
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3746

Abstract—With deep development of software reuse, component-

related technologies have been widely applied in the development of
large-scale complex applications. Component identification (CI) is
one of the primary research problems in software reuse, by analyzing
domain business models to get a set of business components with high
reuse value and good reuse performance to support effective reuse.
Based on the concept and classification of CI, its technical stack is
briefly discussed from four views, i.e., form of input business models,
identification goals, identification strategies, and identification
process. Then various CI methods presented in literatures are
classified into four types, i.e., domain analysis based methods,
cohesion-coupling based clustering methods, CRUD matrix based
methods, and other methods, with the comparisons between these
methods for their advantages and disadvantages. Additionally, some
insufficiencies of study on CI are discussed, and the causes are
explained subsequently. Finally, it is concluded with some
significantly promising tendency about research on this problem.

Keywords—Business component, component granularity,
component identification, reuse performance.

I. INTRODUCTION
OMPONENT identification (CI) is an important problem
in reuse-based software engineering research, and is also

considered as a pivotal technique to realize software ruse [1].
This is because that component in various granularity levels are
the basic unit for composing software systems [2], and only
when there exists a set of components that are worthy to be
reused, can deep software reuse be really realized [3].

Components can not be obtained baselessly, and designers
should follow specific principles and goals to analysis some
source information (e.g., domain business models) with domain
knowledge to find reusable components with good
performance. Therefore CI can be defined as the process of
identifying a set of components that satisfy specific
performance metrics following some guidelines [1].

According to different existence forms, components can be
classified into two types: business components (BC) [4][5] and
software components (SC) [2][6], the former of which describe

Manuscript received September 2, 2005. This work was supported in part by

the Specialized Research Fund for the Doctoral Program of Higher Education
(SRFDP) in China (Grant No. 20030213027) and the National Natural Science
Foundation in China (No. 60573086).

Zhongjie Wang, Xiaofei Xu and Dechen Zhan are with the Research Center
of Intelligent Computing of Enterprises (ICE), Harbin Institute of Technology
(HIT), 150001 Harbin, China (phone: 86-451-86412664; fax: 86-451-
86413309; e-mail: {rainy,xiaofei,dechen}@hit.edu.cn).

business functions or business objects related to reality world
[8], represent real-world semantics, but are not concerned
about real implementation, and can be regarded as logic
components, and can further be classified into entity-centric
BC and process-centric BC [7]; the latter of which are BCs’
reflection in software world, and are usually represented as the
form of binary codes, and can be regarded as executable
components. Regardless of what kinds of components, they
both express specific semantics and can be described by
component models, e.g., 3C [9], JBCOM [10] for BC, and
DCOM, CORBA CCM, EJB for SC.

According to different information source and type of
objective components, CI is classified into forward
identification (FI) and reverse identification (RI). FI refers that,
in the situation that the objective software system does not
exist, designers start from requirement models to identify BCs
and implement these BCs as SCs, then use these SCs to
construct objective software systems [1][3][7]. FI is an
important phase of Reuse-Based Software Engineering (RBSE)
[6], Component-Based Development (CBD) [11] and
Model-Driven Architecture (MDA) [12]. RI refers that in the
situation that software systems have existed, reversely analysis
source codes of these legacy systems to identify SCs
[13][14][15]. RI has great significance in Reverse Engineering
(RE), Program Comprehension, Program Recovery, etc. In
conclusion, the process of CI is shown in Fig. 1.

business
models

forward
identification

business
components

software
components

reverse
identification

legacy
systems

component
repository

Fig. 1 Basic process for component identification

No matter FI or RI, because of the complexity of source

information (i.e., business models, source codes), it is not
advisable for component designers to identify components
manually. With the aid of proper algorithms or automatic tools,
efficient CI activity can be accomplished agilely.

In fact, reverse engineering (RE) was paid attention to much
earlier than forward engineering (FE). Since 1990s, with the
popularization of CBSE [6] and wide application of a large
number of complex Enterprise Software and Applications
(ESA), e.g., ERP, CRM, etc, how to rapidly and effectively
identify reusable components from domain models has become

A Survey of Business Component Identification
Methods and Related Techniques

Zhongjie Wang, Xiaofei Xu, and Dechen Zhan

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3747

more and more urgent, so forward engineering has been
gradually emphasized by researchers and practitioners. Many
methods in RE were used for reference in FE, and there have
appeared many new CI methods. In this paper, we mainly
summarize some widely accepted methods for CI in forward
engineering, and try to provide up-to-date research process in
this field for related researchers.

The rest of this paper is organized as follows. In section 2,
we briefly introduce some basic background and technical
stake of CI, including identification goals, input model form,
identification strategies, identification process, etc. In section
3, typical CI methods in literatures are classified into four
types, i.e., domain engineering based methods, clustering based
methods, CRUD based methods and other methods, and we
address characteristics of each type of methods. In section 4,
qualitative comparisons between four types of methods are put
forward. Additionally, in section 5 some disadvantages of
study on CI are discussed and the causes are explained at the
same time. Then it is concluded with some significantly
promising tendency about research on CI. Finally is the
conclusion in section 6.

II. TECHNICAL STAKE FOR BUSINESS CI
CI is a main task in domain engineering, in which a set of

reusable components are obtained by analysis, clustering and
abstraction on domain business models. Inversely, by reusing
these components, concrete business models and the
corresponding software systems are implemented. There is a
strict and bi-directional mapping between business models and
business components, i.e., components are software
representation of business models, and business models are the
semantics representation of components.

Actually, starting from domain models and clustering them
to obtain reusable components, is consistent with basic ideas of
MDA [12]. MDA is a research hotspot in software engineering
in recent years, which emphasizes automatic mappings
between models in different levels, e.g., CIM, PIM, PSM and
codes [16]. Domain business models represent universal and
common business requirements in specific domains, and are
considered as CIM, and business component models belong to
PIM, therefore CI can be considered as the transformation from
CIM to PIM.

