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 
Abstract—Two-phase and multi-phase flows are common flow 

types in fluid mechanics engineering. Among the basic and applied 
problems of these flow types, two-phase parallel flow is the one that 
two immiscible fluids flow in the vicinity of each other. In this type 
of flow, fluid properties (e.g. density, viscosity, and temperature) are 
different at the two sides of the interface of the two fluids. The most 
challenging part of the numerical simulation of two-phase flow is to 
determine the location of interface accurately. In the present work, a 
coupled interface tracking algorithm is developed based on Arbitrary 
Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-
based, coupled solver. To validate this algorithm, an analytical 
solution for fully developed two-phase flow in presence of gravity is 
derived, and then, the results of the numerical simulation of this flow 
are compared with analytical solution at various flow conditions. The 
results of the simulations show good accuracy of the algorithm 
despite using a nearly coarse and uniform grid. Temporal variations 
of interface profile toward the steady-state solution show that a 
greater difference between fluids properties (especially dynamic 
viscosity) will result in larger traveling waves. Gravity effect studies 
also show that favorable gravity will result in a reduction of heavier 
fluid thickness and adverse gravity leads to increasing it with respect 
to the zero gravity condition. However, the magnitude of variation in 
favorable gravity is much more than adverse gravity. 
 

Keywords—Coupled solver, gravitational force, interface 
tracking, Reynolds number to Froude number, two-phase flow.  

I. INTRODUCTION 

WO-PHASE and multi-phase flows are of the most 
applied flow types in fluid engineering. These types of 

flows could be classified as separated and dispersed. In 
dispersed flows, one phase is suspended in another phase as 
small particles or a bulk of very small particles. Because of the 
huge number of particles, tracking the interface is not 
important in these flows. Solid particles suspended in liquids 
or gases (such as fluidized beds, dusty gases and mixtures), 
gas or liquid bubbles floated in liquids or gases (like steam 
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boiler and sprays), and combustion of liquid or solid particles 
fuels in combustion chambers are all some typical of dispersed 
two phases flows. In separate flows, unlike the dispersed 
flows, there are two distinct and unmixed phases which may 
become suspended in the other phase based on the flow 
regimes or instabilities that occur in the flow field. The 
formation of bubbles or drops in liquid or gas is of the most 
important typical of this class of two-phase flows. Although 
one phase is surrounded by the other one in these kinds of 
flows (like gas bubbles suspended in liquid), the boundary 
between the two phases is clearly distinctive and recognizable. 

Stratified, parallel two-phase, and free surface flows are the 
other applicable types of separated flows. In these flows, none 
of the phases are surrounded by the other one. Sloshing, dam-
break, and falling films are some of the examples of free 
surface flows. In numerical modeling of free surface flows, the 
gas phase is not usually resolved and replaced by a proper free 
surface boundary condition. 

Parallel two-phase flows usually occur in pipes and 
horizontal or inclined channels at the presence of two non-
mixing fluids (usually liquid and gas). As shown in Fig. 1, 
internal flow in the horizontal or inclined channels is classified 
into seven flow regimes [1]. The stratified and wavy regimes 
are both amenable to the interface-tracking approach used in 
this paper. The other flow regimes are often simulated using 
mixture model, Eulerian model, and Lagrangian Dispersed 
Phase Model (LDPM) approaches. 

 

 

Fig. 1 Sketches of flow regimes for flow of air/water mixtures in a 
horizontal pipe [1] 

 
Estimating the exact location of interface is one of the main 

challenges in numerical simulation of non-mixing two-phase 
flows. Due to the existence of moving boundary, these flows 
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are ranked as hard problems in Computational Fluid Dynamics 
(CFD). In these problems, the location of the moving 
boundary must be predicted from other flow conditions 
through the numerical solution procedure [2]. 

A. Classification of Solution Approaches in Separated Two-
Phase and Multi-Phase Flows 

From one point of view, the methods that have been 
developed for defining the location of the interface can be 
classified as interface-tracking and interface-capturing. In 
interface tracking methods, the interface is assumed as a very 
thin layer that its position coincides on the cells surfaces. 
During the solution, the location of this thin surface is tracked 
and its coincidence on the cell faces is kept by grid movement. 
In interface capturing methods, the interface is not a thin 
surface and hence the importance of the interface coincidence 
with the field cells faces disappears. In these methods, 
interface location is defined using the estimation of volume 
fraction of the neighbor cells.  

