
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

517

A Survey on Data-Centric and Data-Aware
Techniques for Large Scale Infrastructures

Silvina Caı́no-Lores, Jesús Carretero

Abstract— Large scale computing infrastructures have been widely
developed with the core objective of providing a suitable platform
for high-performance and high-throughput computing. These systems
are designed to support resource-intensive and complex applications,
which can be found in many scientific and industrial areas. Currently,
large scale data-intensive applications are hindered by the high
latencies that result from the access to vastly distributed data.
Recent works have suggested that improving data locality is key to
move towards exascale infrastructures efficiently, as solutions to this
problem aim to reduce the bandwidth consumed in data transfers, and
the overheads that arise from them. There are several techniques that
attempt to move computations closer to the data. In this survey we
analyse the different mechanisms that have been proposed to provide
data locality for large scale high-performance and high-throughput
systems. This survey intends to assist scientific computing community
in understanding the various technical aspects and strategies that
have been reported in recent literature regarding data locality. As a
result, we present an overview of locality-oriented techniques, which
are grouped in four main categories: application development, task
scheduling, in-memory computing and storage platforms. Finally, the
authors include a discussion on future research lines and synergies
among the former techniques.

Keywords— Co-scheduling, data-centric, data-intensive, data
locality, in-memory storage, large scale.

I. INTRODUCTION

LARGE scale infrastructures, such as supercomputers,

grids, clouds and clusters, have been widely developed

with the core objective of providing a suitable platform

for high-performance and high-throughput computing. As

these paradigms typically require massive hardware resources

and dedicated middleware, large scale computing holds

specific challenges in order to achieve sufficient efficiency

in terms of memory, CPU, I/O, network latencies, and

power consumption, to name a few. These systems are

oriented towards supporting resource-demanding and complex

applications, which can be found in many scientific and

industrial areas, such as bioengineering, physics, climate

modelling, and health sciences. Therefore, large scale

infrastructures have a key role in many fields of research.

This motivates the special attention they get from computer

scientists, and the numerous works that are published every

year that aim to improve them.

There are several issues that are still not solved by the

academia with regard to these infrastructures. In particular,

computer scientists have realised that, as problems become

larger and more complex, a powerful infrastructure is not

S. Caı́no-Lores is with the Department of Computer Science and
Engineering, University Carlos III of Madrid, Madrid, Spain, 28911 (e-mail:
scaino@arcos.inf.uc3m.es).

J. Carretero is with the Department of Computer Science and Engineering,
University Carlos III of Madrid, Madrid, Spain, 28911.

sufficient to achieve proper scalability, both in terms of overall

performance, resource utilisation, and power efficiency.

Recent works have suggested that improving data locality

is key to move towards exascale infrastructures efficiently

[1]. With the main goal of summarising the current trends in

data locality reinforcement for large scale infrastructures, this

survey analyses the most relevant publications in this topic,

and provides highlights on promising future research. A proper

understanding of the opportunities in this direction would be

very useful for the scientific community, but also for system

architects, platform designers, application developers and final

users, who could take advantage of this knowledge to build

more efficient systems and applications. Given the former, this

survey provides the following contributions:

• An extensive analysis on works related to data locality

for large scale infrastructures.

• An overview of the most relevant locality-oriented

techniques.

• A discussion on future research lines and synergies

among the former techniques.

The rest of this paper is organized as follows: Section II

develops the main research areas detected after the analysis

of the selected works, Section III categorises works that are

related to programming models and workflows, Section IV

analyses the techniques that are related to resource and task

scheduling, Section V develops the works focused on moving

the computations to the node’s local storage and memory,

Section VI analyses the works directed towards data-aware

storage systems, Section VII discusses future research lines

and opportunities in the light of the aggregated results of

the selected works, finally, Section VIII provides key ideas

as conclusions of this review.

II. DATA-LOCALITY TECHNIQUES

Large scale systems typically present a series of key

elements in their architectures. Relevant work improving data

locality has been found for most of these components. In order

to organise the selected works in a comprehensive manner,

we grouped them in four sections, each one related to one

of the four core layers that constitute the architecture of a

high-performance system. Fig. 1 constitutes a representation

of this stack, in which the following layers are reflected:

1) Applications: one of the purposes of large scale systems

is to support the execution of complex applications with

heavy resource requirements. The ability to design and

develop applications with a focus on data locality has

been an interesting research topic, from which several



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

518

Fig. 1 System layers and their match to the major research topics detected in this survey

programming models, frameworks and workflows have

arisen. These works are described in Section III.