Related aspects in CI include identification goals, input
model forms, identification strategies and process, etc.
Differences between these aspects lead to different
identification methods.

A. Identification Goals
To cluster business models into components is not at will, or

random, and some definite principles must be followed to
ensure final components have good performance and high
reuse value.

Initial component design principles mostly originates from
design principles of Class and Package in object-oriented (OO)
methods[8], such as Open-Close Principle (OCP), Dependency
Inverse Principle (DIP), Interface Separation Principle (ISP),
Release Equivalent Principle (REP), Common Reuse Principle
(CRP), Common Close Principle (CCP), Single Responsibility
Principle (SRP), Acyclic Dependency Principle (ADP),
Stability Dependency Principle (SDP), Stability Abstraction
Principle (SAP), etc [17]. These principles normalize class
design from semantics and structural aspects, and since there
are some similarities between component and class in some
aspects, they are imported into component design.

However, a component is not the simple aggregation of
classes, and there exists essential difference between them,
therefore, these principles are not fully suitable for component
design. Even if a component is considered as the aggregation of
static classes [18], these principles are limited to the design of
entity components, and it is difficult for them to instruct design
of process components.

With the deep research on CBSE, delegated by some new
methodologies, e.g., Business Component [4], Catalysis [19],
UML component [20], some basic component design principles
and methods was presented from the view of whole component
development process, but have not obtained enough attentions.
In addition, with the gradual improvement of component
reusability evaluation methods, various performance metrics
are put forward and widely applied in practice, such as the five
management metrics (cost effectiveness, ease of assembly,
customization, reusability, maintainability) and five technical
metrics (coupling, cohesion, number of components, size of
component, complexity) in [21]. By summary on related
researches, we think that CI should pay more attention on those
quantitative metrics, as shown in Table I, by balancing between
these metrics to realize global optimization on component
performance.

TABLE I
OPTIMIZATION GOALS FOR CI

Metrics Symbol Meanings Influence factors Optimization

Reusability[6][21] R (C) The scope that C could be reused in, or the
frequency that C could be often reused

Semantics commonality and
variability of functions contained in
C

Maximum

Instantiation cost IC(C) The cost to eliminate variation points in C for a
specific requirement Number of variation points in C Minimum

Implementation
cost PC(C) The cost to implement those unimplemented

extended points in C for a specific requirement
Number of unimplemented extended
points in C Minimum

Reuse
cost

[6][21]

Composition

RC(c)

CC(C) The cost that C composites with other components Number of interfaces and Minimum

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3748

cost by interfaces to form integrated software systems complexity of parameters/data in
interfaces

Change cost

GC(C) The cost to reconfigure/modify C’s structure and
functions to fit for unsupported requirements

Stability of C and complexity of
functions in C Minimum

Reuse efficiency[6] RE (C) The contributions that C has to construct software
systems Granularity Maximum

Stability[22] S (C) The degree that functions in C need frequently
change — Maximum

Granularity[2][7][21] G (C) The scale of C, or the number of functions contained
in C — Maximum

Cohesion[3][7][21] Cohesion (C) Semantics closeness between functions in C — Maximum

Coupling[3][7][21] Coupling (C) Semantics closeness between functions in C and in
other components — Minimum

The above metrics restrains mutually, and cannot reach

optimization at the same time [6]. For example, coarse-grained
components have higher reuse efficiency but lower reusability,
and vice versa. Another example is that, components with
higher reusability are sure to have higher instantiation and
implementation cost. Therefore, CI is a multi-objective
optimization problem, i.e., under the guarantee that the
reusability, reuse efficiency, cohesion, granularity, stability are
as high as possible, to ensure reuse cost and coupling as low as
possible.

Suppose we have identified n components {C1, C2, …, Cn}
from a business model BM and form component set C_set, we
can use the average of each metrics as the objective function of
optimization, i.e.,

()
1

1 max
n

i
i

R C
n =

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ , ()

1

1 max
n

i
i

RE C
n =

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ , ()

1

1 max
n

i
i

G C
n =

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ,

()
1

1 max
n

i
i

S C
n =

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ , ()

1

1 max
n

i
i

Cohesion C
n =

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ,

()
1

1 min
n

i
i

Coupling C
n =

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ,

() () () ()()
1

1 min
n

i i i i
i

IC C PC C CC C GC C
n =

⎧ ⎫
+ + +⎨ ⎬

⎩ ⎭
∑ .

Then the integrated objective function of CI can be denoted
as:

()max _Z C set ,

()
() () () () ()

() ()
1 1 1 1 1

1 1

_

n n n n n

i i i i i
i i i i i

n n

i i
i i

R C RE C Cohesion C G C S C
Z C set

RC C Coupling C

= = = = =

= =

× × × ×
=

×

∑ ∑ ∑ ∑ ∑

∑ ∑

In these metrics, granularity is one of the most important one,
whose influence on component performance has been gently
noticed by researchers. With the incessant update of software
reuse techniques, reusable artifacts have developed from initial
functions, objects [2], to components, frameworks, design
patterns [6], until today, to software architecture and web
services in Internet-based environment. It is easy to see that
granularities of reusable artifacts are changing from
fine-grained to coarse-grained step by step [23], and
coarse-grained reuse has become a major tendency of software
reuse.

In coarse-grained CI, we can obtain coarse-grained entity
components by assembling fine-grained entity components

together according to the generalization and composition
relationships between them [18]. But for coarse-grained
process components, at present there are still no proper
methods in literatures yet.

Although current trend are coarse-grained reuse, component
granularity is not “the coarser, the better”. In a software
organization, the granularity level of accumulated and reused
components is usually determined as a decision before reuse
projects start [6]. In the chosen granularity level, each concrete
component’s granularity is usually determined by designers’
experiences during CI and design phase. Therefore, how to
appoint proper granularity to each component, to make
granularity as coarsest as possible under the premise of
avoiding deficiencies brought by coarse-grained granularity, is
an important goal of CI.

