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A Sum Operator Method for Unique Positive
Solution to a Class of Boundary Value Problem of

Nonlinear Fractional Differential Equation
Fengxia Zheng, Chuanyun Gu

Abstract—By using a fixed point theorem of a sum operator, the
existence and uniqueness of positive solution for a class of
boundary value problem of nonlinear fractional differential equation
is studied. An iterative scheme is constructed to approximate it.
Finally, an example is given to illustrate the main result.
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I. INTRODUCTION

FRACTIONAL differential equations are various used in
mechanics, physics, chemistry, engineering, economics

and biological sciences, etc.; see [1]-[9] and the references
therein. In recent years, the existence and multiplicity of
positive solutions for nonlinear fractional differential
equation boundary value problem have been of great interest.
Their analysis relies on Leray-Shauder theory, fixed-point
theorems, etc., see [10]-[15]. However, there are few papers
consider the existence of unique positive solution for
nonlinear fractional differential equation boundary value
problem, see [16]-[18].

In particular, by means of a sum operator method, [18]
consider the existence and uniqueness of positive solution for
the following fractional boundary value problem given by{ −Dα

0+u(t) = f(t, u(t)) + g(t, u(t)), 0 < t < 1, 3 < α ≤ 4
u(0) = u′(0) = u′′(0) = u′′(1) = 0,

(1)
where Dα

0+ is the standard Riemann-Liouville fractional
derivative.

Motivated by the work mentioned above, in this paper, by
using of a fixed point theorem for a sum operator, we obtain
the existence of unique positive solution for the following
nonlinear fractional differential equation boundary value
problem:⎧⎨
⎩

−Dv
0+u(t) = f(t, u(t)), 0 < t < 1, n− 1 < v ≤ n

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = 0,
[Dα

0+u(t)]t=1 = 0, 1 ≤ α ≤ n− 2,
(2)

where f(t, u(t)) = g(t, u(t)) + h(t, u(t)) and Dv
0+ is the

standard Riemann-Liouville fractional derivative of order v.
Moreover, we can construct an iterative scheme to
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approximate the unique positive solution, which is important
for evaluation and application.

II. PRELIMINARIES AND PREVIOUS RESULTS

In this section, we present some definitions, lemmas and
basic results that will be used in the proof of our main result.
Definition 1 [9] The integral

Iα0+f(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt, x > 0

is called the Riemann-Liouville fractional integral of order α,
where α > 0 and Γ(α) denotes the gamma function.
Definition 2 [9] For a function f(x) given in the interval
[0,∞), the expression

Dα
0+f(x) =

1

Γ(n− α)
(
d

dx
)n

∫ x

0

f(t)

(x− t)α−n+1
dt

is called the Riemann-Liouville fractional derivative of order
α, where n = [α] + 1, [α] denotes the integer part of number
α.
Lemma 1 [11] Let y ∈ Cn[0, 1] and n − 1 < v ≤ n. The
unique solution of problem⎧⎨

⎩
−Dv

0+u(t) = y(t), 0 < t < 1
u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = 0,

[Dα
0+u(t)]t=1 = 0, 1 ≤ α ≤ n− 2,

(3)

is

u(t) =

∫ 1

0

G(t, s)y(s)ds, t ∈ [0, 1],

where

G(t, s) =

{
tv−1(1−s)v−α−1−(t−s)v−1

Γ(v) , 0 ≤ s ≤ t ≤ 1,
tv−1(1−s)v−α−1

Γ(v) , 0 ≤ t ≤ s ≤ 1.

(4)
Here G(t, s)is called the Green function of boundary value
problem (3).
Lemma 2 [17] The Green function G(t, s) defined by (4) has
the following property:

1
Γ(v) t

v−1[1− (1− s)α](1− s)v−α−1 ≤ G(t, s)

≤ 1
Γ(v) t

v−1(1− s)v−α−1, ∀t, s ∈ [0, 1].
(5)

In the sequel, we present some basic concepts in ordered
Banach spaces for completeness and a fixed point theorem
which will be used later. For convenience of readers, we
suggest that one refer to [19] for details.
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Suppose (E, || · ||) is a real Banach space which is partially
ordered by a cone P ⊂ E, i.e. x ≤ y if and only if y−x ∈ P .
If x ≤ y and x �= y, then we denote x < y. We denote the zero
element of E by θ. Recall that a non-empty closed convex set
P ⊂ E is a cone if it satisfies (i)x ∈ P, λ ≥ 0 ⇒ λx ∈ P ;
(ii)x ∈ P,−x ∈ P ⇒ x = θ.

