
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:9, 2008

1024

Abstract—Design patterns describe good solutions to common

and reoccurring problems in program design. Applying design
patterns in software design and implementation have significant
effects on software quality metrics such as flexibility, usability,
reusability, scalability and robustness. There is no standard rule for
using design patterns. There are some situations that a pattern is
applied for a specific problem and this pattern uses another pattern.
In this paper, we study the effect of using chain of patterns on
software quality metrics.

Keywords—Design Patterns, Design patterns’ Relationship,
Software quality Metrics, Software Engineering.

I. INTRODUCTION
ODAY, design patterns are wildly used in various
software domains such as design, implementation,

development, test and reengineering. Design patterns [12] are
high level building blocks that promote elegance in software
by ordering proven and timeless solutions to common
problems in software design. Design patterns convey the
experience of software designers. Applying design patterns in
software design and implementation have important effects on
software quality metrics such as flexibility, usability,
reusability, scalability and robustness [5]. In [8] design
patterns’ relationship are classified in 6 categories and then a
new way for applying patterns in the software system is given.
As we know studying software characteristics in the software
design is an essential content but no consideration on applying
patterns based on their expected software metrics in [5] has
been studied yet.

In this paper, we investigate the situations in applying
design patterns where the first pattern uses the second one and
the second pattern uses the third one. Also we investigate the
situations where the first pattern uses the second one.
Firstly we talk about the quality metrics which design patterns
are expected to bring. Secondly, we classify the design
patterns based on their relationships. Then we study the "use"
relationship and compare their design patterns’ software
quality metrics.

N. Khedri is with the Database Research Group, faculty of ECE, School of

Engineering, University of Tehran, Tehran, Iran (e-mail:
n.khedri@ece.ut.ac.ir, niloofar_khedri@yahoo.com).

M. Rahgozar is with the Control and Intelligence Processing Center of
Excellence, Faculty of ECE, School of Engineering, University of Tehran,
Tehran, Iran (e-mail: rahgozar@ut.ac.ir).

M. R. Hashemi is with the Database Research Group, Faculty of ECE,
School of Engineering, University of Tehran, Tehran, Iran (e-mail:
hashemi@comnete.com).

II. SOFTWARE QUALITY CHARACTERISTICS OF DESIGN
PATTERNS

A. Quality Characteristics related with Design Patterns
Design Patterns are solutions for reoccurring problems,

applying design patterns in software design and
implementation have effect on software quality metrics such
as flexibility, usability, reusability, scalability and robustness.
Gamma et al. in "Design Patterns: Elements of Reusable
Object-Oriented Software" [12], define design patterns as:
“Patterns specify design problems and make object-oriented
more flexible, elegant and ultimately reusable” and Design
patterns help you chose design alternatives that make a system
reusable and avoid alternatives that compromise reusability.

Fig. 1 Design Patterns and their Software Quality Characteristics

Software elegancy is defined as maximizing the information

delivered through the simplest possible interface. When
considering these definitions, design patterns are expected to
bring:

• Flexibility: "Effort required modifying an operational
program" [4].

• Elegancy: Issues of elegance in software are reflected
to robustness, scalability, flexibility, and usability.

A Study on using N-Pattern Chains of Design
Patterns based on Software Quality Metrics

Niloofar Khedri, Masoud Rahgozar, and MahmoudReza Hashemi

T

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:9, 2008

1025

o Robustness: "Robustness is the degree to
which an executable work product continues
to function properly under abnormal
conditions or circumstances" [2]. Also, the
attributes related to the correct functioning
of a software product in the case of invalid
inputs or under stressful environmental
conditions [10].

o Scalability: "Scalability is the ease with
which an application or component can be
modified to expend its existing capacities"
[2], [9], [6].

o Flexibility: "Effort required modifying an
operational program" [4].

o Usability: "The capability of the software
product to be understood, learned, used and
attractive to the user, when used under
specified conditions" [3], [2], [11].

o Reusability: "Reusability is the ease with
which an existing application or component
can be reused" [2], [7].

So design patterns are expected to increase the following
quality characteristics: Flexibility, Reusability, Robustness,
Scalability, and Usability.

Flexibility consists of the following quality characteristics:

o Expendability: "The degree to which architectural,
data or procedural design can be extended" [11].

o Generality: "The breadth of potential application of
program components" [11].

o Modularity: "The functional independence of
program components" [11].

Reusability consists of the following quality characteristics:
o Generality
o Hardware independence: "The degree to which the

software is decoupled from the hardware on which it
operates" [11].

o Modularity
o Software system independence: "The degree to which

the program is independent of nonstandard
programming language features, operating system
characteristics, and other environmental constraints"
[11].

Usability consists of the following quality characteristics:
o Learnability: "The capability of the software product

to enable the user to learn its application" [3], [1].
o Operability: "The capability of the software product

to enable the user to operate and control it" [3]. Also,
the ease of operation of a program" [11], [2], [1].

o Understandability: "The capability of the software
product to enable the user to understand whether the

software is suitable, and how it can be used for
particular tasks and conditions of use" [3].