B. Form of Input Models
The inputs of CI are business models. According to different

modeling tools, these models can have different forms. In view
of the fact that UML has become the standard of software
modeling, most of CI methods adopt UML models as the way to
express business semantics [1][3][7][24][25][26], such as:

 UML use case diagram
 UML class diagram
 UML process diagram
 UML collaboration/sequence diagram

UML models contain business elements in software model
levels, e.g., objects, operations, events, which are all
finer-grained semantics, and lacks of the ability to support
coarse-grained semantics modeling, therefore, besides UML
models, other forms of models are also adopted, e.g., domain
feature models [27][28], business goal decomposition models
[8], etc.

Models in different forms may be represented as a uniform
form using feature space as a tool [27], i.e., transforming the
models into a feature tree, in which features with the same
semantics types (e.g., business process, business activities,
business operations, business objects, etc) are in the same layer,
and there exists composition/aggregation relationships between
features in neighboring layers, and dependency or association
relationships between features in the same layer.
Generalization and specialization relationships can be
expressed by feature’s “Type-Value” mechanism [28].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3749

Most models are expressed in graphical forms, which
algorithms cannot directly deal with, therefore, before CI
process, these graphical models should be pre-treated, i.e.,
analyzing semantics dependencies and the corresponding
dependency intensity between elements in models and
transform the model into the form of matrix or weighted
directional graph to be the input of automatic identification
algorithm.

C. Identification Strategies
Business components provide specific services to outside via

interface, and these services could support implementation of
one or several business models in enterprises, therefore, a
component can be regarded as a partial model of a global
business model [28], i.e., the sub feature space of business
models’ feature space. There exists a mapping between them,
and how to create this mapping between business model space
and component space and decompose business model space
into a set of components according to this mapping, is the core
problem in CI.

This mapping should satisfy characteristics of completeness
and non-intersection. Completeness refers that any business
element e contained in business models can be implemented by
the composition of n components. n=1 means e can be
implemented by features of one specific component, and n>1
means the element has to be implemented by features from all
components in {c1,c2,…,cn} by composition. Non-intersection
refers that for arbitrary two components, their feature spaces
are not intersected, i.e., one business element is not allowed to
appear in two components simultaneously to avoid redundancy
or inconsistency.

There are two general approaches to partition a given domain
feature space into component form [4]. First there is what might
be called continuous recursion, which is an analysis technique
in which the problem space is partitioned by identifying very
coarse grained components, then each very coarse grained
component is partitioned into components of a lower
granularity, and so on iteratively until the desired granularity is
achieved. The second approach can be termed discrete
recursion. While supporting strongly the concept that
components are made up from smaller components, discrete
recursion defines specific granularity levels. Each level
identifies a unique category of component. Each category has
specific characteristics that address the requirements for that
level, including defined relationships with the other categories.

Refined further, this mapping is classified into four types:
single granularity level mapping (SG), multiple granularity
level mapping (MG), middle granularity level mapping (IG)
and dynamic granularity level mapping (DG). In these
mechanisms, domain business models are firstly transformed
into the form of feature space, which are then partitioned into a
set of sub space, each of which is mapped into a component.

In SG, firstly a specific granularity level is chosen, and each
element in this level with its all descendant elements is directly
mapped to a component; for each element above this level, it

can be implemented by composition of components just
obtained.

MG is an extend of SG mapping, i.e., several granularity
levels are selected at one time, then do SG for each selected
level and obtain components in these chosen granularity levels.

A common deficiency in SG and MG is that, the final
components’ granularities are fixed, i.e., when a specific level
is chosen, the final components’ granularity is equivalent to the
chosen granularity level, and cannot change.

The basic idea of IG is: choose one granularity level, then
according to some specific coupling relationships, cluster
business elements in this level, and each cluster is mapped to a
component. For example, if business activity level is chosen for
IG, then we can get a set of components, each of which is
composed with one or several business activities.

The granularity of components by SG, MG and IG are
basically decided when the granularity level(s) is (are) chosen.
More importantly, they all do not consider the semantics
characteristics of business elements themselves, which makes
component granularity completely not related with business
elements.

The last strategy is DG to realize fully dynamic granularity.
If we integrate SG, MG and IG together, for arbitrary one
business element e in arbitrary levels of business model space,
there may be three possible strategies for e to be mapped to
component space:

 Directly mapped as a component c, i.e.,
() { } ()c e descendant eΩ = ∪

 Mapped as part of a component c, i.e.,
() { } ()c e descendant eΩ ⊃ ∪

 Mapped as composition of several components

{c1,c2,…, cn}, i.e., () { } ()
1

n

i
i

c e descendant e
=

Ω ⊇ ∪U

The key of DG is the mapping principles, i.e., according to
which of the above three strategies a business element is
mapped to component space.

In Table II we briefly summary the difference between four
mapping strategies.

TABLE II
COMPARISONS BETWEEN FOUR MAPPING STRATEGIES

 SG MG IG DG
Fixed level Yes Yes Yes No

Number of mapping levels 1 n 1 n
Mapping strategies Static Static Dynamic Dynamic

Component granularity Static Static Dynamic Dynamic

D. Identification Process
Mapping between business space and component space can

be denoted by the following equations:
()()()_ _C set Aggregate Abstract Decomposite BM set≡ (1)

()()()/ / _BM Composite Config Instantiate Adapt Select C set≡ (2)

Equation (1) refers to CI process, by decomposition and
abstraction on a set of business models BM_set to get a set of
components C_set. This process contains five basic sub-phases:

 Partitioning: Cluster business models into sub models
according to specific principles, and map each sub model into a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3750

self-contained component. There are many partition principles,
such as cohesion-coupling based decomposition [1][3][7], data
dependency and function dependency based decomposition [6],
etc.

