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A Systems Approach to Gene Ranking from DNA
Microarray Data of Cervical Cancer

Frank Emmert Streib, Matthias Dehmer, Jing Liu and Max Mühlhäuser

Abstract— In this paper we present a method for gene ranking
from DNA microarray data. More precisely, we calculate the corre-
lation networks, which are unweighted and undirected graphs, from
microarray data of cervical cancer whereas each network represents
a tissue of a certain tumor stage and each node in the network
represents a gene. From these networks we extract one tree for
each gene by a local decomposition of the correlation network. The
interpretation of a tree is that it represents the n-nearest neighbor
genes on the n’th level of a tree, measured by the Dijkstra distance,
and, hence, gives the local embedding of a gene within the correlation
network. For the obtained trees we measure the pairwise similarity
between trees rooted by the same gene from normal to cancerous
tissues. This evaluates the modification of the tree topology due to
progression of the tumor. Finally, we rank the obtained similarity
values from all tissue comparisons and select the top ranked genes.
For these genes the local neighborhood in the correlation networks
changes most between normal and cancerous tissues. As a result
we find that the top ranked genes are candidates suspected to be
involved in tumor growth and, hence, indicates that our method
captures essential information from the underlying DNA microarray
data of cervical cancer.
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I. INTRODUCTION

THE comparison of structured objects such as graphs and
trees is a difficult and outstanding problem. Traditional

investigations dealing with distances between graphs are based
on isomorphic relations and subgraph isomorphism [6], [11],
[15], respectively. An example of such a graph distance is the
well-known ZELINKA-distance [18]. The ZELINKA-distance
is based on the principle that two graphs are more similar, the
bigger the common induced isomorphic subgraph is. ZELINKA

was the first who introduced this measure for unlabeled graphs.
SOBIK [13], [14] and KADEN [6], [7] generalized this measure
for arbitrary graphs, which includes also labeled graphs, of
different order and proved that it is a metric.

This paper continues our work started in [4]. There we
demonstrated that correlation networks obtained from DNA
microarray experiments from cervical cancer of different tu-
mor stages can be classified by a binary graph classifier
(BGC) introduced in [4]. These results demonstrated, that the
information captured by the DNA microarray experiments is
sufficient to differentiate the biologically different tissue stages
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solely based on the correlation networks extracted form these
data. This extends recent finding by GOLUB et al. [5] who
demonstrated, that cancer can be classified on a molecular
level, however, applying different theoretical methods, which
do not involve the description in terms of networks. In this
work we will investigate the question: Which genes contribute
most to the classification on a network level? For this reason,
we introduce a new method for gene ranking. The gene ranking
method is based on the comparison of generalized trees, which
are locally extracted from the correlation network obtained for
each disease stage. More precisely, we determine which local
neighborhood of a gene, represented by its corresponding tree,
changes most in the correlation network during progression
of cancer. For our study we use the data from WONG et
al. [17] about cervical cancer. This paper is organized in the
following way: In the next section we describe the generalized
trees-similarity algorithm (GTSA) to measure the similarity
of generalized trees. In section III we present a method to
decompose a network locally in generalized trees. We apply
these methods in the results section IV to determine the
gene ranking for genes from DNA microarray experiments of
cervical cancer. The article finishes with a discussion of our
obtained results.