2) Middleware: complex systems need dedicated

platforms that orchestrate tasks and manage resources

in order to behave in a coordinated manner, and meet

the requirements of the applications. These pieces of

software constitute the middleware that permits node

intercommunication, data transmission, load balancing,

task assignment and fault tolerance, among others.

As these platforms control main features within the

system, their role is key with regard to data awareness.

This is reflected in the numerous works that present

data-centric scheduling and load balancing techniques

for middleware platforms, which is covered in Section

IV.

3) Computing infrastructure: the infrastructure that lies

beneath the middleware has a major impact in the final

performance of the system. In this particular topic, a

tailored infrastructure can contribute to the locality of

the data or break the whole paradigm provided by upper

layers, even in a transparent way. Work in this area has

been conducted to improve locality by moving data to

the node’s memory to minimise interaction with storage

nodes. This topic is discussed in Section V.

4) Storage Infrastructure: storage systems constitute

one of the greatest bottlenecks when dealing with

data-intensive computations. Therefore, data awareness

in file systems and storage infrastructures can

significantly improve the system’s overall locality,

as other layers can benefit from the system’s knowledge

of data placement. The works conducted towards this

direction are described in Section VI.

The main topics proposed by the authors do not yield a

strict classification of the selected works in this survey. In

fact, there are synergies and common research lines among

them that motivate further discussion for future work. The

authors provide a selection of promising research lines and

their synergies in Section VII.

III. DATA-CENTRIC PROGRAMMING MODELS

As previously introduced, minimising data movements is

very important for the final performance. At the application

development stage, working with programming models that

provide a data processing layer able to abstract resource

allocation, data management and task execution can result in

an improvement in performance and locality.

The map-reduce [2] data processing model is probably

the most relevant data-centric model, as it enables analytics

on big datasets by parallelising computations for HPC and

multi-core environments [3]. Besides the numerous works

that took advantage of it to improve performance of a wide

range of applications, it had a major impact in subsequent

map-reduce-inspired models. A map-reduce-based algorithm

consists of a two-phase algorithm that takes as input a set of

key-value pairs retrieved from the input files. The input is split

across a group of homogeneous map functions, which process

the data and forward the result to the reduce tasks in order to

write the final result. The original map-reduce implementation

by Google relies on the Google File System (GFS) [4] to

achieve locality by block replication, and considers data-aware

task scheduling. A similar approach is followed by the open

map-reduce implementation, Hadoop [5], and its partner file

system Hadoop Distributed File System (HDFS) [6].

One of the models that emerged from map-reduce is

map-reduce-merge [7], a model that adds a merge phase

that can efficiently aggregate the data already partitioned and

sorted by the map and reduce modules. Map-reduce does

not directly support processing multiple related heterogeneous

datasets, limitation that causes efficiency issues when

map-reduce is applied in relational operations like joins. The

map-reduce-merge model can, on the other hand, express

relational algebra operators and implement several join

algorithms.

MapIterativeReduce [8] is an alternative model that extends

map-reduce to better support reduce-intensive applications,

while substantially improving its efficiency by eliminating

the implicit barrier between the map and the reduce phases.

Among implementations of map-iterative-reduce we can find



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

519

Twister [9], Haloop [10] and Twister4Azure [11]. Twister

assumes that the intermediate data produced after the map

stage of the computation will fit into the distributed memory.

Twister4Azure locally caches the loop-invariant input data in

the workers’ memory and storage to improve scalability in

Cloud environment. HaLoops scheduler places on the same

physical machines those map and reduce tasks that occur

in different iterations but access the same data. With this

approach, data can be more easily cached and re-used between

iterations. HaLoops maintains three types of caches: reducer

input cache, reducer output cache, and mapper input cache.

The Spark [12] programming model supports a wide range

of functionalities that enable the development of applications

that do not fit nicely the map-reduce paradigm, such as

many iterative machine learning algorithms and interactive

data analysis tools. Spark reuses a working set of data, known

as resilient distributed dataset (RDD) [13], through multiple

parallel operations, built around an acyclic data flow model.

It retains, however, the scalability and fault tolerance features

of map-reduce.