Putting P 0 = {x ∈ P |x is an interior point of P}, a
cone P is said to be solid if P 0 is non-empty. Moreover, P is
called normal if there exists a constant N > 0 such that, for
all x, y ∈ E, θ ≤ x ≤ y implies ||x|| ≤ N ||y||; in this case N
is called the normality constant of P . We say that an operator
A : E → E is increasing if x ≤ y implies Ax ≤ Ay.

For all x, y ∈ E, the notation x ∼ y means that there exist
λ > 0 and μ > 0 such that λx ≤ y ≤ μx. Clearly ∼ is an
equivalence relation. Given w > θ (i.e. w ≥ θ and w �= θ),
we denote the set Pw = {x ∈ E|x ∼ w} by Pw. It is easy to
see that Pw ⊂ P for w ∈ P .
Definition 3 [18] Let D = P or D = P 0 and γ be a real
number with 0 ≤ γ < 1. An operator A : P → P is said to
be γ-concave if it satisfies

A(tx) ≥ tγAx, ∀t ∈ (0, 1), x ∈ D. (6)

Definition 4 [18] An operator A : E → E is said to be
homogeneous if it satisfies

A(tx) = tAx, ∀t ∈ (0, 1), x ∈ E. (7)

An operator A : P → P is said to be sub-homogeneous if it
satisfies

A(tx) ≥ tAx, ∀t ∈ (0, 1), x ∈ P. (8)

In recent paper, Zhai and Anderson [20] considered the
following sum operator equation

Ax+Bx+ Cx = x,

where A is an increasing γ-concave operator, B is an
increasing sub-homogeneous operator and C is a
homogeneous operator. They established the existence and
uniqueness of positive solutions for the above equation, and
when C is a null operator, they present the following
interesting result.
Lemma 3 [20] Let P be a normal cone in a real Banach
space E, A : P → P be an increasing γ-concave operator
and B : P → P be an increasing sub-homogeneous operator.
Assume that
(i) there is w > θ such that Aw ∈ Pw and Bw ∈ Pw;
(ii) there exists a constant δ0 > 0 such that
Ax ≥ δ0Bx, ∀x ∈ P.
Then operator equation Ax + Bx = x has a unique solution
x∗ in Pw. Moreover, constructing successively the sequence
yn = Ayn−1 + Byn−1, n = 1, 2, · · · for any initial value
y0 ∈ Pw, we have yn → x∗ as n → ∞.
Remark 1 [20] When B is a null operator, lemma 3 also
holds.

In this paper, we will work in the Banach space C[0, 1]
with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Notice
that this space can be endowed with a partial order given by
x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

Let P = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]} be the standard
cone. Evidently, P is a normal cone in C[0, 1] and the
normality constant is 1.

III. MAIN RESULTS

In this section, we apply lemma 3 to investigate the
problem (2), and obtain the new result on the existence and
uniqueness of positive solution.
Theorem 1 Assume that
(H1) g, h : [0, 1] × [0,∞) → [0,∞) are continuous and
increasing with respect to the second argument, h(t, 0) �≡ 0;
(H2) there exists a constant γ ∈ (0, 1) such that
g(t, λx) ≥ λγg(t, x), ∀t ∈ [0, 1], λ ∈ (0, 1), x ∈ [0,∞), and
h(t, μx) ≥ μh(t, x) for μ ∈ (0, 1),t ∈ [0, 1],x ∈ [0,∞);
(H3) there exists a constant δ0 > 0 such that
g(t, x) ≥ δ0h(t, x), t ∈ [0, 1], x ≥ 0. Then the problem (2)
has a unique positive solution u∗ in Pw, where
w(t) = tv−1, t ∈ [0, 1]. Moreover, for any initial value
u0 ∈ Pw, constructing successively the iterative scheme

un+1(t) =

∫ 1

0

G(t, s)f(s, un(s))ds, n = 0, 1, 2, · · · ,

we have un(t) → u∗(t) as n → ∞, where G(t, s) is given as
(4).
Proof: To begin with, from Lemma 1, the problem (2) has an
integral formulation given by