II. SIMILARITY MEASURE OF GENERALIZED TREES

In this section we introduce a similarity measure which
operates on a special class of graphs: unlabeled, hierarchical,
and directed graphs. EMMERT-STREIB et al. [4] called these
graphs generalized trees, because this graph class generalizes
normal trees in the sense that, e.g., connections are allowed
that jump over more than one level. In this paper we call the
underlying algorithm for measuring the structural similarity
of generalized trees the generalized tree-similarity algorithm
(GTSA) [4]. DEHMER et al. [2] presented an overview of
graph similarity measures and the mathematical motivation
of the similarity measure in detail. The main idea is based
on the derivation of property strings for each generalized
tree and then to align the property strings representing the
trees by a sequence alignment technique based on dynamic
programming [1]. From the resulting alignment we obtain
a value of the scoring function which is minimized during
the alignment process. The similarity of two generalized trees
will be expressed by a natural cumulation of local similarity
functions which weighs two types of alignments: out-degree
and in-degree alignments.
Now we are looking for structural characteristics of our
generalized trees which are suitable for the definition of a
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Fig. 1. Shown are two generalized trees Ĥ1 and Ĥ2 with their property stings. For example, the property string in terms of in-degrees of Ĥ1 on level 1 is
“2 ◦ 1”. Or the out-degrees of Ĥ2 on level 2 are ”0 ◦ 1 ◦ 0 ◦ 0 ◦ 0”.The symbol ◦ denotes usual string concatenation.

meaningful similarity measure. If we choose degree sequence
vectors [2] we see immediately that e.g., simple comparisons
of such degree sequences cannot describe the topology of
our graphs completely. Since we are examining hierarchical
graphs, we take a closer look at the out-degree and in-degree
sequences, induced by the vertex sequences vi,1, vi,2, . . . , vi,σi

and their edge relations (see Figure (1)). If we define the vertex
set as

V̂ := {v0,1, v1,1, v1,2, . . . , v1,σ1
, v2,1, v2,2, . . . , v2,σ2

,

. . . , vh,1, vh,2, . . . , vh,σh
} (1)

note that σi is maximal in the sense that there is no other vertex
sequence such that vi,1, vi,2, . . . , viσ̂i

with σ̂i > σi. h denote
the maximal length of a path from the root v0,1 to a leaf.
Now, for determining the structural similarity of generalized
trees it holds: the more similar the out-degree and in-degree
sequences on the levels i, 0 ≤ i ≤ h are, the more similar is
the common structure of the generalized trees, with respect to
a cost function α. Define wĤk

k := vĤ
k

0,1 , k ∈ {1, 2}, and let Ĥ1

be a given graph and vĤ1

i,j , 0 ≤ i ≤ h1, 1 ≤ j ≤ σi denotes

the j-th vertex on the i-th level of Ĥ1, analogous to vĤ2

i,j for
Ĥ2. As mentioned above, the task of measuring the structural
similarity between Ĥ1 and Ĥ2 is equivalent to determining
the optimal alignment of

S1 := vĤ
1

0,1 ◦ vĤ
1

1,1 ◦ vĤ
1

1,2 ◦ · · · ◦ vĤ
1

h1,σh1

, (2)

S2 := vĤ
2

0,1 ◦ vĤ
2

1,1 ◦ vĤ
2

1,2 ◦ · · · ◦ vĤ
2

h2,σh2

, (3)

with respect to a cost function α. Sk[i] denotes the i-th position
of the sequence Sk and it holds S1[n] = vĤ

1

h1,σh1

, S2[m] =

vĤ
2

h2,σh2

, IN � n, m ≥ 1, Sk[1] = wĤk

k , k ∈ {1, 2}. The
algorithm for finding the optimal alignment of S1 and S2

generates a matrix (M(i, j))ij , 0 ≤ i ≤ n, 0 ≤ j ≤ m.
Hence, its complexity is O(|V̂1| · |V̂2|). We express the optimal
alignment on the basis of the following algorithm [2]:

M(0, 0) := 0,

M(i, 0) := M(i − 1, 0) + α(S1[i],−) : 1 ≤ i ≤ n,

M(0, j) := M(0, j − 1) + α(−, S2[j]) : 1 ≤ j ≤ m,

and

M(i, j) := min

⎧

⎪

⎨

⎪

⎩

M(i − 1, j) + α(S1[i],−)

M(i, j − 1) + α(−, S2[j])

M(i − 1, j − 1) + α(S1[i], S2[j])

(4)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Within the GTSA the alignments
have both global and local significance. First, the sequence
alignments will be implemented in a global sense, to compute
the optimal alignment between the sequences S1 and S2.
For this reason we now express the definition of a distance
measure.