From another point of view, interface tracking and 
capturing methods are classified, with respect to the type of 
the governing equations and computational grid structure, into 
Eulerian, Lagrangian, and Eulerian-Lagrangian approaches 
[3]. In Eulerian methods, the coordinate system is stationary or 
has a constant velocity whereas the fluid velocity is 
independent of that. Most of the Eulerian methods use a fixed 
grid structure and so its cells boundaries do not coincide with 
the interface. Therefore, these methods do not determine the 
exact position of the interface. Interface-capturing methods 
mostly belong to the Eulerian approach. The Marker-And-Cell 
(MAC) method [4], which uses marker particles to define each 
phase and the Volume-Of-Fluid (VOF) method [5], which 
uses a marker function, are two of the most well-known 
interface-capturing methods. The main difficulty in using 
Eulerian methods is the difficulty of keeping the sharp 
boundaries of different fluid flows and the computation of the 
surface tension. Through this, using techniques to include the 
surface tension [6], sub-cells to improve the resolution of the 
interface [7] and level sets to mark the fluid interface [8] were 
introduced to obtain a more accurate result and a higher 
applicability of these approaches. A review of the VOF 
methods can be found in [9], [10].  

Although the Eulerian methods are mostly capturing (not 
tracking) approaches, there are several moving mesh matching 
methods that move the computational grid in an order that is 
always coincident on one of the boundary cell surface [11]. 
These methods may be limited to the problems that do not 
have large deformation of interface within the computational 
field [12]. 

In Lagrangian methods, the coordinate system and fluid 
move with the same velocities. Thus, every computational cell 
holds a constant fluid amount in itself. In these methods, some 
errors may occur due to the unusual shape of the field cells. 
Intensive efforts like re-generating the mesh or re-zoning the 
computational field have been made to prevent these errors. 
Interface-capturing methods often use Lagrangian methods. 
Some examples of these methods can be seen in disruption of 

a droplet [13], investigating the initial deformation of a 
suspended water [14], simulating of the two-dimensional 
unsteady movement of some particles [15]-[17], and 
axisymmetric calculations of the collision of a droplet to a 
wall [18]. 

Lagrangian methods that use re-zoning techniques are also 
called ALE methods. These hybrid methods can usually 
include the advantages of both Eulerian and Lagrangian 
methods. Front tracking methods that were developed by 
Glimm et al. [19] are in the group of Eularian-Lagrangian 
methods. In these methods, the boundary of the two phases is 
marked by a separate front. However, a constant mesh that is 
only modified near the front is used for the fluid of each 
phase. 

A hybrid method has been developed by Unverdi and 
Tryggvason [20] using front tracking and front capturing 
methods. They used a simple fixed mesh for the fluid flow and 
a separate fine mesh to track the interface. The details of this 
method can be seen in [21]. Interface capturing methods have 
the capability to be used in numerical modeling of any type of 
two or multi-phase flows; but as was previously mentioned, 
the definition of the exact interface location and calculation of 
parameters like shear stresses, heat, and mass transfer would 
be too complicated. Hassaninejadafarahani and Ormiston [22] 
have investigated steam condensation in a vertical pipe using 
an interface tracking method. They applied a mass equilibrium 
correction in each column of control volumes in the liquid 
regime to determine the interface location. Islam et al. [23] 
studied the kinetic energy and surface energy of a wavy liquid 
film flow by implementing an interface tracking method using 
a finite difference scheme. They observed that, in most cases, 
periodic disturbances superimposed at the inflow boundary 
grow to fully developed waves, which retain the given 
periodic behavior. In some cases, however, random waves 
appear after the fully developed waves. 

B. Targets and Innovations of the Current Paper 

The following assumptions are made regarding the channel 
two-phase flow: 
1. The main derivation force of the flow is pressure gradient; 
2. The inclination angle of the channel may be positive or 

negative to cause a favorable or adverse gravitational 
force, respectively; 

3. The interface is continuous. 
4. Shear stress is significant at the interface, 
5. The interface will be sharply defined. 

An interface tracking method that uses a moving mesh that 
follow the interface boundary is appropriate for flows 
involving thin liquid films. In the present study, a pressure 
based cell-centered finite volume method is used for 
numerical simulation of incompressible two-phase flow inside 
a two-dimensional channel. The pressure and velocity fields 
are coupled by a Pressure-Weighted Interpolation Method 
(PWIM) [27] and the discretized continuity and momentum 
equations are simultaneously solved. The flow equations of 
two phases are linked by the equations developed for the 
boundary surface points at the two sides of the interface. The 
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interface equations are implicitly discretized in terms of 
pressure and velocity variables. This leads to strong coupling 
between of the discretized equations of two phases.  

