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Abstract—In this paper, a two-channel secure communication 
using fractional chaotic systems is presented. Conditions for chaos 
synchronization have been investigated theoretically by using Laplace 
transform. To illustrate the effectiveness of the proposed scheme, a 
numerical example is presented. The keys, key space, key selection 
rules and sensitivity to keys are discussed in detail. Results show that 
the original plaintexts have been well masked in the ciphertexts yet 
recovered faithfully and efficiently by the present schemes. 

Keywords-fractional chaotic systems, synchronization, secure 
communication. 

I. INTRODUCTION

Since the work of Lorenz [1], chaos theory has stimulated 
intense attentions in recent decades. The random-like behavior 
of chaotic signals provides the potential for many applications. 
Among them, the introduction of chaos into secure 
communication has received a great deal of attentions after the 
pioneering work of Fujisaka & Yamada [2] and Pecora & 
Carroll [3]. With chaos-based encryption, a message is 
encrypted by a master chaotic signal at the transmitter. At the 
receiver end, a slave chaotic signal synchronized with the 
master one is necessary to retrieve the message signal. In recent 
years, a growing number of cryptosystems based on chaos 
synchronization have been proposed [4]. Many of them 
fundamentally are flawed by a lack of robustness and security. 

In order to enhance the security levels, two-channel 
chaos-based cryptosystems are proposed [5, 6]. In these 
cryptosystems the ciphertext consists of a complex nonlinear 
combination of the plaintext and a variable of a chaotic 
transmitter’s generator. Since it was not possible to synchronize 
the slave system with such ciphertext, a second channel had to 
be used in the system for transmitting synchronization signal. 
The synchronization signal was a different chaotic variable 
generated by the master system, which was transmitted to the 
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receiver without any modification and does not contain any 
information of the plaintexts. These schemes are free to attacks 
if only ciphertext is intercepted by the intruder. However, if the 
synchronization signal is also intercepted, those schemes have 
been found to be insecure by Orue et al.[7] because parameter 
estimation is still possible by analyzing the chaos 
synchronization channel. 

Chaotic attractors have been found in fractional order system 
in the past decade [8-15]. Compared to integer order system, it 
is found that the dynamics of fractional order system are more 
complexity because fractional derivatives have complex 
geometrical interpretation because of their non-local character 
[16] and high nonlinearity. Another advantage of using 
fractional chaotic systems in communication is that the 
derivative orders can be used as secret keys as well. Kiani et al. 
[17] proposed a secure communication using fractional chaotic 
systems based on extended fractional Kalman filter. In this 
manuscript, we proposed a modification of the two-channel 
chaos-based cryptosystems by using fractional chaotic systems 
to increase the security level of communication. 

II.FRACTIONAL DERIVATIVES

There are several definitions of fractional derivatives [18]. In 
this study, we use the Caputo-type fractional derivative defined 
by [19]: 
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is the Riemann–Liouville integral operator of order β>0, where 
Γ(β) is the gamma function. 

III. SYNCHRONIZATION BWTWEEN TWO FRACTIONAL LORENZ 

SYSTEMS BY SINGLE VARIABLE

The fractional Lorenz system is given by 
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where 1 2 3( , , )α α α are the fractional orders, ( , , )a b c are 

parameters of this system. It has been shown that the fractional 
Lorenz system exhibits chaotic attractor. The first signal 

1( )x t of system (3) is chosen as synchronization signal to drive 

another Lorenz system 
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Systems (3) and (4) are called the master and slave systems, 
respectively. It is noted that the sybsystem 2 3( , )y y is dependent 

on the signal 1( )x t , but the behavior is not influenced by the 

behavior of 2 ( )x t and 3 ( )x t . 

Synchronization means the trajectories of one of the systems 
will converge to the same values of the other. Define the state 
errors between the master and slave system as 

1 1 1 2 2 2 3 3 3, ,e x y e x y e x y= − = − = − . Subtracting system (3) by 

system (4) leads to 
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By taking Laplace transform of both side of system (5), Let 
( ) [ ( )]

i i
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Proposition: If 1 2( ), ( )E s E s are bounded, then the master and 

slave systems will be synchronized. 

Proof: Rewrite (6) as follows, 
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Using the final value theorem of Laplace transform, it follows 
that 
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Since 1 2( ), ( )E s E s  are bounded, we have 

1 2lim ( ) lim ( ) 0
t t

e t e t
→∞ →∞

= = . Now, owing to the attractiveness of the 

attractors of system (3) and (4), there exists 0η > such that 

( ) , ( )
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x t y tη η≤ < ∞ ≤ < ∞  where i refers to the index of the 

master or slave variables. Therefore, 3lim ( ) 0
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Consequently, the synchronization between the master and 
slave systems (3) and (4) is achieved. 

