Y < A (1 − My)Ky

where A ≥ 1.

The theorem will be proven by defining the rectangular

trapping regions and finding an A ≥ 1 such that an orbit

that begins in the region cannot leave it.

Proof for demersal fish:

Let ~F =

(

ẊM

Ẋ

)

and let n̂ be a unit normal outwards of

the region shown in Figure 2.

S1 S3

(1 − Mx) Kx

MxKx

S2

S4

XM

X

Fig. 2. Illustration of the trapping region

~F · n̂ =



























−αMxX , S1

−α (1 − Mx) XM , S2

−αMx ((1 − Mx)Kx − X) , S3

−
[

α (MxKx − XM )

. . . + (p1N1 + p1N2)Kx

]

(1 − Mx) , S4

Since ~F · n̂ ≤ 0 at each boundary of the region, this proves

that this is a trapping region.

Proof for pelagic fish:

Let ~F =

(

ẎM

Ẏ

)

and let n̂ be a unit normal once again.

~F ·n̂ =















































−βMyY , S1

−β (1 − My)YM − γYE , S2

−AMyKy

(

β (1 − My)

. . . + ry lnA

)

+ βMyY , S3

−A

[

βMy + q1N1 + q2N2

. . . + γ + ry lnA

]

(1 − My) Ky

. . . + γYE + β (1 − My) YM

, S4

Evidently F · n̂ < 0 for S1 and S2. For S3 it is not as clear

because of the positive Y term. This has a maximum value

when Y attains its maximum of A (1 − My)Ky .

~F · n̂ at S3 ≤ −AMyKyry lnA (5)
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This is always negative as long as A > 1. Now for S4, F · n̂
is maximum at maximum YM which occurs at AMyKy .

~F ·n̂ at S3 ≤ −A

[

q1N1 + q2N2

. . . + γ + ry lnA

]

(1 − My)Ky + γYE

(6)

Setting that to be less than zero is equivalent to writing

A

[

q1N1 + q2N2

. . . + γ + ry lnA

]

(1 − My) Ky > γYE (7)

This is automatically true if the following is true

A (q1N1 + q2N2 + γ) (1 − My)Ky > γYE (8)

A >
γYE

(q1N1 + q2N2 + γ) (1 − My)Ky

(9)

Thus for a given YE , the YMY system is bounded as given

in Theorem 1. A has to be chosen to be greater than one and

also satisfying (9).

The value of A is also useful in proving that the special

case where one or both of the initial values of Y and YM are

greater than their carrying capacities is still bounded. In this

case one can choose A such that the initial point falls within

the trapping region and satisfies (9). The use of A can also be

extended to the XMX system to show that the system is still

bounded when initial values exceed the carrying capacities. In

this case γ = 0 so A need only be chosen such that the initial

point falls within the trapping region.

C. Stable States

After boundedness, the next question to consider is the

existence of steady states within the boundaries and whether

or not these are unique. These questions are answered by the

Theorem 5. The following Lemmas are necessary to prove the

Theorem.

Lemma 2. Any steady state
(

XM ,X
)

of the XMX system has

to satisfy the following relationships.

XM =
MxαX

rxW

(

αX exp (α(1−Mx)
rx

)
Kxrx

) (10)

where W (·) is the Lambert W-function. The relationship

between XM and X is strictly increasing and continuous over

the interval of X as given by the range of X in Theorem 1.

Similarly, any steady state
(

YM , Y
)

of the YMY system has

to satisfy the following relationship.

YM =
MyβY

ryW

(

βY exp
(

β(1−My)

ry

)

Kyry

)
(11)

The relationship between YM and Y is also strictly increas-

ing and continuous over the interval of Y as given by the range

of Y .

Proof:

It is sufficient to prove this for the XMX system since the

proof for the YMY system is very similar.

Let the range of X be the range of X given in Theorem 1.

Setting (1) to zero and solving for XM leads to the expression

in (10). Since all parameters are positive, the continuity of the

equation is guaranteed for all XM > 0 and X > 0.

To prove the strictly increasing relationship, equation (10)

can be simplified to

XM =
C1X

W
(

C2X
) (12)

where C1 > 0 and C2 > 0. The derivative of this with respect

to X is

C1

W
(

C2X
)

(

1 − 1

1 + W
(

C2X
)

)

(13)

Since W
(

C2X
)

> 0 as long as X > 0, then the derivative

is always positive. This proves that the expression XM as a

function of X is strictly increasing.

Note that in the limit X → 0, XM also approaches zero

yielding the extinction steady state
(

XM ,X
)

= (0, 0). In the

YMY system, (0, 0) satisfies (11) but this is obviously not a

steady state.

Lemma 3. The function

g (X) = C1 ln

(

C2

X

)

+
C3

W (C4X)
− C5 (14)

where

C1 = rx

C2 = (1 − Mx)Kx

C3 =
α2 (1 − Mx) Mx

rx

C4 =
α exp (α (1 − Mx)/rx)

Kxrx

C5 = αMx + p1N1 + p2N2

has exactly one root.

