
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

808

Abstract—Reachability graph (RG) generation suffers from the 
problem of exponential space and time complexity. To alleviate the 
more critical problem of time complexity, this paper presents the new 
approach for RG generation for the Petri net (PN) models of parallel 
processes. Independent RGs for each parallel process in the PN 
structure are generated in parallel and cross-product of these RGs 
turns into the exhaustive state space from which the RG of given 
parallel system is determined. The complexity analysis of the 
presented algorithm illuminates significant decrease in the time 
complexity cost of RG generation. The proposed technique is 
applicable to parallel programs having multiple threads with the 
synchronization problem. 

Keywords—Parallel processes, Petri net, reachability graph, time 
complexity. 

I. INTRODUCTION

HE enumeration of state space requires the construction 
of reachability graph (RG) [1, 2] and it is important and 
fundamental approach for computer-aided verification and 

behavioral analysis of the Petri net (PN) models of parallel 
discrete systems. Further, it provides the complete and 
detailed information about the dynamic behavior of the system 
and its global states represent the combined behavior of all 
parallel components in the parallel discrete systems. 

Parallel events are modeled by the interleaving of 
transitions in the PN model and RG contains all possible 
partial ordering of such transitions and consequently the RG 
confronts with the state-explosion problem [3]. The state-
explosion problem is directly related to the exponential time 
and space complexity involved in generating the state-space of 
parallel systems. 

Several methods have been suggested to tackle the state-
explosion problem, which includes structural analysis methods 
[1, 4, 5] and limited unfolding approaches [6, 7, 8]. Faced to 
the state-explosion problem, the reduction and refinement 
methods [1, 9] have been developed to reduce the complexity 
of the initial net. However, it is not always possible to 
transform a complex and larger net into simpler and smaller 
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one. An algorithm has been proposed to obtain the finite 
representation of the RG by using marking abstraction process 
[10].To alleviate the computational complexity involved in 
generating the RG for parallel systems, partial order reduction 
[11, 12, 13, 14] has been suggested. Partial order reduction to 
cure the complexity issues of RG generation is the range of 
methods for constructing the reduced state space, which 
includes the stubborn set method [15, 16, 17], maximal 
concurrent simulation [18, 19] and symmetry method [20, 21, 
22, 23]. However, partial order reduction methods have 
limited applicability due to their utility for specific analysis 
questions [3]. Another approach to manage the state-explosion 
problem is the compression technique using binary decision 
diagram (BDD) [24, 25, 26].  Gaining in memory often results 
in increase in the temporal complexity [19] because all known 
algorithms for analysis tasks in relatively small memory are 
extremely slow [3]. 

To cope with the critical problem of time complexity, this 
paper presents a new technique for RG generation for parallel 
systems. The proposed technique firstly generates independent 
RGs for each individual process in parallel, and then considers 
the cross-product of these RGs. Finally, resultant RG is the 
subset of exhaustive state space generated by the cross-
product. The complexity analysis of the presented algorithm 
illuminates about a significant decrease in the time complexity 
for RG generation when it is compared with the time 
complexity of the classical method [1, 2]. In addition, the 
generation of independent RGs may be distributed over 
available processors, which increases the practical utility of 
the proposed technique. 

The paper is organized as follows. Section II introduces the 
related terminology. Section III presents the algorithm for 
parallel RG generation. The complexity analysis of the 
proposed algorithm is presented in Section IV. Some 
concluding remarks are presented in Section V.  

II. DEFINITIONS AND CONCEPTS

In this section, some basic definitions and notations of 
ordinary (for the sake of simplicity) PN are described. The 
related terminology and notations are taken from [1, 2].  

Definition 1: (Petri net) A Petri net PN, is a five tuple, 
0( , , , , )PN P T I O M . Where, 1 2{ , , , }PP p p p  is a finite 

set of places, 0P ; 1 2{ , , , }TT t t t   is a finite set of 

transitions, 0T ; :I T P is the input function, which is a 
mapping from transitions to the set of places and it indicates 
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the input places of transitions; :O T P is the output 
function,  which is a mapping from transitions to the set of 
places and it indicates the output places of 
transitions, P T  and P T .