In order to show the capability of the current algorithm, 
numerical modeling of a two-phase flow inside a 2D channel 
is conducted. The numerical results are validated by 
comparison with analytical solution that is developed in this 
work. In addition, the effects of changing the ratios of the 
properties of the two fluids are examined. 

II. ANALYTICAL SOLUTION OF TWO-PHASE FLOW WITH 

GRAVITATIONAL FORCE 

A brief description of the analytical solution of fully 
developed two-phase flow without a gravitational force is 
presented in [24]. To evaluate the applicability of the present 
algorithm in different flow conditions, it is necessary to 
present a general analytical solution for fully developed 
parallel two-phase flows with gravitational force. Fig. 2 shows 
the two-dimensional two-phase flow through a 2D channel 
under the effects of pressure gradient of dp/dx and 
gravitational acceleration g. Assuming H to be the channel 
height, and y=0 as the location of interface, location of upper 
and lower walls will be determined as y=(1-f)H and y=-fH, 
respectively. Here, f is the thickness ratio of the phase 1 to the 
channel height. The densities, dynamic viscosities, and 
volumetric flow rates of the two phases are denoted by ߩଵ, ߩଶ, 
µ1, µ2 and Q1, Q2, respectively. 

 

 

Fig. 2 The domain of a two-phase flow in a 2-D channel 
 
Generally, the fully developed region of the flow for each of 

the phases shown in Fig. 2 can be assumed as a type of 
Poiseuille flow where, the Navier-Stokes equations are 
simplified to: 
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This equation is written for the both phases 1 and 2. To 

apply the effect of gravitational force, the body force term (ρg) 
must be added to the equations as below: 
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To solve these equations, it is appropriate to use the non-

dimension form of the equation. The non-dimensional form of 
the velocity, pressure and lengths are defined as: 
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Using these non-dimensional parameters, (2) change to: 
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where f represents the non-dimensional thickness of phase 1, 
Re1 = ρ1Q1/µ1 is the Reynolds number of phase 1, Fr1 = 
(Q1/fH)/g(fH) is the Froude number of phase 1 and fµ = µ1/µ2 
is the viscosity ratio of the two phases. 

A. Boundary Conditions 

In two-phase flows, there are three types of boundary 
conditions and two other conditions related to the volumetric 
flow rates of two phases. Their non-dimensional forms of 
these flows are written as follows: 
 The continuity of the tangential velocity at the interface: 
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 The equality of the shear stress at both side of the 

interface: 
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- The no-slip boundary condition on the walls: 

 
ଵ|௬ᇱୀି௙′ݑ ൌ ଶ|௬ᇱୀሺଵି௙ሻ′ݑ ൌ 0                   (7) 

 
 The known value of volumetric flow rate of the two 

phases: 
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Here, fQ = Q1/Q2 is the ratio of the volumetric flow rate of 

the two phases. 

B. Solving the Equations 

By integrating (4) and applying the boundary conditions, 
the velocity equations for the phases 1 and 2 are determined 
as: 
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Constants C1 and D1 are integration constants and defined 

as: 
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By substituting velocity equations (9) into volumetric flow 

rate equations (8) and integrating the resultant equation, the 
pressure gradient can be removed from the equations and the 
following equation is obtained: 
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Fig. 3 Interface location (f) variations versus volume flow rates (fQ) at 
various dynamic viscosity ratios without gravitational force 

 

 

Fig. 4 Interface location (f) variations versus volume flow rates (fQ) at 
various fμ and Re1/Fr1 with gravitational force 

 
Equation (12) is based on five known non-dimensional 

parameters, f, fQ, fµ, fρ, and Re1/Fr1, which can be solved for 
the unknown parameter f. 

Fig. 3 shows the variations of f versus fQ at different 
viscosity ratios and zero gravitational force, and Fig. 4 shows 
the variation of f versus other parameters at density ratio of 
1000. 

III. THE GOVERNING EQUATIONS AND NUMERICAL METHOD 

A. The Governing Equations 

The integral form of the governing equations of 
incompressible flow without source terms in a moving mesh is 
written as bellow: 

The continuity equation 
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The momentum equation in x-direction 
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The momentum equation in y-direction 
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where, vb is the velocity of control volume boundary. 