Map-reduce-based programming models have also evolved

into language frameworks that provide a data access layer

through a set of APIs, thus eliminating the need to

re-implement repetitive tasks by working on top of the

processing layer. Pig Latin [14] is a high-level data-flow

language and execution framework whose compiler produces

sequences of batch processing map-reduce programs. Pig

offers SQL-style high-level data manipulation constructs,

which can be assembled in an explicit dataflow and interleaved

with custom map- and reduce-style functions or executables

[15].

Another popular approach is Hive [16], an open-source data

warehousing solution. Hive supports queries expressed in a

SQL-like declarative language known as HiveQL, which are

compiled into map-reduce jobs. In addition, HiveQL enables

users to plug in custom map-reduce scripts into queries. Hive

adds special optimisations to improve data-locality and reduce

data-transfer overhead, such as pruning unnecessary files from

partitions on the file system, and buffering small tables in the

distributed main memory of worker nodes for faster access.

Map-reduce is able to process large amounts of partitioned

input datasets by spawning a set of homogeneous map and

reduce tasks. To improve sharing of such input, CloudFlow

[17] offers scheduling optimisations at the function and job

levels, based on the access frequency of different datasets. A

shared job data handler identifies multiple jobs of different

users, finds the frequently- or partially-shared data items, and

copies them to the local file system of the nodes for future

use. Additionally, a shared function data handler delivers the

shared data to the map functions that need it by means of

a data-centric pre-fetching mechanism, instead of following a

pull scheme. Therefore, when computation tasks are located

away from the data they consume, the data they need can be

pushed near the compute node to improve data locality.

New technologies based in multi-core processors can

improve the performance of applications by favouring

intra-node data sharing, which minimises data exchanges

across compute nodes. The work in [18] aims to enhance

intra-node data sharing, proposing a distributed data sharing

and task execution framework. This tool has two main

objectives: map tasks to processor cores to maximise

intra-node data sharing and locality, and provide a shared

space programming abstraction that replaces existing parallel

programming models such as message passing.

Another approach is followed by Dryad [19], a

general-purpose distributed execution engine for coarse-grain

data-parallel applications. A Dryad application combines

computational nodes with communication channels to form a

dataflow graph. Dryad runs the application by executing the

vertices of this graph on the available nodes of a distributed

environment, or in several CPUs for single-node machines.

The application can infer the size and placement of data at

run time, and modify the graph as the computation progresses

to make an efficient use of the available resources.

Finally, Nephele [20] is a data processing framework that

aims to exploit the dynamic resource allocation offered by

compute clouds for both task scheduling and execution. It

allows to assign the particular tasks of a processing job to

different types of virtual machines, and takes care of their

instantiation and termination during the job execution. Similar

to Microsofts Dryad [19], jobs in Nephele are expressed as a

directed acyclic graph (DAG). Currently, in Nephele the only

way to ensure locality between tasks is to execute them on the

same virtual machine in the Cloud.

IV. DATA-AWARE SCHEDULING

This section discusses techniques and algorithms focused

on scheduling tasks in multi-node environments. Scheduling

in large-scale systems is a wide concept: it faces the allocation

of a set of tasks to multiple processors and the establishment

of execution order [21]. From the perspective of this work,

schedulers would aim to allocate tasks to a set of compute

nodes, assigning tasks to nodes that already have the input

data, or at least to those nodes that are close to each other.

The authors of [22] propose an algorithm that allocates tasks

to nodes mainly considering the closeness of the input data,

and controls the movement of information when the storage

node and the compute node are different. The emphasis is on

providing a solution where the configuration of the system can

change over the time and where the hardware can vary between

different nodes, which is known as a heterogeneous system.

Firstly, the algorithm allocates a task depending on the input

data and data stored in the destination node. If no task meets

this criterion, then the algorithm allocates the task which data

is closer to the compute node, moving the required data to

that node. Here, the algorithm requests tasks with the shorter

transmission time, computed based on a constant speed.

A different approach is introduced in [23]. It presents

a heuristic task-scheduling algorithm called balance-reduce

(BAR). First, it allocates a task and then tunes the initial

task allocation in order to reduce the job completion time.

BAR adjusts data locality dynamically based on the cluster

and network workload. This scheduling algorithm takes into

account the amount of data located in different servers, the

execution cost of the task and the server workload, but it



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

520

requires prior knowledge about the amount of tasks and the

load of the servers. When the network is poor, BAR enhances

data locality; when the cluster is overloaded, it decreases data

locality to start the tasks earlier.