 Abstraction: Abstract those similar services in different
components into an abstract service so that components can be
applied in multiple business situations to increase reusability.
This process can also be called “variation point design”
[6][40], with some example techniques are: dimension
reduction, grouping, splitting, and intensionalization [6], to
replace low-order variabilities by a higher-order commonality.

An abstract component might implement multiple
variabilities of a specific business, i.e., different
implementations of the business, which can be called “vertical
abstraction”. This kind of components usually deals with the
same business objects (data) with different business logic
(rules). For example, in a component “purchasing product
arrival process component”, there will be different business
logic due to the different arrival order of products and
purchasing invoice. An abstract component can also realize a
common sub function in multiple businesses, and is called
“horizontal abstraction”. This kind of components has most
common and a few special business logics (rules), and can
support to deal with different business objects (data). For
example, component “sale order management” can deal with
multiple order types, e.g., ordinary orders, retail orders,
long-term orders, etc.

 Aggregation and decomposition. To realize optimization
on performance, for those components that are often reused
together, aggregate them into a single coarser-grained
component to increase reuse efficiency and decrease reuse cost.
Related techniques include Common Reuse Principle (CRP)
[17], generalization/composition based aggregation [18], etc.
Contrariwise, granularity can also be decreased by
decomposing one coarser-grained component into several
finer-grained ones.

 Structure design: for each business component, design its
inner functional structure, outer interfaces, and relationships
with other components [7][24][25].

 Performance evaluation: for final component sets, choose
specific performance metrics and evaluate them [1][3][7]. If the
evaluation results do not satisfy expectations, then turn into the
identification process again to re-identification or re-design
these components.

In Fig. 2, we present the detailed process of CI.

granularity design structure design

model
partitioning

semantics
abstraction

aggregation

decomposition

performance
evaluation

• reusability
• reuse cost
• reuse efficiency
• stability

interface
design

inner
design

• cohesion
• coupling
• stability

• reusability • granularity

Fig. 2 Detailed process for business CI

Equation (2) is the reverse process of (1), denoting the

process of reusing components to construct software systems.

III. CLASSIFICATIONS ON BUSINESS CI METHODS
Aiming at different business model forms, identification

goals and strategies, researchers have presented various
identification methods, and formed comparatively mature CI
methodologies, which can be classified into four types: Domain
Engineering (DE) based methods, Clustering Analysis (CA)
based methods, CRUD matrix (CM) based methods, and other
methods.

A. Domain Engineering based Methods
As mentioned above, initially CI has been considered as a

phase in domain engineering [6], in which component
designers do domain analysis from a group of similar
requirements in one business domain, find commonalities and
variabilities across them, construct domain specific software
architecture (DSSA) to seek reusable business semantics, then
construct reusable business component specifications.

Researches on domain engineering started from early 1980s,
and by 20 years’ development, at present typical and popular
research and practice work include: Feature-Oriented Domain
Analysis (FODA) [29], Feature-Oriented Reuse Method
(FORM) [30], Product Line Method (PLM) [31], Reuse-Driven
Software Engineering Business (RESE) [5], JadeBird
Object-Oriented Domain Engineering [32], etc. These methods
usually focus on the reusability of domain architecture and
adaptability of objective components, whereas does not quite
emphasize on performance factors, e.g., reuse cost and reuse
efficiency. In addition, these methods rarely have the ability to
obtain reusable components from business models
automatically, and CI should be accomplished with the aid of
experiences of domain analyzers.

Up to now, these methods have not taken the concept
“stability” into consideration yet, but emphasized on analysis of
commonalities and variabilities (C&V) with a basic hypothesis
that, the commonalities in domain is always stable. Actually it
is not reasonable. This is because any software artifacts require
changing itself along with time [33]. Hamza and Fayad did
some research on stability of software systems [22], and present
Stability-Oriented Domain Analysis (SODA) [33] method, in
which commonalities are classified into enduring and instable
ones, accordingly software is partitioned into three layers:
Enduring Business Themes (EBTs), Business Objects (BOs)
and Industrial Objects (IOs), to realize clear separation of
stability. But SODA does not produce constructive opinions on
the optimization of component granularity, either.

B. Cohesion-Coupling based Clustering Analysis Methods
In afterwards research from 1990s, CI has been regarded as

an independent problem and obtained widespread attentions.
Starting from considering reuse cost optimization, researchers
try to cluster business models according to “high cohesion and
low coupling” principle and encapsulate each cluster into a
component [3]. Basic ideas of these methods are: calculate the
strength of semantics dependencies between two business
elements and transform business models into the form of
weighted directional graph, in which business elements are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3751

nodes and semantics dependency strength are the weight of
edges between two nodes, then cluster the graph using graph
clustering or matrix analysis techniques. This type of methods
is summarized in [34].

Clustering analysis is a method in mathematical statistics for
precise classification. It aggregates those elements with high
cohesion together to form specific patterns, and is widely used
in the field of data mining and pattern recognition. Researchers
imported it into CI and expect to obtain components with high
cohesion and low coupling to reduce composition cost.
Depending on different strategies of calculating dependency
strength (DS) between nodes, clustering analysis may produce
different results. The basic process is presented in [7], just as
follows:

(1) Denote n elements that need to be classified as set X, and
initially each element in X forms a cluster;

(2) Specify the principles for calculating DS, i.e., similarity
between arbitrary two nodes, and denote DS between Xi and Xj
as Rij;

(3) Calculate DS between arbitrary two nodes in X and
obtain the DS matrix D of n elements;

(4) Choose a sound “Minimum DS” Rmin as the judgment
principle for merge two elements into one cluster;

(5) According to each Rij in D, execute the following
clustering process:

(5.1) (Valve value) If Rij≥Rmin, then set Xi and Xj into one
cluster;

(5.2) (Transitivity) If Xi and Xj, Xi and Xk belong to the
same cluster respectively, then merge Xi, Xj, Xk into one
cluster;
(6) Map elements in each cluster together into a business

component.
In this process, key techniques need to be concerned include:

how to calculate SD between nodes, how to cluster the graph.
Aiming at the former, static SD and dynamic SD are separately
calculated and then combined together to get the final SD
[1][3][7]. Static SD is mainly resulted by relationships between
business objects, e.g., generalization, composition,
aggregation, etc; and dynamic SD is mainly resulted by
relationships between use cases or business objects, e.g., use
and function call, etc. By set a specific weight for each type of
dependency and sum up the weights of all dependencies
between two nodes, the global SD is obtained. Different
clustering methods have different but similar calculation
method.