Assuring the mass conservation in discrete form of 
continuity equation is one of the significant challenges for 
moving mesh algorithm. To satisfy the mass conservation, a 
Space Conservation Law (SCL), is used [25]: 
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This equation is the same as the continuity equation for 

zero-velocity flow. 

B. Discretization of the Equations and Coupling of the 
Velocity and Pressure Fields 

In this research, the ALE approach is used to simulate the 
flow in moving meshes. It can be shown that if the Lagrangian 
term in continuity equation is substituted with swept surface of 
the cell at a time step, it is not required to add the SCL 
equation. Therefore, for an incompressible flow, the discrete 
form of the Lagrangian-Eulerian equation of continuity 
changes to the familiar form of discrete Eulerian equation 
[12], [25]. This approach of discretizing the Lagrangian terms 
by the finite volume method leads to a formulation which does 
not affect the pressure-velocity coupling method. 

For discretizing the momentum equation, a first-order 
method is used for temporal terms, and a second order method 
is used for pressure and shear stress terms. To estimate the 
convected velocities in momentum equations, the method of 
Exponential Differencing Scheme (EDS) is used. The 
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pressure-velocity fields coupling is achieved by using a PWIM 
similar to the approach used by Rhie and Chow [26]. These 
equations are discretized on a co-located grid arrangement and 
solved in a coupled manner. The details of this methodology 
can be found in the work of Vakilipour and Ormiston [27]. 

IV. THE BOUNDARY CONDITIONS 

There are two groups of boundary conditions implemented 
for the present flow computations. The inlet, outlet, and walls 
are considered as the first group of boundary conditions. The 
second group of boundary conditions includes interface 
boundary conditions, which are the equations governing the 
zero mass transfer across the interface and normal and 
tangential forces balance on the interface cell faces. 

A. Inlet, Outlet and Wall Boundary Conditions 

At the inlet section, a velocity profile is prescribed, and the 
pressure is extrapolated from the interior cell centers in both 
phases. In addition, the interface location is predefined and 
considered to be fixed. The velocity components are 
calculated from the momentum conservation equations at the 
outlet boundary in both phases. However, different approaches 
are taken into account for setting the pressure in the two 
phases. In general, the pressure is specified at the outlet 
boundary of an incompressible flow field. In this two-phase 
flow, however, the exact interface location at the outlet is 
unknown, and therefore, the implementation of pressure at the 
outlet of each of two (liquid and gas) phases is not possible. 

According to the role of continuity equation in coupling 
pressure and velocity fields, the mass transfer across the 
interface appears as the pressure difference between two 
phases. This pressure difference prevents imposing an equal 
pressure value for two phases at the outlet section. Therefore, 
the outlet pressure is set in one phase and interpolated for the 
other one.  

The location of interface at outlet boundary is extrapolated 
from the interior interface points. The no-slip velocity and 
zero normal pressure gradient conditions are imposed on the 
wall boundaries.  

B. Interface Boundary Conditions 

Regarding the grid arrangement adjacent to the interface 
line, pressure and two velocity components for each phase are 
the six unknowns at the interface. The necessary equations for 
the mentioned unknowns are derived from the kinematic, 
dynamic, velocity continuity, and pressure boundary 
conditions.  

Kinematic Boundary Condition: 

While the interface location is predicted in an incorrect 
position, the kinematic condition would not satisfy mass 
transfer across the interface. The kinematic condition for a 
zero-thickness of the interface and with no mass transfer at the 
interface is represented by: 

 
ሾሺܞ െ ௕ሻܞ ∙ ሿ୧୤ܖ ൌ 0                              (18) 

 
where subscript “if” represents the interface. This boundary 

condition implies that the normal velocity of flow and the 
moving interface are equal. 

Dynamic Boundary Condition: 

This condition implies that the forces on the interface from 
both phases are in balance (momentum conservation on the 
interface). This means that the normal forces on both sides of 
the interface are equal in value but opposite in directions, i.e. 
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The tangential forces are in balance along the interface for 

two phases: 
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Here, n, t, K, and σ are the normal unit vector, tangential 
unit vector, interface curvature radius, and the surface tension, 
respectively. The subscripts 1 and 2 represent the phases 1 and 
2, respectively. In the present work where the interface 
curvature is small, the surface tension terms are assumed to be 
negligible. 