In [24], the authors present a scheduler called Stork. It

manages different components of the system, such as the

I/O system and CPU. The scheduler uses a job description

language used to represent the job’s data placement. Stork

controls the load of the system, managing the number of

simultaneous accesses to each storage node. By applying

different policies, the algorithm supports several options to

establish an order in data transfers and to reduce overload.

Minimizing the number of movements of files between

storage nodes and compute nodes is the main thrust of [25].

The algorithm is based in an hypergraph, which consists in a

set of vertices with different weights connected by hyper-edges

with different costs. This creates a set of nets between the

nodes. The purpose of this hypergraph is to represent the state

of the system with its jobs, files and compute and storage

nodes. This hypergraph can be partitioned into several groups

representing the compute nodes, which allows the algorithm to

balance and minimize files transferring costs. Later, the order

of the jobs in each compute node is decided. It uses a strategy

that prioritises the jobs with the shortest execution time, which

is calculated taking into consideration the time to retrieve its

input files.

In [26], a scheduler to improve data locality for map-reduce

jobs is proposed. The basic idea is to predict the most

appropriate nodes to which future map tasks should be

assigned. Then input data can be preload to node memory

without any delaying on launching new tasks. Thus, data

prefetching is carried out concurrently with data processing.

A solution developed for Hadoop is explained in [27]. The

authors propose a new job scheduling policy that seeks to

take advantage of shared input files among different jobs to

improve data locality. Their main goal is to allow tasks that

share the same input block to be scheduled sequentially and

in the same compute node even, if there are tasks belonging

different jobs. When a node requests a new task, the policy

looks for a task that handles the same data block used by the

task just completed. Regarding Hadoop, delayed scheduling

[28] also attempts to achieve high data locality. When an idle

node requests a task, jobs are sorted in a queue according

to the number of running local tasks in the said node. The

algorithm also incorporates a mechanism to avoid starvation,

leveraging fairness and data locality.

Other approaches follow decentralised models in which

each compute node has its own meta-scheduler, aiming

to reduce the overall makespan and improve the resource

performance. In [29], the authors propose a model for

independent tasks in federated grids. In this work each

infrastructure runs a scheduling algorithm, which looks for a

reduction in the makespan on the running application. Another

perspective is provided in [30]: worker-centric scheduling.

Unlike task-centric scheduling, in this technique the worker

takes the initiative and request to the scheduler a task, but only

when it is idle. One of the advantages of this worker-centric

algorithm is the ability to balance task allocation, which yields

a reduction in latencies.

V. IN-MEMORY COMPUTING FOR DATA LOCALITY

ENFORCEMENT

As we have previously described, the actual infrastructure

that lies beneath a large scale application has a key role in

its final performance. This also applies to data awareness and

data locality support, as moving data to the node’s memory,

and reusing already existent or processed data, minimises the

interaction with storage nodes at the infrastructure level.

The work in [31] suggests that iterative and interactive

applications are the ones that could take the highest advantage

of in-memory data storage for fast reuse. The Spark framework

relies heavily in the concept of resilient distributed dataset
(RDD) [13] to provide this functionality. RDDs are in-memory

collections of data, and the operations on them are tracked in

order to provide significant fault tolerance. According to its

authors, the system has proven to be highly scalable, fault

tolerant and fast.

Spark has inspired subsequent works like GraphX [32],

which extends the framework to support graph parallel

computing. Working with graphs has, as indicated by the

authors, specific challenges and requirements that were not

fully addressed by previous works. GraphX aims to introduce

fault tolerant, parallel data processing to graph processing,

with a focus on in-memory computing for effective distribution

of the work-load.

Shark [33], which supports the Hive warehousing system

[34] on Spark, offers a similar approach, but oriented towards

SQL-based data analytics by means of machine learning.

These algorithms are typically iterative, thus in-memory

computing suits well the need for cached data to be reused.

Nevertheless, the authors emphasise that coarse-grained

distributed shared-memory yields better performance that

fine-grained memory in this case. This is due to the huge size

of the data sets, which makes impossible to update records

individually.

The work in [35] follows a different approach, yet it aims to

improve data locality by means of data reuse and replication,

especially for loosely-coupled data-intensive applications. This

work overlaps with the scheduling section as well, as its goal

is to define a scheduling heuristic to expose data reuse and

replication patterns across the system, which are exploited by

the scheduler.