Aiming at the latter, graph clustering or matrix analysis is
usually adopted. Identifying sub-graphs with high cohesion is
considered as an equivalent problem of identifying strongly
connected sub-graphs [35]. Graph clustering is a classic
research problem in graph theory, and there are many clustering
algorithms in literatures, such as k-cut based clustering [36],
maximum flow and minimum cut network clustering algorithm
[37], etc. Since graph clustering is an NP-hard problem [38],
and cannot get optimal result in polynomial-time, some
heuristic algorithms, e.g., genetic algorithm [38][39], are
usually adopted to obtain approximate optimal results.

However, heuristic algorithms still need a large number of
iterations, and in order to improve efficiency, some
approximate algorithms, e.g., top-down or bottom-up
hierarchical algorithm [13], Chameleon algorithm [40], Core
Entity algorithm [7], etc, to identify components for less
execution time and acceptable results.

Typical methods in this type include:
In [3], a basic cluster algorithm was presented, in which

business entities was taken as nodes, and the strength of
relationships between entities was taken as weight. If the
weight between two nodes is higher than the per-set valve
value, then they are in the same cluster. By property of
transitivity, the final clustering is obtained.

In [7], a Cluster Algorithm is adopted to identify two kinds
of business components (process component and entity
component) and requirement models are taken as the data
source of Cluster Algorithm samples. Several formulations are
given to calculate the value of samples’ relationship. Based on
[3], Core Entity was chosen to achieve better accuracy of
Business CI. Several selection strategies of core entity were
presented, and several peculiar situations are also taken into
considerations.

In [1], a heuristic algorithm is adopted for clustering. It starts
from object models in analysis model level, uses hierarchical
clustering method to get initial clustering scenario, then applies
a set of pre-defined constraints and heuristic rules, e.g.,
move/exchange objects between different clusters, add new
clusters, etc, to get a new cluster scenario, which will be
evaluated carefully to determine whether it may be accepted as
the final results. When the iteration process stops, an
approximately optimal cluster scenario is obtained.

In [35], a coupling analysis method to identify business
components is presented. It aims at business process models
mainly and considers three connection relationships (serial,
parallel, and coupling) between processes to identify
sub-processes with high coupling and set them in a process
component. This method uses graph adjacency matrix as a tool
and by matrix transformation and block to cluster models.

Components identified in this type of methods are loose
coupling and high cohesion both in semantics and structure, so
as to ensure lower reuse cost. These methods also support to
cluster business models into components automatically, but
they only aim at specific business model types, and have not
considered reusability and adaptability of components. In
addition, they use IG mapping strategy, which cannot realize
optimization on granularity, i.e., the final components’
granularities are relatively fixed in one or several levels. What
is more, they try to pursue balance between granularities of
different components sedulously, or even decrease granularity
by decomposition [7]. This runs in the opposite direction of
coarse-grained reuse tendency.

C. CRUD based Methods
Most of clustering based CI methods try to optimize

component performance from the view of coupling-cohesion,
which not only ignores other performance metrics, but also

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3752

ignores semantics of business elements themselves, therefore
the semantics integrity of final components cannot be ensured
completely. Researchers have reached a consensus that simply
seeking optimal solutions is not quite significant. Therefore,
CRUD matrix based CI methods [4][24][25][26] appeared.

This type of methods is actually also a clustering method,
which uses those behavioral business elements (e.g., use case
[24], events [25], operations) and static business elements (e.g.,
business entities) as sample data, uses four semantic
relationships (Create-C, Read-R, Update-U, Delete-D, with the
priorities as C>D>U>R) between behavioral and static
elements to calculate association weight, and merges those use
cases and entities with C or D relationships into one business
components.

Fig. 3 shows an example of CRUD matrix.
 Entity, Object, etc
 E1 E2 E3 E4

M1 C C R
M2 U U U R
M3 R R RU

Event,
Method,

Use Case,
etc M4 RUD

Fig. 3 An example of CRUD matrix

Lee and Yang presented a UML model based
Object-Oriented Component Development Methodology
(COMO) [24], in which by analysis on use case diagrams, class
diagrams and sequence diagrams, “use case/class matrix” are
created. Then “use case and class clustering algorithm” are
applied to the matrix to partition it into blocks, accordingly
those use cases and classes in the same block are with tight
cohesion and aggregated into one business component.

O2BC (Objects to Business Components) method [25]
presented by Ganesan and Sengupta also bases on UML models,
from which Domain Object Model (DOM) and Entity-Event
Interaction Matrix are constructed. By several transformation
rules the matrix is clustered to blocks to get final entity and
process components.

In [26], during the development process of component-based
web applications, CRUD matrix between business activities

and business objects are adopted to allocate objects into
business activity components. Abstraction mechanism is also
imported to form concrete business components for specific
businesses and common business components for multiple
businesses.

This type of methods fully considers semantics relationships
between business elements (denoted as C/R/U/D) so that
transaction and semantics integrity can be ensured. Its
shortcoming is that other performance metrics are not
addressed, either.