V. INTERFACE MOVEMENT 

For interface movement, the kinematic condition is used in 
accordance with the method proposed by Muzaferija and Peric 
[28]. The mass flow rate calculated from Lagrangian term is 
equal to the interface swept volume, and therefore, the mass 
flow across interface is derived from: 

 
ሶ݉ ୧୤ ൌ ܞሺߩሾ	ୗ׬ െ ௕ሻܞ ∙ ሿ୧୤ܵ݀ܖ ൌ ݂݅ܞߩ ∙ ݂݅ܵܖ െ ݂݅,ܾܞߩ ∙ ifܵܖ ൌ ifܞߩ ∙

ifܵܖ െ ߩ ሶܸ ܾ,if                                 (21) 
 

If ሶ݉ ୧୤ is not zero, the surface should be displaced in a 
manner that the swept volume, V̇'b,if , compensates this 
difference: 

 

ሶ݉ ௜௙ ൅ ሶ′ܸߩ ௕,୧୤ ൌ 0                          (22) 
 

On the other side, the swept volume can be defined by 
selecting the surface displacement direction as: 

 

ܸ′ሶ ௕,୧୤ ൌ
∆௛

∆௧
ܵ௕,୧୤ܖ୧୤ ∙  ୧୤                         (23)܍

 
Subsequently, the surface displacement ∆h is obtained as: 

 

∆݄ ൌ
௏ᇱሶ ್,౟౜∆௧

ௌ್,౟౜ܖ౟౜∙܍౟౜
                                   (24) 

 
In the present problem, the eif vector is assumed in normal 

direction to the channel wall. Fig. 5 shows the parameters of 
(24) adjacent to the interface. 

The grid arrangement and nomenclature on both sides of the 
interface is shown in Fig. 5. The interface of two phases is 
considered to be represented as two adjacent cells with zero 
thickness. The centers of interface cells are located at the same 
place for two phases. In this way, the dynamic boundary 
conditions (balance of normal and tangential forces on the 
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interface) associates two cells at the interface and their 
neighbors. Accordingly, the discretized dynamic and 
kinematic equations at interface are added to the system of 
linear equations resulting from discretization of the two-phase 
flow field equations. The interface equations play the role of 
linking equations between the two phases and couple the two 
flow fields. This is an effective approach to maintain the 
implicitness and coupled nature of the numerical algorithm in 
this study. To the authors’ knowledge, this approach has not 
been reported in previous similar studies. 

 

(a) (b) 

Fig. 5 Domain discretization at interface boundary; (a) boundary cells 
of phases 1 and 2, (b) grid point displacement parameters 

 

 

Fig. 6 Numerical solution algorithm for interface tracking 

A. The Grid Structure and Displacement 

In the present study, the interface front is tracked by the 
interface cell during an unsteady solving process. Therefore, 
the displacement of the internal grid points is proportional to 
the location of the interface at each time level. There are three 
general ways to displace the internal grid points [29]. The first 
is the algebraic method that moves each point of the grid using 
an algebraic function of one or several points on the interface. 

This method is very fast and simple, and is best used for 
structured grids on a relatively simple geometry with low 
distortions along the interface. The second is the elastic 
approach that assumes the grid structure as an elastic volume 
that obeys an imaginary correlation. Based on this correlation, 
a boundary value problem with known boundaries is defined 
and solved to obtain the location of the points inside the grid. 
This method is commonly used in rather complex geometries 
with an unstructured grid. The third is the regenerating the 
grid using the new location of the boundary points and 
adapting the old results on it. This method is suited for 
complex geometries with free boundaries, sharp curvatures, 
and intensive distortions. 

In accordance with the simple geometry of two-phase flow 
inside a 2D channel, a non-orthogonal structured grid with an 
algebraic method of grid modification is used in this study. In 
this approach, the displacement of the interface points takes 
place only in the y-direction, and hence, the x-component of 
the points remains unchanged. Fig. 6 illustrates the current 
unsteady numerical algorithm developed for the unsteady 
interface tracking. 

VI. RESULTS AND DISCUSSION 

A. Flow Field and Computational Grid 

The flow field includes two zones related to each phase and 
is discretized by structured quadrilaterals. The channel height, 
H, is equal to unity, and its length is L=30H to50H. The first 
5% of the channel length is assumed as the entrance length of 
the two phases. In entrance region, the interface height is fixed 
and considered as a no-slip wall boundary. This provides a 
reasonable velocity gradient at the section where the interface 
starts to develop. Fig. 7 shows the grid structure at the solution 
onset with an assumption that the interface is initially located 
at y=0.3H. During the solution process, the grid changes to 
reach a steady state condition according to the interface 
boundary condition. 