Definition II.1. Let X be a arbitrary set. A positive real
valued function ω : X × X −→ [0, 1] is called distance
measure, if

ω(x, y) = ω(y, x) ∀x, y ∈ X (5)

ω(x, x) = 0 ∀x ∈ X (6)

If we set

ω(x, y) := 1 − e−
1

2

(x−y)
2

σ2 (7)

we obtain immediately

Lemma II.1. Let ω : IR × IR −→ [0, 1]. If we define ω by,

ω(x, y) := 1 − e−
1

2

(x−y)
2

σ2 , then ω is a distance measure.

Proof: From the definition of ω(x, y) we infer ω(x, y) ∈
[0, 1], ∀x, y ∈ IR and ω(x, x) = 1 − 1 = 0, ∀x ∈ IR. Since
(x − y)2 = (y − x)2, ∀x, y ∈ IR, the symmetry condition
holds.
Now, we define

αout
(

vĤ
1

i1,j1
, vĤ

2

i2,j2

)

:= ωout
(

δout(v
Ĥ1

i1,j1
), δout(v

Ĥ2

i2,j2
), σ1

out

)

if i1 = i2 and

αout
(

vĤ
1

i1,j1
, vĤ

2

i2,j2

)

:= +∞

else, for 0 ≤ ik ≤ hk, 1 ≤ jk ≤ σik
, k ∈ {1, 2}, where

ωout(x, y, σk
out) := 1 − e

− 1

2

(x−y)
2

(σk
out)

2

(8)
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with x, y, σk
out ∈ IR and

αout
(

vĤ
1

i,j1
,−

)

:= ωout
(

δout(v
Ĥ1

i,j1
), ξ, σ2

out

)

, (9)

αout
(

−, vĤ
2

i,j2

)

:= ωout
(

ξ, δout(v
Ĥ2

i,j2
), σ2

out

)

. (10)

ξ > 0 prevents an alignment between two leaves being better
evaluated as an alignment between a leaf and a gap (’-’). With

ωin(x, y, σk
in) := 1 − e

− 1

2

(x−y)
2

(σk
in)2

(11)

we define analogously αin
(

vĤ
1

i1,j1
, vĤ

2

i2,j2

)

, αin
(

vĤ
1

i,j1
,−

)

and

αin
(

−, vĤ
2

i,j2

)

. Second, the alignments will be evaluated on
the levels of the generalized trees. For the evaluating of the
alignments on each level, we set

align
(

vĤ
1

i,j1

)

:=

{

vĤ
2

i,j2
: align−1

(

vĤ
2

i,j2

)

= vĤ
1

i,j1

− : else.

This mapping determines for a vertex vĤ1

i,j1
the vertex vĤ2

i,j2

during the traceback [2]. Furthermore we state

γout

Ĥk (i) :=

∑σk
i

j=1 α̂out

(

vĤ
k

i,j , align
(

vĤ
k

i,j

))

σk
i

, (12)

γin

Ĥk(i) :=

∑σk
i

j=1 α̂in

(

vĤ
k

i,j , align
(

vĤ
k

i,j

))

σk
i

, (13)

k ∈ {1, 2}, which are similarity values for out-degree and
in-degree alignments. Finally, if we define the functions α̂out

and α̂in in the same way as αout and αin, we obtain the
normalized and cumulative functions

γout(i, σ̂1
out, σ̂

2
out) := 1− (14)

1

σ1
i + σ2

i

·

⎧
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and
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⎫
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which detect the similarity of an out-degree and in-degree
alignment on a level i. σ̂1

out, σ̂
2
out and σ̂1

in, σ̂2
in are the pa-

rameters of α̂out and α̂in, respectively. For constructing the
final similarity measure d with respect to our trees we need a
the definition of a special kind of similarity measures.

Definition II.2. Let U be a set of units and a mapping φ :
U ×U −→ [0, 1]. We call φ a backward similarity measure if
it satisfies the conditions

φ(u, v) = φ(v, u), ∀u, v ∈ U (16)

and

φ(u, u) ≥ φ(u, v), ∀u, v ∈ U. (17)

Now, we state our key result which has been proven in [2].