IV. PROPOSED SCHEME OF SECURE COMMUNICATION

Fig. 1 illustrates the overall architecture of a secure 
communication scheme with two transmission channels. In the 
encryption step, we use a highly nonlinear function φ  to 

encrypt the plaintexts ( )S t with the chaotic signals 2 ( )x t . The 

ciphertexts 1( )T t are transmitted to the receiver. In the second 

step, we transmit the synchronization signal 1( )x t  in a separate 

channel to the receiver. In this channel, 1( )x t  is used for 

synchronization and does not contain any information of the 
plaintexts.  
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Fig. 1 Architecture of the secure communication scheme 

Once synchronization between drive and response systems 
are reached, the plaintexts can be recovered ( ( )

d
S t ) simply 

using the nonlinear function ϕ  to decrypt the ciphertexts. It is 

noted that our secure communication scheme shares a common 
feature with [5]. However, this scheme is different from [5] in 
that we applied a fractional chaotic system. In the following 
section, we will show that the use of fractional chaotic system 
expands the key space and increase the security levels. 
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V. ANALYSIS

A. Numerical results 

In this section, we present simulation results to demonstrate 
the efficiency of our new secure communication scheme. An 
efficient method for solving fractional order differential 
equations is the predictor corrector scheme or more precisely, 
PECE (Predict, Evaluate, Correct, Evaluate) technique. The 
detailed algorithm of the scheme was developed by Diethelm et 
al. [20]. The scheme has been adopted to simulate the fractional 
chaotic system in many researches [11, 14, 17]. It is used 
throughout this paper. 

The following choices of fractional orders, parameters and 
initial conditions for the master and slave systems were selected 
for simulations: 

1 2 3
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The encryption/decryption pairs, ( )and ( )ψ φ• • , can be 

chosen according to different system demands for higher 
security/privacy. In this work, we follow the work of [5] and 
take the encryption and decryption functions to be 
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In the following simulation, a total simulation time of 40 
seconds with 10000 time steps was used. The sampling 
frequency was 250 Hz. A sinusoidal signal with a frequency of 2 
Hz was used as the plaintext signal, ( ) 0.05sin(4 )S t tπ= . Fig. 2 

shows the synchronization between fractional master and slave 
systems. It is shown that two fractional systems have been 
synchronized. Fig. 3 shows the ciphertexts through the channels. 
With nonlinear mix of plaintexts and chaotic signal, it’s 
impossible to obtain the useful plaintexts from the ciphertexts. 
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Fig. 2. The response and synchronization of master and 

slave system. 
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Fig. 3 ciphertexts 1( )T t  through the channel 

Fig. 4 shows the results of the recovery using this scheme. 
The decrypted plaintexts in the initial time stage are clipped to 
scale of the vertical axis in this figure. The plaintexts are 
recovered with errors during the initial synchronization time. 
However, the error of recovery, ( ) ( ) ( )

d
E t S t S t= − , 

approaches zero very quickly. The initial synchronization time 
was estimated to be about 4 seconds.  
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After the initial synchronization time, the plaintexts can be 
successfully recovered as shown in Fig. 4. 

B. Keys, key space, selection rules of keys and sensitivity 

In the present scheme, the encryption signals, 2 ( )x t , are 

generated from the fractional Lorenz system with fractional 
derivative orders 1 2 3( , , )α α α  and the parameters ( , , )a b c . The 

fractional derivative orders can be used as secret keys as well. 
Hence, the secret key consists of six numbers 

1 2 3( , , , , , )a b cα α α . Since these six numbers could be real 

numbers, the space of the keys will be a 6-dimensional space. 
The space is nonlinear since all of the keys are not equally 
strong. In the subspace where the fractional derivative orders or 
parameters of the fractional Lorenz system originate periodic 
orbits, the sub-key space is degenerative because it is relatively 
easy to break. Values of 1 2 3( , , , , , )a b cα α α  which give rise to 

periodic windows should be avoided since chaotic bands are 
preferred for encryption. 

The security of chaos-based cryptosystems relies on the 
secret key consisting of the chaotic system’s parameters and/or 
some other complementary parameters that control how the 
plaintext is included. Hence, finding the parameters is 
equivalent to breaking the system. The two-channel secure 
communication proposed by Jiang [5] has been broken by [7] 
because the parameters of integer Lorenz chaotic system can be 
estimated by simply geometrical properties. In our scheme, as 
fractional derivative order are also regarded as keys, the 
breaking method described by Orue et al. [7] are not effective 
because estimation of fractional derivative orders is not possible 
in their method. 

Next, we demonstrate the sensitivity of our communication 
system to keys. Consider an intruder intercept both the 
ciphertexts and synchronization signals. Assume the intruder 
get an approximate estimate of keys, say 

1 2 3( , , , , , ) (0.96,0.97,1.1,10, 28,8 / 3)a b cα α α = in which there 

is a slight mismatch with the real keys in 2α .  
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Fig. 5 Sensitivity of present secure communication scheme to 
mismatch of keys. 

Fig. 5 shows the sensitivity of present secure communication 
scheme to slight mismatch of keys. It is noted that the recovered 
plaintexts is totally different from the real plaintexts. 

VI. CONCLUSIONS

In this paper chaos synchronization between two fractional 
Lorenz systems by using single variable has been studied. 
Conditions for chaos synchronization have been investigated 
theoretically by using Laplace transform. A two-channel 
communication scheme using the fractional Lorenz systems has 
been presented. With usage of fractional derivative order as the 
keys, the key space is expanded and guarantees higher security. 
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