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Abstract—Reducing energy consumption of embedded systems re-
quires careful memory management. It has been shown that Scratch-
Pad Memories (SPMs) are low size, low cost, efficient (i.e. energy
saving) data structures directly managed at the software level. In this
paper, the focus is on heuristic methods for SPMs management. A
method is efficient if the number of accesses to SPM is as large as
possible and if all available space (i.e. bits) is used. A Tabu Search
(TS) approach for memory management is proposed which is, to
the best of our knowledge, a new original alternative to the best
known existing heuristic (BEH). In fact, experimentations performed
on benchmarks show that the Tabu Search method is as efficient as
BEH (in terms of energy consumption) but BEH requires a sorting
which can be computationally expensive for a large amount of data.
TS is easy to implement and since no sorting is necessary, unlike
BEH, the corresponding sorting time is saved. In addition to that,
in a dynamic perspective where the maximum capacity of the SPM
is not known in advance, the TS heuristic will perform better than
BEH.

Keywords—Energy consumption, memory allocation management,
optimization, Tabu Search heuristic.

I. INTRODUCTION

EMBEDDED systems are everywhere. Due to technology
evolution, these systems must integrate more complex

functionalities (video, audio, Internet, videophone, etc.) which
needs more and more battery and memory.

Depending on that, memory will become the major en-
ergy consumer in an embedded system. Numerous options
to economize energy, hence increase autonomy, exist. These
various approaches can be classified in two main categories:
hardware optimizations and software optimizations. Hardware
techniques fall beyond the scope of this paper, but a large
amount of literature about them is available (see first parts of
[1]). In this paper, the focus will be on software optimizations.
Some techniques and algorithms, synthesized in [2], try to
optimally allocate application code and/or data to one memory
kind called Scratch-Pad Memory in order to reduce the energy
consumption of embedded systems.

Cache memory is random access memory (RAM) that a
computer microprocessor can access more quickly than it can
access regular RAM. As the microprocessor processes data,
it looks first in the cache memory and if it finds the data
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there (from a previous reading of data), it does not have to do
the more time-consuming reading of data from larger memory
[3]. Cache memories, although they help a lot with program
speed, do not always fit in embedded systems: they increase
the system size and its energy cost (cache area plus managing
logic).

Scratch-Pad Memory (SPM), also known as scatchpad
RAM or local store in computer terminology, is a high-
speed internal memory used for temporary storage of
calculations, data, and other work in progress. In reference to
a microprocessor, SPM refers to a special high-speed memory
circuit used to hold small items of data for rapid retrieval.
It can be considered as similar to an L1 cache in that it
is the memory next closest to the ALU’s after the internal
registers, with explicit instructions to move data from and to
main memory. Like caches so, SPMs consist of small, fast
SRAM, but the main difference between them is that SPMs
are directly and explicitly managed at the software level,
either by the developer or by the compiler, whereas caches
require extra dedicated circuits. SPM’s software management
makes it more predictable (by avoiding cache miss cases
which is an important feature in real-time embedded systems).
Compared to cache, SPM thus has several advantages [4].
SPM requires up to 40% less energy and 34% less area than
cache [5]. Further, the run-time with an SPM using a simple
static knapsack-based [5] allocation algorithm is 18% better
as compared to a cache. Contrarily to [5], [6] distinguish
between static and dynamic energy. They also show the
effectiveness of using an SPM in a memory architecture
where a saving about 35% in energy consumption is achieved
when compared to a memory architecture without an SPM.
[7] use statistical methods and the Independent Reference
Model (IRM) to prove that SPMs, with an optimal mapping
based on access probabilities, will always outperform the
direct-mapped cache, irrespective of the layout influencing
the cache behavior.

The rest of the paper is organized as follows. Section II
describes some existing heuristics for managing memory data
allocation. Section III explain the presented approach based
on a Tabu Search heuristic to find the optimized memory
data allocation in order to reduce energy consumption. Section
IV gives the memory energy consumption model proposed
in order to estimate the energy consumed by the different
heuristics. Section V shows the experimental results obtained.
Finally, Section VI concludes and gives some perspectives.
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II. EXISTING HEURISTICS

In general, authors try to answer the following question:
which kind of application data should be allocated to which
kind of memory? In order to solve this problem, data
placement could be guided on one hand by the features of
the considered memory (access speed, energy cost, large
number of miss access cases, etc.), and on the other hand by
the information collected either statistically by analyzing the
benchmark’s code or dynamically by profiling benchmarks
(number of times that data is accessed, data size, access
frequency, etc.).
Due to the reduced size of SPMs, one tries to optimally
allocate data in it in order to realize energy savings. Thus,
most of the authors use one of these three following strategies.