u(t) =
∫ 1

0
G(t, s)f(s, u(s))ds

=
∫ 1

0
G(t, s)[g(s, u(s)) + h(s, u(s))]ds

where G(t, s) is given as (4).
Define two operators A : P → E and B : P → E by

Au(t) =
∫ 1

0
G(t, s)g(s, u(s))ds,

Bu(t) =
∫ 1

0
G(t, s)h(s, u(s))ds.

It is easy to prove that u is the solution of the problem (2)
if and only if u = Au+Bu.By assumption (H1) and Lemma
2, we know that A : P → P and B : P → P . In the sequel
we check that A, B satisfy all assumptions of Lemma 3.

Firstly, we prove that A and B are two increasing operators.
In fact, from assumption (H1) and Lemma 2, for u, v ∈ P

with u ≥ v, we know that u(t) ≥ v(t), t ∈ [0, 1] and obtain

Au(t) =
∫ 1

0
G(t, s)g(s, u(s))ds

≥ ∫ 1

0
G(t, s)g(s, v(s))ds

= Av(t)

That is Au ≥ Av. Similarly, Bu ≥ Bv.
Next we show that A is a γ-concave operator and B is a

sub-homogeneous operator.
In fact, for any λ ∈ (0, 1) and u ∈ P , from (H2) we know

that
A(λu)(t) =

∫ 1

0
G(t, s)g(s, λu(s))ds

≥ λγ
∫ 1

0
G(t, s)g(s, u(s))ds

= λγAu(t)
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That is, A(λu) ≥ λγAu for λ ∈ (0, 1), u ∈ P . So the operator
A is a γ-concave operator. Also, for any μ ∈ (0, 1) and u ∈ P ,
by (H2) we obtain

B(μu)(t) =
∫ 1

0
G(t, s)h(s, μu(s))ds

≥ μ
∫ 1

0
G(t, s)h(s, u(s))ds

= μBu(t)

That is, B(μu) ≥ μBAu for μ ∈ (0, 1), u ∈ P . So the
operator B is a sub-homogeneous operator.

Now, we show that Aw ∈ Pw and Bw ∈ Pw, where
w(t) = tv−1. By (H1) and Lemma 2,

1
Γ(v)w(t)

∫ 1

0
[1− (1− s)α](1− s)v−α−1g(s, 0)ds ≤ Aw(t)

≤ 1
Γ(v)w(t)

∫ 1

0
(1− s)v−α−1g(s, 1)ds

From (H1) and (H3), we have

g(s, 1) ≥ g(s, 0) ≥ δ0h(s, 0) ≥ 0

Since h(t, 0) �≡ 0, we can get∫ 1

0

g(s, 1)ds ≥
∫ 1

0

g(s, 0)ds ≥ δ0

∫ 1

0

h(s, 0)ds > 0,

and in consequence,

l1 := 1
Γ(v)

∫ 1

0
[1− (1− s)α](1− s)v−α−1g(s, 0)ds > 0

l2 := 1
Γ(v)

∫ 1

0
(1− s)v−α−1g(s, 1)ds > 0

So l1w(t) ≤ Aw(t) ≤ l2w(t), t ∈ [0, 1]; and hence we have
Aw ∈ Pw.

Similarly,

1
Γ(v)w(t)

∫ 1

0
[1− (1− s)α](1− s)v−α−1h(s, 0)ds ≤ Bw(t)

≤ 1
Γ(v)w(t)

∫ 1

0
(1− s)v−α−1h(s, 1)ds

from h(t, 0) �≡ 0, we easily prove Bw ∈ Pw. Hence the
condition (i) of lemma 3 is satisfied. In the following we
show that the condition (ii) of lemma 3 is satisfied. For
u ∈ P , by (H3),

Au(t) =
∫ 1

0
G(t, s)g(s, u(s))ds

≥ δ0
∫ 1

0
G(t, s)h(s, u(s))ds

= δ0Bu(t)

Then we get Au ≥ δ0Bu, u ∈ P .
Finally, by means of lemma 3, the operator equation Au+