D. Other Methods
Besides three types of CI methods above, there are still some

other methods, but they have not yet form mature technique
system, therefore not the mainstream of CI methods.

Business goal decomposition oriented CI method [8]. This
method does not use UML models as input, but uses enterprise
business processes, business rule models, etc, to construct
business goal space, represented as the form of Goal Service
Graph (GSG). By decomposing GSG, final components could
encapsulate rich design decision information, therefore tight
traceability between enterprise businesses and component
models is ensured.

Other methods include: Similarity-based CI method [34],
Variation Oriented Decomposition (VOD) method [41],
Information Loss Minimization based method [42], Business
Model Stability based method (STCIM) [43] , etc. We will not
discuss them in details.

IV. COMPARISON AND ANALYSIS BETWEEN CI METHODS
The four types of CI methods focus on different aspects, so

the performances of final components also have big diversity
between them. We summarize these differences in Table III.

TABLE III

COMPARISONS BETWEEN DIFFERENT CI METHODS
 DE-based methods CC-based Cluster methods CRUD-based methods Other methods

Model forms Domain feature models

UML use case diagram
UML class diagram
UML activity diagram
UML sequence diagram
etc

UML use case diagram
UML class diagram
External business events
Business activity models

Goal decomposition
models,
Business process models,
etc

Application domain Not limited Entity components
Process components

Entity components
Process components

Mainly process
components

Reusability High N/A N/A High
Reuse cost N/A Low Low High
Reuse efficiency N/A N/A N/A Low
Stability Clear separation N/A N/A N/A

Granularity N/A

Seek balance between different
components.
More attentions on business
object level, so granularities
are usually fine

N/A Seek coarse-grained
components

Cohesion N/A High High N/A

Goals

Coupling N/A Low Low N/A
Phases Clustering √ √ √ √

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3753

Abstraction √ × × √
Merge/Decomposition √ √ × ×
Interface design × √ √ √

Performance evaluation √ √ × √
Identification strategies SG/MG IG IG IG

Tool support No algorithms,
with CASE tool support

With algorithms, but seldom
tools With algorithms, no tools

With algorithms and
design process, usually no
tools

Typical methods

FODA[29]
FORM[30]
SODA[33]
JadeBird OODA[32]

Cohesion-coupling based
methods[1][3]
Core entity methods[7]

COMO[24]
O2BC[25]

Goal decomposition
oriented method[8]
VOD[40]

V. DISADVANTAGES AND FUTURE RESEARCH WORK ON CI
METHODS

Although there have been rich research results in CI
methods, in practice, CI methodologies are still not quite
perfect, and there still lack of standard method architecture and
explicit instructions for practical application [7]. Summarizing
on current research work in CI methods, we think that there are
the following shortcomings:

(1) There lacks of a uniform component semantics model.
Although in literatures there are various component models,
e.g., 3C, Wright, JBCOM, different CI methods supports
different component models and cannot fit for other models,
which leads to poor adaptability.

(2) There lack of uniform business models. Similarly, current
popular business modeling methods and languages are quite
rich, such as UML, UEML, EPC, etc, but different CI methods
aim at different business models.

(3) There lacks of a complete component performance
evaluation method. Various CI methods only pay attentions to
part of performance metrics and ignore others, which lead to
incompleteness of component performance, i.e., some
performance is quite good, while others are quite bad.

(4) There lacks of tool support. Most of methods have low
automation degree, i.e., have to be done manually, and
currently there only exist a few tools (e.g., CompMaker [1]) to
support automatic CI, and in most situations, it requires
component designers to manually identify components.

Aiming at the promising tendency about research on CI
methods, we think that future work should be carried out from
the following views:

(1) Multi-objective CI methods: integrate those mutually
restrained metrics together and try multi-objective optimization
in CI process to realize optimal solutions. A feasible plan is to
combine current CI methods together, e.g., using DE-based
methods for optimization on reusability and stability, using
cluster analysis based and CRUD-based methods to optimize
reuse cost, and use other methods for optimization on
granularity and reuse efficiency, etc.

(2) Dynamic granularity. There are no methods that adopt
DG strategy, therefore component granularities are not very
flexible and not closely associated with business semantics.
Future research should try to set different granularities for

different business elements according to semantics
characteristics, therefore realize dynamic granularity CI.

(3) Integration of CI and business modeling. Current CI
methods usually provide corresponding algorithms and
process, but the concrete work has to be done by designers
manually. CI and business modeling tools should be integrated
together, i.e., embedding CI methods into modeling tools, so as
to realize automatic identification after business models are
built.

(4) Component reconfiguration. After components are
identified and reused in practice for some periods, according to
the accumulated reuse data, analyze deficiencies in component
design that are not suitable for reuse, then re-identify or
re-design these components on structure and semantics to make
them more fit for practical reuse.

VI. CONCLUSIONS
As a hot research field tending towards mature, research on

CI methods connects business models and component models
together, and according to specific goals and strategies to create
reusable business component and provide valuable assets for
software reuse.

At present research on CI is still very active, and it has been
considered as an important sub-problem in MDA research.
There appears a large quantity of papers annually in some
famous international conferences and journals, e.g., ICSE, etc,
which proves that this problem is still being widely paid
attention to by researchers.

In addition, with the development of web services and the
popularization of inter-enterprise software and applications, the
problem of web service identification and design has been
already underway [44][45] therefore, it is also a research field
worthy to be concerned with.

REFERENCES
[1] H. Jain, N. Chalimeda, N. Ivaturi, and B. Reddy, “Business component

identification: A formal approach,” in Proc. of the 5th IEEE Int.
Enterprise Distributed Object Computing Conf. Seattle: IEEE Computer
Society Press, 2001, pp.183–187.

[2] C. Szyperski, “Component software: Beyond Object–Oriented
Programming,” Addison-Wesley, 1998.