To study the grid dependency of the numerical solution, the 
most sensitive two-phase flow field is studied where the 
viscosity, density, and volumetric flow rate ratios are 50, 
1000, and 0.01, respectively. In this case, the gravitational 
force is assumed to be zero. Since the flow variations in x 
direction are small, a uniformly distributed grid with 100 cells 
is used in the x-direction. However, in the y-direction, there 
are considerable changes in velocity and shear stresses and 
hence, evaluation of the grid size in this direction is needed. 
The cell numbers in the y-direction were increased from 10 to 
40 cells (5 to 20 cells for each phase) with uniform 
distribution. Then, the total relative error of interface location 
and maximum velocity was computed using the following 
general formulation: 

 

ሺ%ሻݎ݋ݎݎܧ ൌ ఝಿೠ೘ିఝಲೄ
ఝಲೄ

ൈ 100                 (25) 

 
where, φNum and φAS are extracted from numerical and 
analytical solutions and Error is the total relative error 
percent. As shown in Fig. 8, there would be a reasonable 

,ifbV ¢
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decrease in numerical solution error by increasing cell 
numbers up to 30. The accuracy of numerical solution does 
not experience a significant change for the grid with cell 
numbers above 30 along the y direction. In this situation, the 
error of the interface location and maximum velocity are lower 
than 1%. Therefore, a grid with 100 cells in x-direction and 30 
cells in y-direction is utilized for computations carried out in 
this study. 

B. Two-Phase Flow in Zero Gravitational Force 

As described in analytical solution section, the two-phase 
flow is independent of density ratio at zero gravitational force. 
Thus, in this section, only the effects of volumetric flow rate 
ratio and viscosity ratio are considered. Six different cases 
based on the combinations of two volumetric flow rate ratios 
of 0.1 and 0.01 and three viscosity ratios of 1, 10, and 50 were 
simulated. The flow with viscosity ratio of 50 is similar to the 
case of water and steam flow. For each case, temporal changes 
of the interface location are presented, and the fully developed 
velocity profile and interface location are compared with those 
of analytical solutions. 

 

 

Fig. 7 Grid generated for two-phase flow with an interface initially at 
y = 0.3H 

 

 

Fig. 8 The effect of number of grid cells along y direction on 
numerical solution accuracy at viscosity ratio of 50, density ration of 

1000, Re to Fr number of zero, and volume rate of 0.01 

1) Interface Location and Velocity Profile 

The first flow cases are those at volumetric flow rate of 0.1 
which are tested in three viscosity ratios of 1, 10 and 50. 

Temporal changes of the interface location for these three 
cases are shown in Fig. 9 (a). As expected from (12), the two-
phase flow at zero gravitational force depends only to the 
viscosity and the volumetric flow rate ratios. Hence, according 
to the results given in Fig. 10 (a), at viscosity ratio of 1 (two 
similar fluids), the fully developed location of interface is 
calculated to be in a place where the velocity gradients are 
equal in both sides of interface. 

The increase in viscosity ratio causes the interface location 
to rise. This rise occurs because of the balance of shear forces 
of the two phases at the interface. That is, in accordance to (6), 
the higher viscosity fluid reaches to shear force balance in a 
lower velocity gradient, and vice versa. This trend can be seen 
in Fig. 10 (a) showing the velocity profile and interface 
location changes due to increase in dynamic viscosity ratio. In 
this figure, the comparison between the analytical and 
numerical results shows good agreement. 

Decrease of volumetric flow rate ratio from 0.1 to 0.01, 
results in lower flow film thickness of phase 1. The film 
thickness is estimated to be placed at a lower value than 0.06 
for viscosity ratio of 1. Increase in the viscosity ratio, similar 
to the previous conditions, leads to a higher film thickness of 
phase 1 (see Figs. 9 (b) and 10 (b)). 