Bu = u has a unique positive solution u∗ in Pw. Moreover,
constructing successively the iterative scheme

un = Aun−1 +Bun−1, n = 1, 2, · · ·
for any initial value u0 ∈ Pw, we have un → u∗ as n → ∞.
That is, the problem (2) has a unique positive solution u∗ in
Pw. For any initial value u0 ∈ Pw, constructing successively
the iterative scheme

un+1(t) =

∫ 1

0

G(t, s)f(s, un(s))ds, n = 0, 1, 2, · · · ,

we have un → u∗ as n → ∞.
Corollary 1 When h(t, u(t)) ≡ 0, assume that

(H4) g : [0, 1]× [0,∞) → [0,∞) is continuous and increasing

with respect to the second argument, g(t, 0) �≡ 0;
(H5) there exists a constant γ ∈ (0, 1) such that

g(t, λx) ≥ λγg(t, x), ∀t ∈ [0, 1], λ ∈ (0, 1), x ∈ [0,∞).

Then problem⎧⎨
⎩

−Dv
0+u(t) = f(t, u(t)), 0 < t < 1, n− 1 < v ≤ n

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = 0,
[Dα

0+u(t)]t=1 = 0, 1 ≤ α ≤ n− 2,

has a unique positive solution u∗ in Pw, where
w(t) = tv−1, t ∈ [0, 1]. Moreover, for any initial value
u0 ∈ Pw, constructing successively the iterative scheme

un+1(t) =

∫ 1

0

G(t, s)f(s, un(s))ds, n = 0, 1, 2, · · · ,

we have un(t) → u∗(t) as n → ∞, where G(t, s) is given as
(4).
Remark 2 By Remark 1 and Theorem 1, Corollary 1 is
obvious. Comparing Corollary 1 with main result in [11], the
uniqueness of positive solution is not treated in [11];
Corollary 1 gives the existence and uniqueness of positive
solution. Moreover, the unique positive solution u∗ we
obtain satisfies: (i) there exist λ > μ > 0 such that
μtv−1 ≤ u∗ ≤ λtv−1, t ∈ [0, 1], (ii) we can take any initial
value in Pw and then construct an iterative scheme which
can approximate the unique solution.
Remark 3 In particular, by a similar method used in
Theorem 1 and Corollary 1, when n = 3, α = 1, Theorem
1 and Corollary 1 hold. Comparing our main result with
main result in [15], the uniqueness of positive solution is not
treated in [15]; we give the existence and uniqueness of
positive solution, which is similar with remark 2.
Remark 4 When n = 4, α = 2,, Theorem 1 and Corollary
1 also hold. The corresponding result in [18] turn out to be
special cases of our main result, see [[ 18 Theorem 3.1 and
Corollary 3.2]].

IV. EXAMPLE

We present one example to illustrate our main result.
Example 1 Consider the following problem:⎧⎨
⎩

−D7.3
0+u(t) = u

1
3 (t) + arctanu(t) + t3 + t+ π

2 , 0 < t < 1,
u(0) = u′(0) = u′′(0) = · · · = u(6)(0) = 0,

[D5.1
0+u(t)]t=1 = 0,

(9)
In this example, the problem (9) fits the framework of the

problem (2) with v = 7.3, α = 5.1.
Let

g(t, u) = u
1
3 (t) + t+

π

2
, h(t, u) = arctanu(t) + t3, γ =

1

3
.

Obviously, g, h : [0, 1] × [0,∞) → [0,∞) are continuous
and increasing with respect to the second argument, h(t, 0) =
t3 �≡ 0.

Besides, for t ∈ [0, 1], λ ∈ (0, 1), x ∈ [0,∞), we have

g(t, λu) = λ
1
3u

1
3 (t) + t+ π

2 ≥ λ
1
3u

1
3 (t) + λ

1
3 (t+ π

2 )

= λ
1
3 (u

1
3 (t) + t+ π

2 ) = λγg(t, u)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:8, 2015

501

and for t ∈ [0, 1], μ ∈ (0, 1), x ∈ [0,∞), we have

arctan(μu) ≥ μ arctanu

thus
h(t, μu) ≥ μh(t, u).

Moreover, if we take δ0 ∈ (0, 1], then we obtain

g(t, u) = u
1
3 (t) + t+ π

2 ≥ t+ π
2 ≥ t3 + arctanu

≥ δ0(t
3 + arctanu) = δ0h(t, u)

Hence all the conditions of Theorem 1 are satisfied. An
application of Theorem 1 implies that problem (9) has a unique
positive solution in Pw, where w(t) = tv−1 = t6.3,t ∈ [0, 1].
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