Theorem II.1. Let Ĥ1, Ĥ2 be two generalized trees with
0 ≤ i ≤ ρ, ρ := max(h1, h2).

d(Ĥ1, Ĥ2) :=
(ρ + 1)

∑ρ

i=0 γfin(i, σ̂1
out, σ̂

2
out, σ̂

1
in, σ̂2

in)
·

ρ
∏

i=0

γfin(i, σ̂1
out, σ̂

2
out, σ̂

1
in, σ̂2

in), (18)

is a backward similarity measure, where γfin is defined as

γfin = γfin(i, σ̂1
out, σ̂

2
out, σ̂

1
in, σ̂2

in)

:= ζ · γout + (1 − ζ) · γin (19)

with ζ ∈ [0, 1].

The similarity measure d(Ĥ1, Ĥ2) has the following three
properties:

d(Ĥ1, Ĥ1) = 1 (20)

d(Ĥ1, Ĥ2) = d(Ĥ2, Ĥ1) (21)

0 ≤ d(Ĥ1, Ĥ2) ≤ 1 (22)

which has been proven in [2].
Finally, we want to mention that the GTSA presented in

this section is of course also able to measure the similarity
between two (normal) trees, because the class of (normal) trees
is a subclass of the graph class of generalized trees. This is
important for the following section, because the trees extracted
locally from a network are (normal) trees.

III. DECOMPOSING A GRAPH LOCALLY IN TREES

In Section (II) we introduced a method to measure the
similarity between a pair of generalized trees. The correlation
graphs we are dealing with in the following are unlabeled,
unweighted and undirected, hence, we simply call them graphs
or networks because no special assumptions on these objects
are necessary. Because we can only compare generalized
trees and not graphs directly we give here a method which
decomposes a graph locally in trees. This decomposition will
now be described in detail.

Definition III.1. A graph G with N nodes can be locally
decomposed in a set of trees by the following algorithm: Label
all nodes from 1 to N . These labels form the label set LS =
{1, . . . , N}. Choose a desired depth of the trees D. Choose
an arbitrary label from LS, e.g., i. The node with this label
is the root node of a tree.

1) Calculate the shortest distance from node i to all other
nodes in the graph G, e.g. by the algorithm of DIJKSTRA

[3].
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Fig. 2. Visualization of the local tree decomposition. For reason of clarity
we show a spherical graph with regular node arrangement on the surface of
a sphere and regular connections between the nodes to the nearest neighbors.
Shown in blue is one local tree, resulting from the selection of the nodes up
to depth D = 2. The root node is in the center of the two surrounding rings
of nodes. (Figure was produced by Molscript [8].)

2) The nodes with distance k are the nodes in the k’th
level of the tree. Select all nodes of the graph up
to distance D, including the connections between the
nodes. Connections to nodes with distance > D are
deleted.

3) Delete the label i from the label set LS .
4) Repeat this procedure if LS is not empty by choosing

an arbitrary label from LS, otherwise terminate.

Figure 2 shows a visualization of the local tree decompo-
sition. For simplicity, a spherical graph with a regular node
arrangement on the surface of a sphere and regular connections
between the nodes to the nearest neighbors is shown. One local
tree, resulting from the selection of the nodes up to depth
D = 2 is colored in blue. The root node is in the center of
the two surrounding rings of nodes.

IV. RESULTS

The data set we apply our method to is from DNA microar-
ray experiments from Wong et al. [17]. They investigated the
gene expression levels of different tumor stages of cervical
cancer. For a rough summary of their data see table I. In
general, the higher the integer numbers and the letters of the
tumor stages are the more the cancer has grown and spread.
The data include also a normal expression profile of cervical

TABLE I

MICROARRAY DATA FROM [17] FOR DIFFERENT TUMOR STAGES, BASED

ON THE FIGO (INTERNATIONAL FEDERATION OF GYNECOLOGISTS AND

OBSTETRICS) TAGING SYSTEM, OF CERVICAL CANCER. EACH OF THE 32

(TOTAL NUMBER OF PATIENTS) ARRAYS CONTAINED 10692 GENES.