Piccolo [36] is a data-centric programming model for

writing parallel in-memory applications in data centers.

Piccolo allows computation running on different machines to

share distributed, mutable state via a key-value table interface.

Piccolo enables efficient application implementations. In

particular, applications can specify locality policies to exploit

the locality of shared state access. Then, Piccolo’s run-time

engine automatically resolves write-write conflicts using user

defined accumulation functions.

The former works indicate that, even if it seems

counter-intuitive, in-memory databases and computing are

able to scale to petascale systems. No further work has

found indicating whether this could hold for exascale systems

though.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

521

VI. LOCALITY-ORIENTED STORAGE PLATFORMS

The storage platform beneath an application and its

supporting platform can be tailored to help with data locality

provisioning. In this section we include relevant techniques

that aim to increase the level of data-awareness in data storage

abstractions.

To achieve efficient data locality, one would expect a

degree of coordination between the service provided by

the storage layer and the application’s processes, as these

could compete for resources and create I/O bottlenecks. The

work by Chen et al. [37] proposes data layout awareness to

avoid the contention caused by process interruption on I/O

transactions. This is built by allowing a specific process to

be serviced continuously, instead of interrupted randomly by

other processes by combining the I/O requests via aggregators

that issue them on behalf of all processes. In this strategy,

these aggregated requests and the partitions of file domains

are rearranged in such a way that each aggregator is able to

access data contiguously. Additionally, multiple aggregators

can access file servers concurrently, thus exploiting better

locality and reducing contention.

Regarding coordination, VIDAS (Virtualized DAta Sharing)

[38] constitutes an object-based and virtualised data store that

aims to minimise intra-node data movement. It relies on the

integration of data sharing, storage I/O coordination, and data

locality awareness to provide efficient data sharing among

co-located virtual machines.

In ROMIO [39], such coordination is achieved by means

of a two phase approach for accessing data. The first stage

allows the processes to perform non-contiguous I/O requests

according to the data distribution across the disks, which

results in each process making a single, large and contiguous

data retrieval. In the second phase, processes redistribute

data among themselves to match the application’s desired

data localisation. The advantage of this method is that, by

making all file accesses large and contiguous, the I/O time

is reduced significantly to levels that match independent

requests. The added cost of inter-process communication for

data redistribution is small compared with the savings in I/O

time.

As parallel file systems can significantly improve locality

if designed with such purpose, there are examples of

no-SQL database systems that aim to improve the overall

efficiency of the data analysis process. To maintain

performance when the amount of data grows to the levels

of large data-intensive applications, these databases need

a data-awareness component to efficiently manipulate such

input.

Bigtable [40] provides a data model that allows dynamic

control over the data layout an format. Additionally, it permits

the users to manipulate the properties related to locality in the

data structure, so that their applications can benefit from a

tailored schema. Following the trend of increasingly relying

in memory, Bigtable supports both disk-based and in-memory

storage.

Nowadays, key-value stores are increasingly used to

manipulate large amounts of data. The work in [41] proposes

a database that is able to self-organise data replicas according

to data access locality patterns. The system is decentralised

in order to optimise object placement. The authors also

investigate how to detect the optimal number of replicas with

respect to look-up efficiency.

Finally, systems like HBase [42], built on top of HDFS,

enhance data locality for binary large objects (BLOBs) [43].

This yields several challenges, as the huge size of the database

makes mandatory to distribute it in order to make it efficient.

HBase combines the HDFS block-based file system, which is

in charge of storing the data, with a series of metadata that

permits to retrieve the location of the queried information.

Data locality is achieved both by the underlying file system

and by the ability to detect where the data is stored.

VII. DISCUSSION

This section finally analyses the common aspects of the

selected references, and exposes the future lines of work that

arise from the reviewed literature.

In the case of the scheduling algorithms, dynamic

scheduling depending on the system’s conditions constitutes

the main open challenge in this topic. Since the objective

is to use resources as efficiently as possible, this scheduling

approaches yield the need for real-time monitoring.

Moving storage from disks to memory is a current trend

in large scale computing due to the reduced response

time this provides. Nevertheless, memory performance and

fault-tolerance is key to achieve the level of robustness that

traditional storage systems have attained. Additionally, the

development of efficient persistence mechanisms is an issue

that must be tackled in order to make in-memory computing

reliable enough for large scale production systems.