2) Time Variations of Interface Location to Reach Steady 
State 

The temporal variations of interface location are illustrated 
in Fig. 9. Firstly, the higher viscosity ratio generates the 
interface with higher frequency, and its amplitude increases 
with time. For instance, for a volumetric flow rate of 0.1, 
increasing the viscosity ratio from 1 to 10 and then to 50 leads 
to an increase in interface fluctuations from about 10% to 
120% and 400%, respectively. Secondly, as the viscosity ratio 
decreases, the flow field reaches to the fully developed 
condition in a shorter length of channel. For example, in 
volumetric flow rate and viscosity ratios of one, the steady-
state condition occurs by a length of 3H. For viscosity ratios 
of 10 and 50, the development length increases up to about 
15H and 40H, respectively. Similar observations for 
volumetric flow rate ratios of 0.1 and 0.01 can be seen in the 
plots of Fig. 9. Moreover, the effect of increase in fluctuations 
on the flow field is considerable. If the channel length is 
considered 100H instead of 50H, the continuous increase of 
fluctuations amplitude may lead to collision with upper wall 
and blockage of the channel to phase 2. 

 
TABLE I 

COMPARISON BETWEEN NUMERICAL AND ANALYTICAL SOLUTIONS FOR 

INTERFACE LOCATION (F) IN ABSENCE OF GRAVITY 

Case fQ fμ Re1/Fr1 fAS fNum Error 

1 0.1 1 0 0.18599 0.18691 0.49% 

2 0.1 10 0 0.33488 0.33643 0.46% 

3 0.1 50 0 0.47831 0.48041 0.44% 

4 0.01 1 0 0.05861 0.05909 0.83% 

5 0.01 10 0 0.14598 0.14703 0.72% 

6 0.01 50 0 0.25582 0.25762 0.70% 

x/H

y/
H

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of Cells along y direction

E
rr

or
(%

)

5 10 15 20 25 30 35 40 45-6

-5

-4

-3

-2

-1

0

1

2
Interface Location Error
Maximum Velocity Error



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1463

 

 

3) Numerical Solution Error Evaluation 

The comparison of numerical and analytical results 
regarding the interface location for the mentioned six cases 
(flow in zero gravitational force) is denoted in Table I. The 
interface location is shown as fAS for analytical and fNUM for 
numerical solutions. It is observed from this table that the 
error is 0.83% or less. Two observations were made regarding 
these results. First, there is a gradual increase in error with a 

decrease in volumetric flow rate ratio (fQ). This trend is related 
to the interface profile. The interface profile experiences more 
curvature in lower fQ until reaching a completely developed 
state. Therefore, extending the channel length results in a more 
developed flow lowers numerical error. Second, the error 
increases with increasing viscosity ratio. This trend also comes 
from an interface profile that takes longer to reach the 
converged state. 

  

(a) fQ = 0.1, 
 

(b) fQ = 0.01, 

Fig. 9 Intermediate and steady-state solutions for interface profile 
 

 

(a) fQ = 0.1 (b) fQ = 0.01 

Fig. 10 Comparison of analytical and numerical solutions at zero gravitational force and fμ = 1, 10, and 50 
 
C. Effects of Gravitational Force on Two-Phase Flow 

The effects of viscosity and volumetric flow rate ratio are 
investigated in detail in previous section. Similar numerical 
results were carried out for a flow field under a gravitational 
force. From (11b) and (13d), the interface location is almost 
independent of the density ratio at large density ratios (fρ>>1). 

Therefore, only the effects of volumetric flow rate and 
Reynolds-to-Froude number ratios are considered in this 
section. To create more realistic conditions for the two-phase 
flows of water and steam, viscosity and density ratios are set 
to 1000 and 50, respectively. Six cases were established 
considering volumetric flow rate ratios of 0.1 and 0.01 and 
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Reynolds-to-Froude number ratios of -2, 0, and +2. Favorable 
Froude number stands for the case that the gravitational force 
(acceleration) is in direction of the flow and adverse one 
stands for the case that gravitational force is in opposite 
direction of the flow. It is worth noting that, for these flow 
conditions, the Re1/Fr1 = +2 is equivalent, for example, to a 
channel height of 2mm with inclination angles of 5.5º and 28º 
for volumetric flow rate ratios of 0.1, and 0.01, respectively. 
Also, for Fr1/Re1 = -2, the inclination angles will be -2.0º, and 
-5.5º for volumetric flow rate ratios of 0.1 and 0.01, 
respectively (see Fig. 11). 