Allocate data into SPM by size: the smaller data are
allocated into SPM as there is space available else they
are allocated in main memory (DRAM). This method has
the advantage of being simple to implement since it only
considers the size of the data but has the disadvantage of
allocating the largest data in the DRAM. These largest data
could be often accessed, which will imply a very few energy
economy.

Allocate data into SPM by number of accesses: the
most frequently accessed/used data are allocated into SPM
as there is space available else they are allocated in DRAM.
This strategy is optimal than the previous one, since the
most frequently accessed/used data will be allocated in a
memory that consumes less energy and therefore will achieve
more savings as explained and demonstrated in [8] and [9].
However, granularity problems can be noted in some cases
such as a structure with only one part is often accessed/used.

Allocate data memory into SPM by number of accesses
and size (BEH): this is somehow a combination of the
two previous strategies. The idea here is to combine their
advantages. If the example of a structure in which only a part
is the most frequently accessed/used is considered, the average
number of access to this structure is taken into account. This
avoids granularity problems. Here, data are sorted according
to their ratio (access number/size) in descending order. The
data with the highest ratio is allocated first into SPM as there
is space available. Otherwise it is allocated in DRAM. This
heuristic uses a sorting method which can be computationally
expensive for a large amount of data. In addition to that,
this sorting method will not work very well in a dynamic
perspective where the maximum capacity of the SPM is not
known in advance. This is, so far, the best known existing
heuristic (BEH).

In the rest of this paper, it will be referred to the strategy
BEH as a basis for memory energy optimizations.

III. TABU SEARCH APPROACH

The problem trying to be solved is a combinatorial
optimization problem like the famous knapsack problem [10].

Generate an initial solution.
loop

Identify neighborhood set.
Identify tabu set.
Identify aspirant set.
Choose the best move.
exit when goal is satisfied or
the stopping condition is reached.

end loop

Fig. 1. A Generic Tabu Search Algorithm.

Suppose memory is a big knapsack and data are items. The
knapsack is filled such that it can hold a total weight of W
with some combination of items from a list of N possible
items each with weight wi and value vi so that the value
of the items packed into the knapsack is maximized. This
problem has a single linear constraint, a linear objective
function which sums the values of the items in the knapsack,
and the added restriction that each item will be in the
knapsack or not. If N is the total number of items, then there
are 2N subsets of the item collection. So an exhaustive search
for a solution to this problem generally takes exponential
running time. Therefore, the obvious brute-force approach is
infeasible. Here, the problem is investigated using the Tabu
Search method.

In this paper, a heuristic based on the Tabu Search approach
is proposed to solve the problem of optimizing the memory
data allocation. This heuristic is an alternative to the best
known existing heuristic (BEH) presented in Section II.
Tabu Search (TS) is a local search metaheuristic introduced
by Glover (1986). Details about Tabu Search can be found
in [11]. TS explores the solution space by moving at each
iteration from a solution s to the best solution in a subset of
its neighborhood N(s). Contrary to classical descent methods,
the current solution may deteriorate from one iteration to the
next. New, poorer solutions are accepted only to avoid paths
already investigated. This insures new regions of a problem
solution space will be investigated with the goal of avoiding
local minima and ultimately finding the desired solution. To
avoid cycling, solutions possessing some attributes of recently
explored solutions are temporarily declared tabu or forbidden.
The duration that an attribute remains tabu is called its tabu
tenure, and it can vary over different intervals of time. The
tabu status can be overridden if certain conditions are met;
this is called the aspiration criterion and it happens, for
example, when a tabu solution is better than any previously
seen solution. Finally, various techniques are often employed
to diversify or to intensify the search process. A generic Tabu
Search algorithm is summarized in Figure 1.

The memory (SPM) is filled such that it can hold a
maximum capacity of C with a combination of data from
a list of N possible data each with size sizei and access
number ani so that the access number of the data allocated
into SPM is maximized. In the implemented TS algorithm,
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an initial solution is first generated randomly. If N is the
total number of data, then a solution is just a finite sequence
s of N terms such that s[n] is either 0 or the size of the nth

data. s[n] = 0 if and only if the nth data is not selected in
the solution. This solution must satisfy the constraint of not
exceeding the maximum SPM capacity (i.e.

∑N
i=1 s[i] ≤ C).

A maximum number of iterations and a lifespan on the tabu
list are also set. Initially, the optimal solution equals the initial
solution, the optimal access number is the access number of
the initial solution and the tabu list is empty. As long as the
number of iterations is not exceeded, the following is repeated:

• The eth neighborhood of the current solution is generated.
• A new matrix containing the neighboring vectors is

computed.
• Based on the solutions contained in this matrix, a vector

of corresponding current size values and a vector of cor-
responding current access number values are calculated.