In-memory computing can be immediately related to

data reuse and replication, as it minimises transfer times

between the computing and storage units. Moreover, it has

major synergies with data-centric application development

techniques, in a similar way as distributed file systems helped

with workflow input data awareness.

Data-aware scheduling is an area that could greatly benefit

in-memory computing, as locating a task in the node that

holds its input in memory could improve the overall system’s

performance. We have also detected that merging in-memory

datasets with no-SQL storage systems is a promising trend

that already shows interesting results, but its scalability and

reliability for ultra scale systems must be assessed in future

work.

There is a need for further research in parallel file systems

and storage architectures to support data awareness. Past

research has focused on merging workflows, programming

models and parallel file systems. However, data awareness

should be provided in a transparent and smart manner at the

storage layer, which would benefit the entire distributed system

stack, and not just some of its applications.

Some works have introduced the promising possibility

to perform intelligent data replication by monitoring the

overall system’s behaviour. This could be further developed by

integrating adaptive scheduling with the storage infrastructure,



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

522

seeing both stored data and tasks as a whole. In this context,

scalability would be a major concern due to the introduced

overhead.

VIII. CONCLUSIONS

Large scale computing infrastructures have a major impact

in science and society. Nevertheless, several scalability issues

arise with large and complex problems, especially affecting

performance, resource utilisation and power efficiency. In this

context, these systems must implement algorithms and policies

that, with the existing devices and hardware, are able to reap

the highest possible output.

This work reviews and summarises the most relevant

publications related to data locality techniques, which are

promising methods that could improve scalability and

sustainability in a significant manner. After the analysis of

these works we were able to discuss future research lines

that could be particularly promising in this area. Dynamism

and adaptability in data transfer, task scheduling and data

replication are key to build smart systems that could exploit

the relationship between data and processes. Nonetheless,

this requires efficient and reliable real-time monitoring,

which constitutes one of the major challenges in large scale

computing in general.

With the increasing amount of available memory,

in-memory datasets seem to be the main technique to support

fast large scale storage systems, especially no-SQL databases.

However, it is required further research in the scalability and

fault-tolerance of current memory systems. These techniques

could be combined with transparent data-aware persistence

supported by parallel file systems.

ACKNOWLEDGMENT

This work has been partially funded by the Spanish

Ministry of Economy and Competitiveness, under the grant

TIN2013-41350-P-2014-2016 (High-end computing systems

scalable data management techniques).

REFERENCES

[1] K. Yelick, S. Coghlan, B. Draney, R. S. Canon et al., “The magellan
report on cloud computing for science,” US Department of Energy,
Washington DC, USA, Tech. Rep, 2011.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[3] J. Fritsch and C. Walker, “The problem with data,” in Utility and Cloud
Computing (UCC), 2014 IEEE/ACM 7th International Conference on.
IEEE, 2014, pp. 708–713.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 29–43.

[5] T. White, Hadoop: The Definitive Guide. O’Reilly Media, 2009.
[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop

distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, May 2010, pp. 1–10.

[7] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker,
“Map-reduce-merge: simplified relational data processing on large
clusters,” in Proceedings of the 2007 ACM SIGMOD international
conference on Management of data. ACM, 2007, pp. 1029–1040.

[8] R. Tudoran, A. Costan, and G. Antoniu, “Mapiterativereduce: a
framework for reduction-intensive data processing on azure clouds,”
in Proceedings of third international workshop on MapReduce and its
Applications Date. ACM, 2012, pp. 9–16.

[9] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings
of the 19th ACM International Symposium on High Performance
Distributed Computing. ACM, 2010, pp. 810–818.

[10] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: efficient
iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[11] T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, “Scalable parallel
computing on clouds using twister4azure iterative mapreduce,” Future
Generation Computer Systems, vol. 29, no. 4, pp. 1035–1048, 2013.

[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10, Berkeley, CA, USA, 2010, pp. 10–10.

[13] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2012, pp. 2–2.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: a not-so-foreign language for data processing,” in Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data. ACM, 2008, pp. 1099–1110.

[15] C. Dobre and F. Xhafa, “Parallel programming paradigms and
frameworks in big data era,” International Journal of Parallel
Programming, vol. 42, no. 5, pp. 710–738, 2014.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy, “Hive-a petabyte scale data
warehouse using hadoop,” in Data Engineering (ICDE), 2010 IEEE 26th
International Conference on. IEEE, 2010, pp. 996–1005.