Proof:

This function comes from substituting (10) into the right-

hand-side of (2) and dividing by X . It is continuous in the

range of X given in Theorem 1. The Ci’s are all positive

because all of the parameters are also positive.

lim
X→0+

g (X) =
s (C3)

s (C4)
∞ = +∞ (15)

Here s (·) is the signum function. Thus the limit of g (X) is

+∞ and g starts off with positive values.
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It is a bit more involved to show that g attains a negative

value in the other limit X → (1 − Mx)Kx.

lim
X→(1−Mx)Kx

g (X) < 0

⇔ C3 < C5 · W
(

C3

αMx

exp

(

C3

αMx

))

⇔ C3

αMx

<

(

1 +
p1N1 + p2N2

αMx

)

· W
(

C3

αMx

exp

(

C3

αMx

))

⇔ C3

αMx

<

(

1 +
p1N1 + p2N2

αMx

)

C3

αMx

This last line is obviously true thus g attains both positive

and negative values in the range of X . Since g is continuous

in this range then it must at some point pass through g = 0.

The derivative of g is

g′ (X) = −C1

X
− C3

W (C4X) (1 + W (C4X))X
(16)

This is always negative for X > 0. Since g is monotonically

decreasing then it has only one root then it has only one root.

Lemma 4. The function

h (Y ) = C1 ln

(

C2

Y

)

+
C3

W (C4Y )
− C5 +

C6

Y
(17)

where
C1 = ry

C2 = (1 − My)Ky

C3 =
β2 (1 − My)My

rx

C4 =
β exp (β (1 − My)/ry)

Kyry

C5 = αMy + q1N1 + q2N2

C6 = γYE

has exactly one root in the range Y ∈ (0, A (1 − My)Ky).

Proof: The proof of this is very similar to that for Lemma

3. It also requires using A > 1 and (9).

Theorem 5. There exists unique non-zero steady states
(

XM , X
)

and
(

YM , Y
)

within the boundaries given in Theo-

rem 1. These steady states satisfy the relationships in Lemma

2 and

g
(

X
)

= 0 (18)

h
(

Y
)

= 0 (19)

Proof:

The roots of the functions g and h, together with the

corresponding XM and YM from Lemma 2 coincide with

the zeros of the governing equations (1)-(4). According to

Lemmas 3 and 4), X and Y are unique and lie on the intervals

given in Theorem 1.

From Lemma 2 the maximum possible values of XM and

YM occur at the maximum possible values of X and Y respec-

tively. For the XMX system this occurs at X = (1 − Mx)Kx

yielding XM = MxKx. For the YMY system this occurs at

Y = (A(1 − Mx)Kx.

For a given set of parameter values the steady states can

be computed. Table II shows the values that were assigned to

the parameters for the graphs in Figures 3 and 4. The plots

show that there is an MPA size that maximizes the population

of the unprotected subpopulations. This optimal size can be

found by taking the derivative of X with respect to Mx and

setting this to zero. The optimal Mx can then be found by

numerically solving for it.

TABLE II
ASSUMED VALUES OF PARAMETERS

List of Parameters

YE 1× 106 units of fish

Kx 1× 108 units of fish

Ky 1× 106 units of fish
α 0.5
β 0.5
γ 0.05

N1 1350 fishers
N2 350 fishers
p1 0.0005 per fisher-unit time
p2 0.0001 per fisher-unit time
q1 0.00001 per fisher-unit time
q2 0.002 per fisher-unit time

D. Stability Requirements

Convert the XMX and YMY systems to xMx and yMy

systems by mapping the steady states to zero.

XM = XM + xM X = X + x

YM = YM + yM Y = Y + y

Corollary 6. The ranges of the new system are given by

−XM < xM < MxKx − XM

−X < x < (1 − Mx)Kx − X

−YM < yM < AMyKy − YM

−Y < y < A (1 − My)Ky − Y

Proof: This follows directly from Theorem 1.

Writing the demersal system (1)-(2) in terms of the pertur-

bations and setting the derivatives of the steady states to zero

yields

dxM

dt
=rx ln

(

XM

XM + xM

)

XM

+ rx ln

(

MxKx

XM + xM

)

xM

− α(1 − Mx)xM + αMxx

(20)

dx

dt
=rx ln

(

X

X + x

)

X

+ rx ln

(

(1 − Mx)Kx

X + x

)

x

+ α(1 − Mx)xM − αMxx

− p1N1 − p2N2

(21)
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XM steady states                                        
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X steady states                                        
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X+XM steady states                                    

Fig. 3. Steady state values for rx equal to 0.02, 0.04 and 0.08 yr-1 (dash,
dash-dot and solid line respectively).

My (%)
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YM steady states                                       
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Y steady states                                         

My (%)
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Y+YM steady states                                

Fig. 4. Steady state values for ry equal to 0.02, 0.04 and 0.08 yr-1 (dash,
dash-dot and solid line respectively).
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XM
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X
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(a) X and XM

YM
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Y

0
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150,000

200,000

(b) Y and YM

Fig. 5. Phase plots using Maple. Parameter values from Table II with rx =

ry = 0.08 and Mx = My = 0.5

Theorem 7. The stable states at XM and X (xM = 0 and

x = 0) are globally stable.