• Best solution are kept from neighborhood.
• The tabu list is updated to make a transition back to the

old solution impossible for a period.
• Finally, update is performed if this new access number is

better than the existing optimal access number.

IV. MEMORY ENERGY ESTIMATION MODEL

In order to compute the energy cost of the system for
each configuration, in this section, an energy consumption
estimation model is proposed for the considered memory
architecture composed by an SPM, a DRAM and an instruction
cache memory. In this model, the distinction is done between
the two cache write policies: write-through and write-back. In
a Write-Through cache (WT), every write to the cache causes
a synchronous write to the DRAM. Alternatively, in a Write-
Back cache (WB), writes are not immediately mirrored to the
main memory. Instead, the cache tracks which of its locations
have been written over and marks these locations as dirty.
The data in these locations is written back to the DRAM when
those data are evicted from the cache [3]. The proposed energy
consumption estimation model is presented below:

E = Etspm + Etic + Etdram

E = Nspmr ∗ Espmr (1)
+ Nspmw ∗ Espmw (2)

+

Nicr∑
k=1

[hik ∗ Eicr + (1− hik) ∗ [Edramr + Eicw

+(1−WPi) ∗DBik ∗ (Eicr + Edramw)]] (3)

+

Nicw∑
k=1

[WPi ∗ Edramw + hik ∗ Eicw + (1−WPi) ∗

(1− hik) ∗ [Eicw +DBik ∗ (Eicr + Edramw)]] (4)
+ Ndramr ∗ Edramr (5)
+ Ndramw ∗ Edramw (6)

Lines (1) and (2) represent respectively the total energy
consumed during a reading and during a writing from/into

TABLE I
LIST OF TERMS.

Term Meaning
Etspm Total energy consumed in SPM.
Etic Total energy consumed in instruction cache.
Etdram Total energy consumed in DRAM.
Espmr Energy consumed during a reading from SPM.
Espmw Energy consumed during a writing into SPM.
Nspmr Reading access number to SPM.
Nspmw Writing access number to SPM.
Eicr Energy consumed during a reading from instruction cache.
Eicw Energy consumed during a writing into instruction cache.
Nicr Reading access number to instruction cache.
Nicw Writing access number to instruction cache.
Edramr Energy consumed during a reading from DRAM.
Edramw Energy consumed during a writing into DRAM
Ndramr Reading access number to DRAM.
Ndramw Writing access number to DRAM.
WPi The considered cache write policy: WT or WB.

In case of WT, WPi = 1 else in case of WB then
WPi = 0.

DBik Dirty Bit used in case of WB to indicate during the access
k if the instruction cache line has been modified before
(DBi = 1) or not (DBi = 0).

hik Type of the access k to the instruction cache. In case of
cache hit, hik = 1. In case of cache miss, hik = 0.

SPM. Lines (3) and (4) represent respectively the total energy
consumed during a reading and during a writing from/into
instruction cache. When, lines (3) and (4) represent respec-
tively the total energy consumed during a reading and during
a writing from/into DRAM. The various terms used in the
energy consumption estimation model are explained in Table
I.

V. EXPERIMENTAL RESULTS

For experiments, a memory architecture composed by
a Scratch-Pad Memory, a main memory (DRAM) and an
instruction cache memory is considered. Similar features for
the cache memory and the SPM are taken in order to compare
their energy performance fairly. Experiments were performed
with eleven benchmarks from six different suites: MiBench
[12], SNU-RT, Mälardalen, Mediabenchs, Spec 2000 and
Wcet Benchs. Table II gives a description of these benchmarks.

In order to compute the energy cost of the system for each
configuration, the developed energy consumption estimation
model presented in Section IV was used. This model is
based on the OTAWA framework [13] to collect information
about number of accesses and on the energy consumption
estimation tool CACTI [14] in order to collect information
about energy per access to each kind of memory. OTAWA
(Open Tool for Adaptative WCET Analysis) is a framework
of C++ classes dedicated to static analyses of programs
in machine code and to the computation of Worst Case
Execution Time (WCET). OTAWA is freely available (under
the LGPL license) and is designed to support different
architectures like PowerPC, ARM or M68HC. In this case,
the focus is on PowerPC architectures. In this model, the
distinction is done between the two cache write policies:
Write-Through (WT) and Write-Back (WB) as explained
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TABLE II
LIST OF BENCHMARKS.

Benchmarks Suite Description
Sha MiBench The secure hash algorithm that

produces a 160-bit message digest
for a given input.

Bitcount MiBench Tests the bit manipulation abilities of
a processor by counting the number
of bits in an array of integers.