[17] F. Zhang, Q. M. Malluhi, T. Elsayed, S. U. Khan, K. Li, and A. Y.
Zomaya, “Cloudflow: A data-aware programming model for cloud
workflow applications on modern hpc systems,” Future Generation
Computer Systems, 2014.

[18] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling in-situ execution of coupled scientific workflow on
multi-core platform,” in Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International. IEEE, 2012, pp. 1352–1363.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
ACM SIGOPS Operating Systems Review, vol. 41, no. 3. ACM, 2007,
pp. 59–72.

[20] D. Warneke and O. Kao, “Nephele: efficient parallel data processing in
the cloud,” in Proceedings of the 2nd workshop on many-task computing
on grids and supercomputers. ACM, 2009, p. 8.

[21] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 13, no. 3, pp.
260–274, 2002.

[22] X. Zhang, Y. Feng, S. Feng, J. Fan, and Z. Ming, “An effective data
locality aware task scheduling method for MapReduce framework in
heterogeneous environments,” in Cloud and Service Computing (CSC),
2011 International Conference on. IEEE, 2011, pp. 235–242.

[23] V. W. Thawari, S. D. Babar, N. A. Dhawas, and others, “An efficient
data locality driven task scheduling algorithm for cloud computing,”
International Journal in Multidisciplinary and Academic Research
(SSIJMAR), vol. 1, no. 3, 2012.

[24] T. Kosar and M. Balman, “A new paradigm: Data-aware
scheduling in grid computing,” Future Generation Computer
Systems, vol. 25, no. 4, pp. 406–413, 2009. (Online). Available:
http://www.sciencedirect.com/science/article/pii/S0167739X08001520

[25] G. Khanna, U. Catalyurek, T. Kurc, P. Sadayappan, and J. Saltz, “A
data locality aware online scheduling approach for I/O-intensive jobs
with file sharing,” in Job Scheduling Strategies for Parallel Processing.
Springer, 2007, pp. 141–160.

[26] M. Sun, H. Zhuang, X. Zhou, K. Lu, and C. Li, “HPSO: Prefetching
Based Scheduling to Improve Data Locality for MapReduce Clusters,” in
Algorithms and Architectures for Parallel Processing. Springer, 2014,
pp. 82–95.

[27] A. Bezerra, P. Hernandez, A. Espinosa, and J. C. Moure, “Job scheduling
for optimizing data locality in hadoop clusters,” in Proceedings of the
20th European MPI Users’ Group Meeting. ACM, 2013, pp. 271–276.

[28] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling,” in Proceedings of the
5th European Conference on Computer Systems, ser. EuroSys ’10.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:3, 2016

523

New York, NY, USA: ACM, 2010, pp. 265–278. (Online). Available:
http://doi.acm.org/10.1145/1755913.1755940

[29] K. Leal, E. Huedo, and I. M. Llorente, “A decentralized
model for scheduling independent tasks in Federated
Grids,” Future Generation Computer Systems, vol. 25,
no. 8, pp. 840–852, Sep. 2009. (Online). Available:
http://www.sciencedirect.com/science/article/pii/S0167739X09000211

[30] S. Y. Ko, R. Morales, and I. Gupta, “New worker-centric scheduling
strategies for data-intensive grid applications,” in Proceedings of
the ACM/IFIP/USENIX 2007 International Conference on Middleware.
Springer-Verlag New York, Inc., 2007, pp. 121–142. (Online). Available:
http://dl.acm.org/citation.cfm?id=1516134

[31] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,
J. Qiu, and G. Fox, “Twister: A runtime for iterative mapreduce,”
in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC ’10. New
York, NY, USA: ACM, 2010, pp. 810–818. (Online). Available:
http://doi.acm.org/10.1145/1851476.1851593

[32] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx:
A resilient distributed graph system on spark,” in First International
Workshop on Graph Data Management Experiences and Systems, ser.
GRADES ’13. New York, NY, USA: ACM, 2013, pp. 2:1–2:6.

[33] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, “Shark: Fast data analysis using coarse-grained distributed
memory,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’12. New York,
NY, USA: ACM, 2012, pp. 689–692.

[34] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over
a map-reduce framework,” Proceedings of the VLDB Endowment, vol. 2,
no. 2, pp. 1626–1629, 2009.