Fig. 1 shows the main characteristics and sub characteristics
of the design patterns quality.

B. Quality Evaluation of Design Patterns
Khosravi and Gueheneuc in "A Quality Model for Design

Patterns" [5] studied design patterns and evaluated manually
their quality characteristics using five-levels scale (Excellent,
Good, Fair, Bad and Very bad. Also, they used N/A for
characteristics not applicable to some design patterns [5].

III. EFFECT OF CHAIN OF PATTERNS ON SOFTWARE QUALITY
CHARACTERISTICS

A. Classification of Design Patterns Relationships

Fig. 2 Graphical illustration of patterns relationship [8]

According to [8] design patterns relationships can be

classified through 6 categories:
1. Use: A pattern uses another pattern.
2. Refine: A more specific pattern refines a more

general and abstract pattern.
3. Conflict: One pattern conflicts with another pattern

when they both provide mutually exclusive solutions
to similar problems.

4. Similar: This relationship is often used to describe
patterns which are similar because they address the
same problem. The similarity relationship seems to
be much broader than just conflicts and as it is also
used to describe patterns which have a similar
solution technique such as Strategy and State.

5. Combine: Two patterns are combining to solve a
single problem.

6. Require: One pattern requires a second pattern if the
second pattern is a prerequisite for solving the
problem addressed by the first pattern.

In software system, during the applying design patterns to
a specific problem, there are some cases to apply patterns
that use another pattern in its implementation.

In next part, pattern chains in which first pattern used the
second one are considered to study the effect of applying
chain of patterns.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:9, 2008

1026

B. Use Relationship and Software Metrics
In the "use" relationship a pattern uses another pattern.

Fig. 2 shows the graphical illustration of patterns. Also it
shows that the use relationship has the most frequency
among patterns relationships. The largest chain of patterns
has 3 patterns. In this part firstly, the chains of patterns that
have 3 patterns are investigated and secondly the chains of
patterns that have 2 patterns are investigated.

1. Three-Pattern Chains and Software Quality Metrics
There are six usage chains of patterns that have 3 patterns

as listed below:
1. Builder Abstract Factory Template Method
2. Chain of Responsibility Decorator Composite
3. Interpreter Iterator Composite
4. Interpreter Iterator Visitor
5. Interpreter Iterator Memento

6. Strategy Flyweight Composite
There is a question here: is it useful to use the three-pattern
chain, according to software metrics? We assume that if the
first pattern of a chain is ranked "good "and the second one
is ranked "fair", the chain of these two patterns is ranked
"fair". The rank of the chain is always set to the lowest rank
of the corresponding patterns; it means that, if one of the
chain patterns is ranked N/A (not Applicable) the chain rank
is set to the N/A. The quality characteristics of the 6 three-
pattern chains are shown in Table I and Table II. According
to Table II we can not achieve software independence and
hardware independence by applying chain of patterns.

• Chain 1 (Builder Abstract Factory Template
Method) is the only chain that has the best result in
quality characteristics; but also it is the only chain
in which modularity is not applicable. Chain

TABLE I

DETAILS OF QUALITY CHARACTERISTICS IN THREE-PATTERN-SIZED CHAINS

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:9, 2008

1027

TABLE II
QUALITY CHARACTERISTICS IN THREE-PATTERN-SIZED CHAINS

can be ranked good for Expendability, Simplicity,
Understandability, Scalability and Robustness.
The three remain quality characteristics may be
ranked fair. This chain has good results to gain
Flexibility.

• Chain 2 (Chain of Responsibility Decorator
Composite) Generality, Software Independence,
 Hardware Independence, Operability, and
Scalability are not applicable.

• Chain 3 (Interpreter Iterator Composite) and
chain 4 (Interpreter Iterator Visitor) are not
rank good.

• Chain 5 (Interpreter Iterator Memento)
promotes only Expendability and we can not
achieve Modularity, Learnability and Robustness.

• Chain 6 (Strategy Flyweight Composite) has
the better results than chain 2, 3, 4 and 5.
Expendability , Generality and Scalability can be
ranked "good"; but we can not achieve
Understandability. This chain has good results to
gain Flexibility.

It seems that more studies are required to analyze chain 1
and chain 6.

2. Two-Pattern Chains and Software Quality Metrics
We assume that if the first pattern of a chain is ranked

 "good "and the second one is ranked "fair", the chain of
these two patterns is ranked "fair". The rank of the chain is
always set to the lowest rank of the corresponding patterns;
it means that, if one of the chain patterns is ranked N/A (not
Applicable) the chain rank is set to the N/A. The quality
characteristics of the 16 two-pattern chains are shown in
Table IV and Table V. According to Table IV we can not
achieve hardware independence by applying chain of
patterns.

It is important that we can achieve software independence
only in cycle 13 (Iterator Visitor)

We can not gain Generality, Operability and Scalability in
cycles 5, 7, 8 and 11 which have Composite patterns.