[3] J.K. Lee, S.J. Jung, and S.D. Kim, “Component Identification Method
with Coupling and Cohesion,” in Proc. of 8th Asia–Pacific Software
Engineering Conf. Macau, China, 2001. pp.79–86.

[4] P. Herzum and O. Sims, “Business Component Factory,” New York: John
Wiley&Sons, Inc., 1999. pp. 425–529.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3754

[5] I. Jacobson, M. Griss, and P. Jonsson, “Software Reuse: Architecture,
Process and Organization for Business Success,” Addison–Wesley, 1997.

[6] H. Mili, A. Mili, S. Yacoub, and E. Addy, “Reuse-Based Software
Engineering: Techniques, Organization, and Controls,” New York: John
Wiley and Sons Ltd., 2002.

[7] W. Xu, B.L. Yin, and Z.Y. Li, “Research on the business component
design of enterprise information system,” J. of Software, vol.14, no.7,
pp.1213–1220, 2003.

[8] L. Keith and A. Ali, “A Goal–driven Approach to Enterprise Component
Identification and Specification,” Communications of the ACM, vol.45,
no.10, pp.45–52, 2002.

[9] W. Tracz, “Implementation Working Group Summary,” in Proc. of Reuse
in Practice Workshop, J. Baldo and Jr. Alexandria, Eds., IDA Document
D–754, Pittsburgh, PA, pp.10–19.

[10] Q. Wu, J. Chang, H. Mei, and F.Q. Yang, “JBCDL: An Object-Oriented
Component Description Language,” in Proc. of the 24th Int. Conf. on
Technology of Object–Oriented Languages ASIA, IEEE Computer Soc.
Press, Los Alamitos, CA, 1997, pp.198–205.

[11] I. Crnkovica and M. Larsson, “Challenges of component–based
development,” The J. of Systems and Software, vol.61, no.3, pp.201–212,
2002.

[12] D. S. Frankel, “Model Driven Architecture: Applying MDA to Enterprise
Computing,” Wiley, 2003.

[13] T.A. Wiggerts, “Using Clustering Algorithms in Legacy Systems
Remodularization,” in Proc. of 4th Working Conf. on Reverse
Engineering. Washington, DC, USA: IEEE Computer Society, 1997.
pp.33–43.

[14] X. Zhou, X.K. Chen, J.S. Sun, and F.Q. Yang, “Software Measurement
Based Reusable Component Extraction in Object–oriented System,”
ACTA Electronica SINICA, vol31, no.5, pp.649–653, 2003.

[15] Z.M. Zhang, Y.T. Zhuang, Y.H. Pan, “Object-Oriented Software Reverse
Engineering,” J. of Computer Research and Development, vol.40, no.7,
pp.1062–1068, 2003.

[16] A. Kleppe, J. Warmer, and W. Bast, “MDA Explained: The Model Driven
Architecture: Practice and Promise,” Addison-Wesley, 2003.

[17] R.C. Martin, “Agile software development: principles, patterns, and
practices,” New York: Prentice Hall, 2002.

[18] G. Li and M.Z. Jin, “A design method for reusable components,” J. of
Computer Research and Development, vol.37, no.5, pp.609–615, 2000.

[19] D.F. D’Souza and A.C. Wills, “Objects, Components, and Frameworks
with UML: The Catalysis Approach,” Reading: Addison-Wesley
Longman, Inc., 1998, pp.505–680.

[20] J. Cheesman and J. Daniels, “UML Components: A Simple Process for
Specifying Component–Based Software,” Boston: Addison-Wesley
Longman, Inc., 2000.

[21] P. Vitharana, H. Jain, and F. Zahedi, “Strategy–Based Design of Reusable
Business Components,” IEEE Trans. Systems, Man, and Cybernetics –
Part C: Applications and Reviews, vol.34, no.4, pp.460–474, 2004.

[22] M.E. Fayad, “Accomplishing Software Stability,” Communications of the
ACM, vol.45, no.1, pp.111–115, 2002.

[23] D. Helton, “The Impact of Large–Scale Component and Framework
Application Development on Business,” in 3rd Int. Workshop on
Component–Oriented Programming. pp.163–164, 1998.

[24] S.D. Lee and Y.J. Yang, “COMO: A UML-based component
development methodology,” in Proc. of 6th Asia Pacific Software
Engineering Conf. Takamatsu, 1998. pp.54–63.

[25] R. Ganesan and S. Sengupta, “O2BC: A technique for the design of
component–based applications,” in Proc. of 39th Int. Conf. and
Exhibition on Technology of Object–Oriented Language and Systems,
2001. pp.46–55.

[26] A. Somjit and B. Dentcho, “Development of industrial information
systems on the Web using business components,” Computer in Industry
vol.50, no.2, pp.231–250, 2003.

[27] W. Zhang and H. Mei, “A feature-oriented domain model and its
modeling process,” J. of Software, vol.14, no.8, pp.1345–1356, 2003.

[28] Y. Jia, “The Evolutionary component–based software reuse approach,”
Ph.D. dissertation, Graduation School of Chinese Academy of Sciences,
2002.

[29] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson,
“Feature-Oriented domain analysis (FODA) feasibility study,” Tech.
Rep., CMU/SEI-90-TR-21, Carnegie Mellon University, Software
Engineering Institute, Pittsburgh, USA, 1990.

[30] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “FORM: A
feature-oriented reuse method with domain-specific reference
architectures,” Annals of Software Engineering, vol.5, pp.143–168, 1998.

[31] C. Gary, D. Patrick, K.C. Kang, and S. Thiel, “Product Line Analysis: A
Practical Introduction,” Tech. Rep., CMU/SEI-2001-TR-001, Carnegie
Mellon University, Software Engineering Institute, Pittsburgh, USA,
2001.