Proof:

Introduce the following Lyapunov function candidate for the

XMX system.

V =
1

2
(1 − Mx)x2

M +
1

2
Mxx2 (22)

Using (20) and (21), the derivative of the function is

dV

dt
=rx(1 − Mx)

[

ln

(

XM

XM + xM

)

XMxM

+ ln

(

MxKx

XM + xM

)

x2
M

]

(23)

+ rxMx

[

ln

(

X

X + x

)

Xx + ln

(

(1 − Mx)Kx

X + x

)

x2

]

− α(1 − Mx)2x2
M − αM2

xx2 − Mx(p1N1 + p2N2)x
2

This is obviously zero at xM =x=0. What is not obvious is

if this expression is negative at all other values as required for

V to be a Lyapunov function. The terms involving XMxM

and Xx terms are always negative for all nonzero values of

xM and x. The other logarithmic terms however, are always

positive because of Theorem 1. The remaining quadratic terms

are always negative. There are no mixed terms of xMx. Since

these are independent perturbations two conditions can be

found to determine if the derivative is negative-definite.

For all xM 6= 0 and x 6= 0, the requirements for stability

are

ln

(

XM

XM + xM

)

XM

xM

+ ln

(

MxKx

XM + xM

)

− α(1 − Mx)

rx

< 0 (24)

ln

(

X

X + x

)

X

x
+ ln

(

(1 − Mx)Kx

X + x

)

− (αMx + p1N1 + p2N2

rx

< 0 (25)

These conditions can be re-written as (26)-(27)

MxKx exp

(

−α (1 − Mx)

rx

)(

XM

XM + xM

)

XM

xM
+1

< XM

(26)

(1 − Mx)Kx exp

(

−αMx + p1N1 + p2N2

rx

)

·
(

X

X + x

)

X

x
+1

< X

(27)

A similar Lyapunov function can be found for the pelagic

fish with similar stability requirements. In this case, for all

yM 6= 0 and y 6= 0, the requirements for stability are given

by (28)-(29)

MyKy exp

(

−β (1 − My)

ry

)(

YM

YM + yM

)

YM

yM
+1

< YM

(28)

(1 − My)Ky exp

(

−βMy + q1N1 + q2N2 + γ

ry

)

·
(

Y

Y + y

)

Y

y
+1

< Y

(29)
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As it turns out, the two sets of conditions given by (26)

to (29) are always satisfied. This can be shown by using the

following Lemma.

Lemma 8. The following expressions are true for the XMX

and YMY systems.

XM = MxKx exp

(

−α(1 − Mx)

rx

)

exp

(

αMxX

rxXM

)

(30)

X = (1 − Mx)Kx exp

(

−αMx + p1N1 + p2N2

rx

)

· exp

(

α(1 − Mx)XM

rxX

) (31)

YM = MyKy exp

(

−β(1 − My)

ry

)

exp

(

βMyY )

ryYM

)

(32)

Y = (1 − My)Ky exp

(

−βMy + q1N1 + q2N2 + γ

ry

)

· exp

(

β(1 − My)YM + γYE)

ryY

) (33)

Proof:

These expressions can be derived from the governing equa-

tions (1) to (4).

Now consider the (26) condition for stability. Comparing

this with (30), it can be shown that the (26) is true if the

following is true.

(

XM

XM + xM

)

XM

xM
+1

< exp

(

αMxX

rxXM

)

(34)

The term on the left side is always less than or equal to one

for the ranges in Corollary 6. The exponential term on the

right side is always greater than one since the steady states

and parameters are always positive. Thus this inequality is

always satisfied. A similar argument proves that all of the

other conditions for stability (27)-(29) are also satisfied. Thus

by method of Lyapunov functions we have shown that the

equilibrium is globally asymptotically stable.

To confirm that the steady states are indeed stable, a

time graph was generated for each population (protected and

unprotected) using a simple Euler method algorithm on the

derivatives given in equations (1) to (4). These plots are shown

in Figures 6-7 and were generated using Maple.

IV. CONCLUSION

This paper has shown that marine protected areas described

by the model in (1)-(4) are successful at providing for sustain-

able harvests. The systems were found to be bounded and non-

zero steady states have been found to exist for the entire range

Time (years)
0 2 4 6 8 10 12 14 16 18
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2# 107

3# 107
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5# 107

XM                                                         
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2# 106

3# 106

4# 106

5# 106

6# 106

7# 106

8# 106
X                                                            

Fig. 6. Time plots of demersal fish population.

of parameter values. These steady states have been shown to

be globally asymptotically stable.

Figures 3 to 4 also show that that there is an optimum MPA

size for each species of fish. This can be determined by taking

the derivative of X with respect to Mx and setting this to zero.

Although there is no analytic formula for this, this optimal size

can still be found using numerical methods

Future work should include finding data to compare with

the model. More factors can be considered such as time delay

for the fish spawn to grow to catchable size, inter-species

competition, pollution and perhaps a predator-prey relationship

between the demersal and pelagic fish. The distribution of fish

in the unprotected area should also be considered as evidence

have shown that this may not be homogenous [5].
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