FIGO stage Number of patients
normal 8

1B 11
2A 8
2B 5

�����

���������

	�
��	��	��	�


Fig. 3. Schematic representation of the transition from tissue samples of
cervical cancer via DNA microarray experiments to the representation as
directed, unweighted graph. The graphs in this figure were generated by PAJEK
[10].

tissue indicated in table II as ’normal’. In the following we
speak of the network resulting, e.g., form the expression
profile of tumor tissue of stage 2A, as the 2A-network, G2A.
Similarly, we speak of the 2A-tree set, S2A.

The correlation networks from the expression data are
obtained via a three step process suggested by Rougemont
et al. [12]:

1) Calculate the pairwise correlation coefficient for all gene
profiles.

2) Prune the connections if the correlation coefficient is
below a threshold ΘCo.

3) Prune the connections to a node i if its clustering
coefficient is below a threshold ΘCl.

Figure 3 shows schematically the overall idea of our approach.
We obtain via DNA microarray data for tissue samples repre-
senting one tissue type, e.g., tissue of stage 2A, one graph
by applying the three step process by Rougemont et al. [12].
That means, the four different tissue types given in table I are
transformed to four different graphs. Hence, we represent a
tissue of a tumor stage as a graph. These four graphs form the
starting point of our theoretical analysis.

The size of microarrays used for each experiment in [17]
consisted in a total number of 10692 genes. Hence, the
networks have this number of nodes. Via the local tree
decomposition algorithm in definition III.1 we obtain tree sets
for all graphs consisting of 10692 trees each. We calculate
for all pairs of normal and cancerous tissue the pairwise
tree similarity with the generalized trees-similarity algorithm
(GTSA) explained in section II. More precisely, we calculate
the similarity between tree i from the Snormal tree set with tree
i from, e.g., tree set S1B. That means, we do only compare the
trees originating from the same root node in the correlation
graph that corresponds to the same gene. Figure 4 shows this
schematically. Due to the fact, that all graphs have the same
number of nodes, corresponding to the number of genes in the
DNA microarray experiments, we can ask the question - how
much did the graph change? Here the change referes always to
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TABLE II

GENES WHICH HAVE BEEN FOUND AMONG THE TOP 100 (< 1% OF ALL GENES) GENE RANKING LIST. THE GENE ID CORRESPONDS TO THE

ENUMERATION OF GENES OF THE DATA [17] PROVIDED AT THE NCBI HOMEPAGE.

Gene ID Accession no.1 Gene name
3640 AA434373 E74-like factor 3 (ets domain transcription factor, epithelial-specific)
3082 AA709143 transcription termination factor, RNA polymerase I
778 R19406 ESTs (Weakly similar to A47582 B-cell growth factor precursor [H.sapiens])
320 T51538 sortilin-related receptor, L(DLR class) A repeats-containing

1020 N20335 clathrin, light polypeptide (Lcb)
2978 AA916327 protective protein for beta-galactosidase (galactosialidosis)
6523 AA195002 myosin 5C
1923 H56944 splicing factor, arginine/serine-rich 11
958 T65211 SFRS protein kinase 2
65 N95249 v-Ki-ras2 Kirsten rat sarcoma 2 viral oncogene homolog

1503 AI365523 synovial sarcoma, translocated to X chromosome 298
2710 N54456 ALEX3 protein
194 AA287323 xeroderma pigmentosum, complementation group C

5381 AA256502 proprotein convertase subtilisin/kexin type 5
131 AA455955 proprotein convertase subtilisin/kexin type 7

1576 AI309770 ubiquitin-activating enzyme E1C (homologous to yeast UBA3)
1392 AA521339 chimerin (chimaerin) 2 181

[3] Accession numbers in the GenBank database.