Fir SNU-RT Finite impulse response filter (signal
processing algorithms) over a 700
items long sample.

Jfdctint SNU-RT Discrete-cosine transformation
on 8x8 pixel block.

Adpcm Mälardalen Adaptive pulse code modulation
algorithm.

Cnt Mälardalen Counts non-negative numbers in
a matrix.

Compress Mälardalen Data compression using lzw.
Djpeg Mediabenchs JPEG decoding.
Gzip Spec 2000 Compression.
Nsichneu Wcet Benchs Simulate an extended Petri net.

Automatically generated code with
more than 250 if-statements.

Statemate Wcet Benchs Automatically generated code.

before. The presented Tabu Search algorithm and the BEH
strategy have been implemented with the C language on a PC
Intel Core 2 Duo, with a 2.66 GHz processor and 3 Gbytes
of memory running under Mandriva Linux 2008.

In experiments, 30 different executions for the Tabu Search
heuristic are generated as the solution given differs from an
execution to another. TS Mean refers to the average results
obtained on these 30 executions. In contrast, TS Best refers
to the best solution obtained from the thirty executions
performed. For BEH, the solution founded does not change
from a running to another one.

Figure 2, presents the results obtained when comparing
BEH and TS methods on the standard ANR benchmarks
assuming the write-back cache policy. In the following,
as the shape of curves obtained when comparing BEH
and TS methods on the ANR benchmarks assuming the
Write-Through cache policy (WT) or the Write-Back cache
policy (WB) are slightly the same, just the results obtained
with the write-back cache policy are plotted. Knowing that
EWTmode �= EWBmode.

As it can be seen from this figure, TS Best achieves the
same performance as BEH on energy savings on the standard
ANR benchmarks. In addition to that, TS Mean produces
nearly the same energy gains. It has been shown that saving
more energy is not possible as BEH already gives the optimal
solution thanks to a developed backtracking algorithm. This
is true for the standard ANR benchmarks used as they contain
uniform data leading to a big number of local minima. Thus,
in order to put some trouble in the BEH strategy and see
if it still gives the best solution, it was decided to modify
slightly these benchmarks. Concretely, the modification
consists in adding only one variable to each benchmark. This

Fig. 2. Energy consumed in standard benchmarks with WB mode.

Fig. 3. Energy consumed in modified benchmarks with WB mode.

variable performs an output and is big enough to provide
relevant energy savings if it is selected for a Scratch-Pad
Memory allocation. A modified benchmark is referred to as
benchmarkCE.

Figure 3 presents the energy consumed in the modified
benchmarks assuming the write-back cache policy. Reminding
that EWTmode �= EWBmode.

As it can be noticed from this figure, although the modified
benchmarks were used, the same energy savings as before
are still obtained. The BEH strategy didn’t give the optimal
solution anymore as one could expect as proven by a developed
backtracking algorithm. This is normal due to the fact that
BEH is a sort of access number/size of data as it was explained
in Section II. The variable added in each benchmark has
a given access number/size (this ratio depends on the data
profiling of each benchmark) so that this variable is not a
priority in the sorting made by the BEH method. This is
done on purpose so that when it will be the turn of this
variable to be treated by BEH, the remaining space in the
SPM will not be enough to take this variable and hence it will
be allocated in main memory. Whereas, an optimal solution
would be to start by allocating this variable first into the SPM.
It can be seen that the Tabu Search heuristic gives the same
results as BEH on the modified ANR benchmarks. As this
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problem is a combinatorial optimization problem (NP-hard
problem), an exhaustive search for a solution generally takes
exponential running time. Therefore, the obvious brute-force
approach is infeasible. That’s why, investigating the problem
using evolutionary algorithms and, more specifically, genetic
methods will be planned in the future.

VI. CONCLUDING REMARKS AND FURTHER RESEARCH
ASPECTS

In this paper, a general energy consumption estimation
model have been proposed. This model is able to be adapted to
different memory architecture configurations. A Tabu Search
heuristic (TS) for memory allocation management has also
been proposed. TS is a new original alternative to the best
known existing method (BEH). It was shown that the TS
heuristic is as efficient as BEH in terms of energy con-
sumption. TS is easy to implement and since no sorting
is necessary, unlike BEH, the corresponding sorting time is
saved. In addition to that, in a dynamic perspective where
the maximum capacity of the SPM is not known in advance,
TS heuristic will perform better than BEH. In future work,
evolutionary heuristics (Genetic Algorithms, Markov Decision
Processes, Simulated Annealing, ANT method, Particle Swarm
technique, etc.) and hybrid heuristics will be explored for
solving the problem of reducing memory energy consumption.
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