Let ( )jI t  represents the set of input places of 
transition jt T  and ip P  is an input place of a transition 

jt  if ( )i jp I t ; ( )jO t represents the set of output places,
then ip  is an output place of jt  if ( )i jp O t . For example, a 
PN structure given in Fig. 1 has 1 2 3 4{ , , , }P p p p p  and 

1 2 3 4 5{ , , , , }T t t t t t  with 1 1( ) { }I t p , 2 1( ) { }I t p ,

3 2( ) { }I t p , 4 3( ) { }I t p , 5 4( ) { }I t p  and 1 2( ) { }O t p ,

2 3( ) { }O t p , 3 4( ) { }O t p , 4 4( ) { }O t p , 5 1( ) { }O t p .
The input and output functions can be extended to map the 

set of places P  into the set of transitions T  such as 
:I P T  and :O P T . Then, set ( )iI p  represents the set 

of input transitions of place ip P and set ( )iO p  represents 
the set of output transitions of place ip P .
Therefore, 1 5( ) { }I p t , 2 1( ) { }I p t , 3 2( ) { }I p t ,

4 3 4( ) { , }I p t t  are sets of input transitions and 

1 1 2( ) { , }O p t t , 2 3( ) { }O p t , 3 4( ) { }O p t , 4 5( ) { }O p t  are 
sets of output transitions of all the places of a structure given 
in Fig. 1. 

The incoming arc from ip  to jt  is represented by 

( , ( ))i jp I t and outgoing arc from jt to ip be ( , ( ))i jp O t .
Similarly, ( , ( ))j it I p  represents the incoming arc from jt to

ip as ( )j it I p and arc ( , ( ))j it O p represents outgoing arc 
from ip  to jt as ( )j it O p  , when the set of places maps into 

the set of transitions; ,j it T p P .

The structure of a PN is defined by the set of places, set of 
transitions, input function and output function. A PN structure 
without 0M is denoted by ( , , , )N P T I O . A PN 
structure N is said to be strongly connected if and only if 
every node ix P T is reachable from every other 
node jx P T  by a directed path. A PN structure N is said 
to be self-loop-free or pure if and only if jt T ,

( ) ( )j jI t O t i.e. no place can be both an input and an 
output of the same transition. 

A marking is a function :M P (non-negative
integers) and initial marking is denoted by 0M . A PN with 
given initial marking is denoted by 0( , )N M . The set of all 
reachable markings from 0M  is denoted by 0( )R M which is a 
definite set of markings of PN such that, if 0( )kM R M  and 

jt
k kM M  for some jt T , then 0( )kM R M .

Definition 2: (Firing rule) The firing rule identifies the 
transition enabling and the change of marking. Let ( )iM p be
the number of tokens in place ip , then for jt T ; jt  is 

enabled under marking M if and only if ( )i jp I t : ( ) 1iM p .
The change of marking M to M by firing the enabled 
transition jt  is denoted by jtM M  and defined for each 

place ip P  by 
( ) 1 for every ( )
( ) 1 for every ( )( )
( ) otherwise.

i i j

i i ji

i

M p p I t
M p p O tM p
M p

Definition 3: (reachability graph) the RG of the PN model is 
a directed graph 0( , , , )G V L E v , V is the set of vertices and 
each vertex kv V  represents the reachable 
marking 0( )kM R M ; L  is a set of labels where each 

il L directly corresponds to fireable transitions in any 
reachable marking of PN; E is the set of edges such 
that 1 1( , , ) \ , ,k i k k k iE v l v E v v V l L  and for each 
e E , kv is a initial vertex of e , 1kv is a terminal vertex of 
e and il  is a label of the edge. Basically, set of labeled 
directed edges E  is a firing relation such as E V L V .
Therefore, each e E  represents directed edge from given 
marking kM  to other reachable marking 1kM  and labeled by 
the fired transition it  at given marking; 0 0v M  is the initial 
vertex.