 

 

Fig. 11 Schematic two-phase channel flow with favorable pressure 
gradient and favorable, zero, and adverse gravitational force 

 
Implementing favorable gravitational force in two-phase 

flow results in velocity increase for the fluid with higher 
density. This leads to a lower thickness of film flow of fluid 
with higher density. Fig. 12 depicts the effect of gravitational 
force in three volumetric flow rate ratios of 0.1 and 0.01. As is 
seen in this figure, in favorable gravitational force 
(Re1/Fr1=+2), the thickness of phase 1 decreases compared to 
the zero gravitational force (Re1/Fr1=0) case. This reduction is 
about 21% and 31% for volumetric flow rate ratios of 0.1, and 
0.01, respectively. 

In adverse gravitational force (Re1/Fr1=-2), the phase 1 film 
thickness increases about 10% and 17% for volumetric flow 
rate ratios of 0.1 and 0.01, respectively. The comparisons 
between the favorable and adverse gravitational forces show 
that the variations of interface location for favorable 
gravitational force is about 2 times more than its variations in 
adverse state. These results are compared in Table II. 

In Table II, the numerical and analytical results are 
summarized for flow under a gravitational force. The interface 

locations obtained from analytical and numerical solutions are 
shown as fAS and fNUM, respectively. It is seen that the error 
level is mostly below 1%. 

 
TABLE II 

COMPARISON BETWEEN THE NUMERICAL AND ANALYTICAL SOLUTIONS FOR 

INTERFACE LOCATION 

Case fQ Re1/Fr1 fAS fNum Error 
Change wrt. zero 

gravitational 
force 

1 0.1 2- 0.52629 0.52954 0.62% 10.03% 

2 0.1 0 0.47831 0.48041 0.44% 0.00% 

3 0.1 2 0.37668 0.37925 0.68% 21.25%- 

4 0.01 2- 0.29916 0.3007 0.52% 16.94% 

5 0.01 0 0.25582 0.25762 0.70% 0.00% 

6 0.01 2 0.17585 0.17616 0.18% 31.26%- 

* For all cases, fμ = 50 and fρ = 1000. 

VII. CONCLUSION 

In a gas-liquid two-phase flow, fluid thermophysical 
properties can be significantly different at the interface of the 
two phases. One of the most challenging parts of the 
numerical simulation of these types of flow is to determine the 
location of the interface accurately. In the present work, a 
coupled interface tracking algorithm was developed based on 
ALE approach using a cell-centered pressure-based finite 
volume method. Firstly, the analytical solution of the flow 
problem without a gravitational force was obtained within a 
2D channel. Secondly, in order to verify present coupled 
algorithm, the results of numerical simulations were compared 
with those of analytical solution at various flow conditions. 
The variation of the interface location versus various non-
dimensional parameters such as the ratio of volumetric flow 
rate of two fluids, their dynamic viscosity ratio, their density 
ratio and the ratio of Reynolds-to-Froude numbers was 
studied. The analytical results showed that the interface 
location is independent of the density ratio of two fluids in 
zero gravity condition. In addition, for very high values of 
density ratio, the effect of variation of density ratio on the 
interface location reduces considerably. The evaluation of the 
developed numerical algorithm, regarding the process of 
interface tracking, was accomplished assuming two cases of 
zero gravity condition and the case with consideration of 
gravity effects. 

Although a relatively coarse and uniform grid was 
employed in the simulations, the numerical results show a 
good accuracy compared with the results of analytical 
solution. Temporal variations of interface profile toward 
reaching to the steady-state condition showed that increment 
of the difference between the properties of two fluids 
(especially their dynamic viscosity) will result in generation of 
larger traveling waves in their interface. Moreover, at steady-
state conditions, the interface profile of two fluids with 
different viscosity and flow rate ratios requires further length 
in flow direction to reach to its final equilibrium location. 
Examination of velocity profile indicates that the employed 
numerical algorithm has been able to adapt with the variation 
of viscosity ratio, which is a significant parameter for 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1465

 

 

determination of the interface location. The developed 
modeling approach enforces an accurate balance of shear 
forces at the phase interface. The study of the gravity effect 
showed that favorable gravity (gravity in direction of the flow) 
will result in reduction of the thickness of heavier fluid 
compared to zero gravity, as expected. In contrast, the adverse 

gravity (gravity in opposite direction of the flow) would lead 
to increment of the heavier fluid thickness compared with the 
case of zero gravity condition. However, it is worth noting that 
the amount of variation in favorable gravity is much more than 
the case of adverse gravity. 

 

 

(a) steady-state interface profiles 
 

 

(b) velocity profiles 

Fig. 12 Interface location and velocity profile versus Re1/Fr1 at fμ = 50 and fρ = 1000 
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