[32] F.Q. Yang, H. Mei, Q. Wu, and B. Zhul, “An Approach to Software
Development based on Reuse of Heterogeneous Components and its
Supporting System,” Science in China (E), vol.40, no.4, pp.405–413,
1997.

[33] H.S. Hamza, “SODA: A Stability-Oriented Domain Analysis Method,” in
Proc. of the 19th Annu. ACM SIGPLAN Conf. on Object-oriented
programming systems, languages, and applications, Vancouver, Canada:
ACM Press, 2004, pp.220–221.

[34] K. Rainer, “Atomic Architectural Component Recovery for Program
Understanding and Evolution,” Ph.D. dissertation, Institut für Informatik,
Universität Stuttgart, 2000.

[35] X.W. Yuan, Z. Qin, and Z.J. Lu, “Identification method of business
component based on coupling analysis,” Control and Decision, vol.19,
no.9, pp.1071–1073, 1077, 2004.

[36] J. Christopher, “Computing Program Modularizations Using the k–Cut
Method,” in Proc. of 6th Working Conf. on Reverse Engineering.
Oct.06–08, 1999, Atlanta, Georgia.

[37] T. Konstantinos, “Maximum Flow Techniques for Network Clustering,”
Ph.D. dissertation, Princeton University. 2002.

[38] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R. Gansner,
“Using Automatic Clustering to Produce High-Level System
Organizations of Source Code,” in Proc. of 6th Int. Workshop on Program
Comprehension, 1998.

[39] T.N. Bui and B.R. Moon, “Genetic Algorithm and Graph Partitioning,”
IEEE Trans. Computers, vol.45, no.7, pp.841–855, 1996.

[40] G. Karypis, E.–H. Han, V. Kumar, “Chameleon: Hierarchical Clustering
Using Dynamic Modeling,” IEEE Computer, vol.32, no.8, pp. 68–75,
1999.

[41] A. Ali, Z. Hussein, and A. James, “Externalizing Component Manners to
Achieve Greater Maintainability through a Highly Re–configurable
Architectural Style,” in Proc. of Int. Conf. on Software Maintenance.
IEEE Computer Society, 2002, pp.628–637.

[42] P. Andritsos and V. Tzerpos, “Software Clustering based on Information
Loss Minimization,” in Proc. of 10th Working Conf. on Reverse
Engineering.2003, pp.334–344.

[43] Z.J. Wang, X.F. Xu, D.C. Zhan. “Component Granularity Optimization
Design Based on Business Model Stability Evaluation, ” Chinese Journal
of Computers. 2006, 29(2): 239–248.

[44] R. Lee, A. Harikumar, C.C. Chiang, H.S. Yang, H.K. Kim, and B. Kang,
“A Framework for Dynamically Converting Components to Web
Services,” in Proc. of 3rd ACIS Int. Conf. on Software Engineering
Research, Management and Applications, Michigan, USA, 2005.
431–437.

[45] Z.J. Wang, X.F. Xu, D.C. Zhan. “Normal Forms and Normalized Design
Method for Business Service,” in Proc. of IEEE Int. Conf. on e-Business
Engineering, Beijing, China, 2005. 79–86.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3755

Zhongjie Wang was born in China on November
20, 1978. He is now a lecture in computer
application technology in School of Computer
Science and Technology at Harbin Institute of
Technology (HIT), China. He received B.S.
Degree, M.S. Degree and Ph.D. Degree in the
Department of Computer Science and Engineering
in Harbin Institute of Technology in 2000, 2002
and 2005 respectively. His research interests
include software engineering, software reuse,
software reconfiguration, software component
related techniques.

Xiaofei Xu was born in China on November 2,
1962. In 1978, he started his study in Harbin
Institute of Technology. He received B.S. Degree,
M.S. Degree and Ph.D. Degree in the Department
of Computer Science and Engineering in Harbin
Institute of Technology in 1982, 1985 and 1988
respectively. And he was awarded as one of the
Outstanding Chinese Doctor by the Education
Minister of China in 1990.

Prof. Dr. Xu is now a professor and dean of
School of Computer Science and Technology,
dean of National Pilot School of Software in
Harbin Institute of Technology in China. He is

commissioner of China Association of Science and Technology, the standing
member of the council of China Computer Federation, member of Expert Group
for Discipline of Computer Science and Technology in the Academic Degree
Committee of the State Council of China. He is member of the Expert
Committee of Chinese National 863 High-Tech R&D Program on CIMS
(Computer Integrated Manufacturing Systems), member of the Expert Group
for Manufacturing Informational Application Project in the National Key
Technology R&D Program. He is vice director of National Standard Technical
Committee on Industrial Automation System and Integration, vice chairman of
the Council of the China ERP Development and Technology Association. He is
also senior member of Society of Manufacturing Engineer (SME) in USA, and
was member of German Society of Operation Research. He is also guest
doctoral supervisor of Dublin Institute of Technology in Ireland. He has
positions in the editorial committees of nine academic journals.

His research fields include intelligent enterprise computing, computer
integrated manufacturing systems, databases, management and decision
information systems, ERP and supply chain management, e-business,
knowledge engineering, etc. In recent years, he has been in charge of more than
twenty Chinese national research projects and international cooperation
projects, and gotten many research achievements and awards. He has published
more than 200 papers in journals and conferences in which more than 70 papers
are involved in SCI, EI and ISTP, and three academic books. He has held
conference chairman and session chairs in the international conferences for
several times.

As a doctoral supervisor, he has supervised more than 30 doctoral students
in which 10 students get Ph.D. degree, and more than 30 master students in
which 28 students get master degree.

Dechen Zhan was born in China on October 18,
1965. He is a professor in School of Computer
Science and Technology at Harbin Institute of
Technology (HIT), China. His research interests
include computer integrated manufacturing system
(CIMS), enterprise resource planning (ERP),
decision support systems (DSS), software reuse
and reconfiguration, etc.