[35] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima, “Exploiting
replication and data reuse to efficiently schedule data-intensive
applications on grids,” in Job Scheduling Strategies for Parallel
Processing, ser. Lecture Notes in Computer Science, D. Feitelson,
L. Rudolph, and U. Schwiegelshohn, Eds. Springer Berlin Heidelberg,
2005, vol. 3277, pp. 210–232.

[36] R. Power and J. Li, “Piccolo: Building fast, distributed programs with
partitioned tables.” in OSDI, vol. 10, 2010, pp. 1–14.

[37] Y. Chen, X.-H. Sun, R. Thakur, H. Song, and H. Jin, “Improving parallel
i/o performance with data layout awareness,” in Cluster Computing
(CLUSTER), 2010 IEEE International Conference on, Sept 2010, pp.
302–311.

[38] P. Llopis, J. Blas, F. Isaila, and J. Carretero, “Vidas: object-based
virtualized data sharing for high performance storage i/o,” in
Proceedings of the 4th ACM workshop on Scientific cloud computing.
ACM, 2013, pp. 37–44.

[39] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o in
romio,” in Frontiers of Massively Parallel Computation, 1999. Frontiers’
99. The Seventh Symposium on the. IEEE, 1999, pp. 182–189.

[40] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans. Comput.
Syst., vol. 26, no. 2, pp. 4:1–4:26, Jun. 2008. (Online). Available:
http://doi.acm.org/10.1145/1365815.1365816

[41] J. Paiva, P. Ruivo, P. Romano, and L. Rodrigues,
“Autoplacer: Scalable self-tuning data placement in distributed
key-value stores,” in Proceedings of the 10th International
Conference on Autonomic Computing (ICAC 13). San Jose,
CA: USENIX, 2013, pp. 119–131. (Online). Available:
https://www.usenix.org/conference/icac13/technical-sessions/presentation/paiva

[42] M. Vora, “Hadoop-hbase for large-scale data,” in Computer Science
and Network Technology (ICCSNT), 2011 International Conference on,
vol. 1, Dec 2011, pp. 601–605.

[43] M. Shapiro and E. Miller, “Managing databases with binary large
objects,” in Mass Storage Systems, 1999. 16th IEEE Symposium on,
1999, pp. 185–193.

Silvina Caı́no-Lores obtained her M.Sc. in
Computer Science and Technology from the
Carlos III University of Madrid (Spain) in 2015,
and she is currently working towards her Ph.D.
under the direction of Prof. Jesús Carretero Prez.
Her B.Sc. thesis was awarded by the IT Service
Management Forum (itSMF). Her research interests
include, but are not limited to, cloud computing,
high-performance and high-throughput computing,
parallel and distributed systems, in-memory
computing and storage, and scientific computing

and simulation. She is currently a teaching and research assistant in the
Computer Science Department at the Carlos III University of Madrid (Spain),
a member of the network for sustainable ultrascale computing (NESUS ICT
COST Action IC1305).

Jesús Carretero is a Full Professor of Computer
Architecture and Technology at Universidad Carlos
III de Madrid (Spain), where he is responsible
for that knowledge area since 2000. His research
activity is centered on high-performance computing
systems, large-scale distributed systems and
real-time systems. He is Action Chair of the IC1305
COST Action ”Network for Sustainable Ultrascale
Computing Systems (NESUS)”, and he is also
currently involved in the FP7 program REPARA
”Reengineering and Enabling Performance And

poweR of Applications”. Prof. Carretero is Associated Editor of the journal
Computer and Electrical Engineering and International Journal of Distributed
Sensor Networks. He has published more than 180 papers in journals and
international conferences, editor of several books of proceedings, and guest
editor for special issues of journals as International Journal of Parallel
Processing, Cluster Computing, Computers and Electrical Engineering, and
New Generation Computing, and he is coauthor of several text books related
to Operationg Systems and Computer Architecture. He has participated in
many conference organization committees, and he has been General chair of
HPCC 2011 and MUE 2012, and Program Chair of ISPA 2012, EuroMPI
2013, C4Bio 2014, and ESAA 2014. Prof. Carretero is a senior member of
the IEEE Computer Society and member of the ACM. He was a visiting
scholar at the NorthWestern University of Chicago (Ill, USA). He works
currently at Universidad Carlos III de Madrid, where he has been teaching
since 2000.