Fig. 1 An example of PN model

III. PARALLEL GENERATION OF REACHABILITY GRAPH

The PN modeling of parallel processes depicts the 
interleaving of transitions (events), which can be observed 
from Fig. 2(a), and state-space explosion is directly related to 
the exploration of all possible interleavings of parallel events 
in RG. For instance, the execution of k  parallel events 
(independent transitions) is investigated by exploring all !k
interleavings of these transitions (events) and states in RG.  

The proposed technique initiates by extracting the 
independent parallel processes from the PN model of a 
concurrent system. Every individual parallel process is the 
sequential representation of events as shown in Fig. 2(c) and 
consequently the RG is the sequence of states. The technique 
permits the concurrent execution of independent parallel 
processes to aim at time complexity involved in RG 
generation.

t5
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Fig. 2 (a) PN model with parallel processes, (b) its classical RG generation and (c) independent parallel processes obtained from Fig. 2(a)

The cross-product of the individual RGs of parallel 
processes generates the exhaustive state-space of the whole 
PN model of the system. The RG is a sub-graph of this cross 
product and it is obtained by discarding the invalid states from 
the exhaustive state-space.

The interaction of the parallel processes often incorporated 
with the synchronization structure in its PN model. Fig. 2(a) 
shows the PN model with interacting parallel processes, where 
transition 3t is the synchronic point of the PN structure. The 
synchronizing transition in PN model becomes sequential 
transition in each independent parallel process. 
  However, synchronizing transition does not permit the all 
possible partial ordering of transition executions in RG. The 
transitions before and after the synchronizing transition have 
the causal relationship. Further, the transition after the 
synchronizing transition can not be fired before the execution 
of synchronizing transition. Synchronizing transition would be 
in every independent process, by tracking the synchronizing 
transition, invalid states can be eliminated from exhaustive 
state space and remaining states are global states of RG. 

From the above discussion, an algorithm can be developed 
to reduce the time complexity of RG generation with 
concurrent executions of parallel processes. 

Algorithm for parallel generation of RG:
1. Input: N Parallel processes; iP , 1, 2, ,i N .
2. iP : generate iR , where iR  is the RG of iP .
3. Tag each state by the fired transition obtaining that state 

in iR , iR .
4. Do, 1 2 NR R R  such 

that 1 2 1 2( , ,   , )j j ij Nj NS S S S R R R . Where, ijS  is the 
jth state in iR  and 1 2 NRG R R R .

 Now, each ijS  is a local state of the global 
state 1 2( , ,   , )j j ij NjS S S S .

5. For each global state 1 2( , ,   , )j j ij NjS S S S  , do; if jt as
synchronizing transition, discard the global states if any pair 
of local states ,ij jkS S has the tag of transition jt , before or 
after the transition jt  in parallel process. 

6. Output: RG  of PN model. 

To formalize the RG for the PN model of a system having 
parallel processes with the implementation of the algorithm 
given above, the algorithm proceeds as follow: 
 For each parallel process iP , RG iR  is generated, which 

corresponds to sequence of places as states and transitions 
as edges in that individual process. For example, for 1P

which is shown in Fig. 2(c), 31 4
1 3 5 7

tt tp p p p
is 1R . The RG generation for all siP  is carried out in 
parallel.

 Each state in iR and iR  is tagged by the transition, through 
which it is reached, e.g. the state 3p  has a tag 1t  in the 
example given above. 

 The cross product of siR  (i.e. 1 2 NR R R ) is performed 
to construct the exhaustive state space containing the global 
states of the form 1 2( , ,   , )j j ij NjS S S S . For example, 
Table I shows the exhaustive state space for PN given in 
Fig. 2(a). Moreover, each element of the global state is the 
state for any individual process as well as local state for that 
global state. 