the graph representing normal cervical tissue. More precisely,
we can ask - how much did, e.g., the 2A graph change
compared with the normal graph? We suggest to answer this
question locally, based on the similarity of generalized trees.
The application of the local tree decomposition algorithm
from the previous section gives us N trees for each graph,
because this corresponds to the number of nodes in the graph,
and, hence, the comparison of two graphs results in N local
similarity values d(Ĥi, Ĥ ′

i) for i ∈ {1, . . . , N}. The obtained
similarity values are then rank-ordered in order of decreasing
similarities. Hereof, we calculate the overall rank-order resul-
ting from the linear ranking of all three possible tissue pairs
between normal and cancerous tissues. This ranking provides
averaged information about the genes which changed most
from normal to cancerous tissues.

Figure 5 shows in a semi-logarithmic plot the rank-ordered
similarity values that result from a comparison between normal
and 1B tissue (full line) and between normal and 2B tissue

�����

Fig. 4. Comparing two graphs G and G′ with N nodes each by comparing
locally generalized trees. Only two trees Hi and H′

i
resulting from the same

node i in the graphs, corresponding to gene i, are compared d(Hi, H
′

i
). The

graphs in this figure were generated by PAJEK [10].

(dashed line). One can clearly see, that around position 1000
there is a drop in the similarity values indicating that these
tree pairs below this position are quite unsimilar. In Fig. 6
we show a more detailed semi-logarithmic plot by presenting
only the first 1000 rank-ordered genes. From these curves it
is plausible to select only the top 100 ranked genes. This
demonstrated, that a small number of genes changes its local
environment in the correlation networks more than all others.
Certainly, one can question the exact number, but from Fig.
6 it is clear that this number is not much larger than 100.
This confirms approaches trying to find some marker genes
that indicate the onset or progression of a disease [9], [16] in
contrast to monitor a large number of genes as indicator.

Some genes that have been found among the top 100 ranked
genes are shown in table II. These genes correspond to the
trees, which differ most from normal to cancerous tissues.
We found by our gene ranking method genes, which are

0 2000 4000 6000 8000 10000 12000
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y

Fig. 5. Rank-ordered similarity values of tree pairs between normal and
1B tissue (full line) and between normal and 2B tissue (dashed line) for all
10692 genes.
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Fig. 6. Rank-ordered similarity values of tree pairs for the first 1000 genes.
Upper figure: Between normal and 1B tissue (full line) and between normal
and 2B tissue (dashed line). These curves are a magnification of Fig. 5. Lower
figure: Between normal and 2A tissue.

involved in transcription (3640,3082), growth factors (778),
cell signaling (1392), endocytosis (320,1020, 2978,6523), post
translation regulation (1923,958) and cancer related genes (65,
1503,2710,194) to name only some given in table II2. All
these genes are expected to be involved in tumor growth.
Moreover, our list of genes is qualitatively comparable to the
gene list compiled by Wong et al. [17]. This indicates, that
our method is appropriate to select relevant genes involved in
the progression of cervical cancer.

V. CONCLUSIONS

In this paper we introduced a method for gene ranking from
DNA microarray data and presented first results for expression
data of Wong et al. [17] of cervical cancer. Our method is
based on a correlation network that can be calculated from the
data representing tissue of a tumor stage. From these networks
we extract one tree for each gene by a local decomposition
from the correlation network. For the obtained trees we
measure the pairwise similarity between trees rooted by the
same gene from normal to cancerous tissues. This evaluates

2The number in brackets gives the gene ID in the first column in the results
table II.

the modification of the tree topology due to progression of
the tumor. Finally, we rank the obtained similarity values
from all tissue comparisons and select the top ranked genes.
For these genes the local neighborhood in the correlation
networks changes most between normal and cancerous tissues.
As a result we found genes that are suspected to be involved
in tumor growth. This indicates that our method captures
essential information from the underlying DNA microarray
data of tissues from different tumor stages. We hope that
our work can contribute to unravel the molecular mechanisms
of cancer by our systems view to select genes whose local
neighborhood in the correlation network changes most.
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