• Chain 1 (Abstract Factory Template Method) is
the only chain that has the best result in quality
characteristics. Chain can be ranked good for
Simplicity, Learnability, Understandability,
Operability, Scalability and Robustness. Also chain
can be ranked excellent for Expendability. We can

not achieve Modularity by using this chain. This
chain has good results to gain Flexibility and
Usability.

TABLE II

CHAIN OF USE RELATIONSHIP IN PATTERNS

• Chain 2 (Bridge Adapter) promotes only

Modularity and Scalability. We can not achieve
Modularity by applying this chain. Other quality
characteristics are ranked fair in this chain.

• Chain 3 (Builder Abstract Factory) promotes
Expendability, Simplicity, Generality and
Operability. This chain has good results to gain
Flexibility and Usability.

• Chain 4 (Chain of responsibility Decorator)
promotes Expendability, Simplicity,
Understandability, Scalability and Robustness. This
chain has good results to gain Flexibility and
Usability. We can not achieve Modularity and
Scalability by using this chain. This chain has good
results to gain Flexibility.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:9, 2008

1028

• Chain 5 (Command Composite), Chain 8
(Flyweight Composite) and Chain 11 (Interator

 Composite) only promotes Robustness.
• Chain 6 (Command Memento) promotes

Expendability and Operability.
• Chain 7 (Decorator Composite) only promotes

Understandability.
• Chain 9 (Interpreter Iterator) and Chain 10

(Interpreter Visitor) promotes Expendability,
Generality and Scalability.

• Chain 12 (Interator Memento) only promotes
Expendability.

• Chain 13 (Interator Visitor) can be ranked good
for Simplicity, Generality, Software Independence,
Learnability and Scalability. Also chain can be

ranked excellent for Expendability. We can not
achieve Understandability by using this chain. This
chain has good results to gain Flexibility.

• Chain 14 (Observer Singleton) promotes
Scalability and Robustness.

• Chain 15 (Prototype Singleton) promotes
Modularity, Scalability and Robustness.

• Chain 16 (Strategy Flyweight) is the worst chain
among 2-pattern chains and we can not achieve any
software quality characteristics by applying this
chain.

TABLE III

DETAILS OF QUALITY CHARACTERISTICS IN TWO-PATTERN-SIZED CHAINS

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:9, 2008

1029

It seems that more studies are required to analyze chain 1
and chain 3, chain 4 and chain 13. Chains 9, 10 and 15 are

also good cases for future studies.

TABLE IV

QUALITY CHARACTERISTICS IN TWO-PATTERN-SIZED CHAINS

IV. CONCLUSION
In this paper, we investigated the benefits of design

patterns to increase the Reusability, Flexibility, Usability,
Scalability and Robustness. We focused more particularly
on "use" relationship i.e. the cases that we apply chain of
patterns that use each other. Our study on this cases shows
that applying pattern chains with 2 or 3 patterns does not
always lead us to achieve better software quality metrics.
However there are some cases in which the quality
characteristics are ranked "good" level and Flexibility,
Scalability and Robustness are increased.

In our future work, more studies are needed to investigate
other situations that using chain of patterns promotes the
system quality.

REFERENCES
[1] A. A. Aaby, Software: a fine art. Jan 2004.

http://cs.wwc.edu/aabyan/FAS/book.
[2] D.G. Firesmith, Common concepts underlying safety, security, and

survivability engineering. December 2003.
http://www.sei.cmu.edu/pub/documents/ 03.reports/pdf/03tn033.pdf.

[3] International Standard. ISO/IEC 9126-1. Institute of Electrical and
Electronics Engineers, 2001. http://www.iso.ch.

[4] J. E. Gaffney, Metrics in software quality assurance. Proceedings of
the ACM '81 conference, March 1981. http://portal.acm.org.

[5] K. Khosravi, Y.G. Gueheneuc, A Quality Model for Design Patterns.
Summer 2004.

[6] L. G. Williams, C. U. Smith, Introduction to Software Performance
Engineering. Addison Wesley, Nov 2001.
http://www.awprofessional.com/articles/article.asp?p=24009.

[7] L. J. Arthur, Software evolution, the software maintenance challenge.
John Wiley and sons, 1951.

[8] L. Tahvildari, K. Kontogiannis, On the Role of Design Patterns in
Quality-Driven Re-engineering. Proceedings of the Sixth European
Conference on Software Maintenance and Reengineering (CSMR02),
2002.

[9] M. B. Nilles, A hard look at quality management software. Quality
Digest, 2001. http://www.dofactory.com/patterns/Patterns.aspx.

[10] O. Balci, Credibility assessment of simulation results. Proceedings of

the 18th conference on winter simulation, 1986.
[11] R. S. Pressman, Software Engineering a practitioner's Approach.

McGraw-Hill, Inc, 1992.
[12] R. Johnson, E. Gamma, R. Helm and J. Vlissides, Design Patterns

Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