 RG is obtained by discarding the invalid states in the 
exhaustive state space. Therefore, the set of reachable states 
in the resultant RG is the subset of exhaustive state space. 
Invalid states in the presence of synchronizing transition in 
PN structure are identified with the assistance of the tags of 
local states. Every global state is discarded from exhaustive 
state space, if any pair of local states has the tag of 
synchronizing transition, before or after the synchronizing 
transition in PN structure. 
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TABLE I
EXHAUSTIVE STATE SPACE DUE TO 1 2R R

Tags 02m 2t 3t 5t
     P2
States 2p 4p 6p 8p

Tags States      
01m 1p ( 1p , 2p ) ( 1p , 4p ) ( 1p , 6p ) ( 1p , 8p )

1t 3p ( 3p , 2p ) ( 3p , 4p ) ( 3p , 6p ) ( 3p , 8p )

3t 5p ( 5p , 2p ) ( 5p , 4p ) ( 5p , 6p ) ( 5p , 8p )
P1

4t 7p ( 7p , 2p ) ( 7p , 4p ) ( 7p , 6p ) ( 7p , 8p )

TABLE II
RG OF FIG. 2(a) OBTAINED BY DISCARDING THE INVALID GLOBAL STATES FROM TABLE I 

( 1p , 2p ) ( 1p , 4p )
( 3p , 2p ) ( 3p , 4p )

( 5p , 6p ) ( 5p , 8p )
( 7p , 6p ) ( 7p , 8p )

For example, local states 5p , 2p of ( 5p , 2p ) has the 
respective tags 3t , 02m  in Table I, where 01m and 02m  are initial 
states of individual parallel processes P1 and P2 respectively, 
in Fig. 2(c). However, synchronizing transition 3t  can not be 
fired at initial state of any process. Therefore, global state 
( 5p , 2p ) is invalid and discarded. In the same manner, Table 
II shows the RG for PN in Fig. 2(a) by discarding all the 
invalid states. Global states in Table 2 are compared to the 
reachable states in RG obtained by classical method [1, 2] of 
Fig. 2(b) and found exactly same. 

IV. COMPLEXITY ANALYSIS OF ALGORITHM

The exact analytical evaluation of computational 
complexity of the algorithm for generating the RG is not a 
trivial task even for a restricted structure of the PN model of 
parallel discrete systems. The effectiveness of algorithm can 
be proved by comparing the reduction in complexity of the 
new algorithm with respect to the time complexity involved in 
the classical method of RG generation. The asymptotic 
complexity (the worst case complexity) is given below, which 
allows estimating the maximal duration of the computation of 
RG. 
Time complexity for classical method: Classical method for 
generating the RG considers the space complexity of 

( )NO P for PN structure having N parallel branches, where 

each branch has P  places. Now in the worst case, each 
reachable state in RG may be connected to every other state. 
Therefore, the temporal complexity, which is proportional to 
the number of edges is bounded by 2( )NO P . Hence the 
temporal complexity, in worst case, involved in generating the 
RG is quadratic with respect the number of states in RG. 

Time complexity for proposed algorithm: For calculating 
the time complexity of RG with the implementation of 
proposed algorithm, the cost of each step of the algorithm is 
calculated as follows: 

 First step of the algorithm, i.e. construction of iR
1, ,i N , takes time of ( . )O P N  and tagging takes the 

time of ( . )O T N , where T  represents the number of 
transitions in each individual process. 

 In second step of the algorithm, the cross-product takes the 
time of ( . )O P N .

 The third step considers the elimination of invalid states 
from exhaustive state space of size ( )NO P . Therefore, in 
the worst case, the total cost for discarding the invalid states 
is ( . . )NO T N P .

 Finally, the asymptotic total cost of algorithm is 
( . . . . . )NO P N T N P N T N P ( . . )NO T N P .

Now, each step is independent, by considering the parallel 
execution of each step on K available processors, the time 
complexity is reduced to (( . . ) / )NO T N P K .

 Hence the asymptotic computational complexity of the 
proposed algorithm with single available processor 
is ( . . )NO T N P .  It is linear with respect to the number of 

states NP  and total number of transitions, which is equal 

to .T N , in the PN model of parallel processes. 

V. CONCLUSIONS

A new technique for generating the RG is proposed, which 
leads to the significant reduction in time complexity. In 
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addition, sequential execution of the algorithm itself shows 
significant reduction in time complexity, where total cost of 
the algorithm is ( . . )NO T N P , which is linear with respect to 
the number of states and the number of transitions. The 
proposed technique has practical application to the behavioral 
and reachability analysis of parallel programs having multiple 
parallel threads with the synchronization problem.  
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