
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1221


Abstract—This paper begins by describing basic properties of

finite field and elliptic curve cryptography over prime field and
binary field. Then we discuss the discrete logarithm problem for
elliptic curves and its properties. We study the general common
attacks on elliptic curve discrete logarithm problem such as the Baby
Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman
method, and describe in detail experiments of these attacks over
prime field and binary field. The paper finishes by describing
expected running time of the attacks and suggesting strong elliptic
curves that are not susceptible to these attacks.

Keywords—Discrete logarithm problem, general attacks, elliptic
curves, strong curves, prime field, binary field, attack experiments.

I. INTRODUCTION

LLIPTIC Curve Cryptography (ECC) is an alternative
approach for implementing public-key cryptography

(PKC) in which each entity (user or device) taking part in the
communication generally has a couple of keys, a public key
and a private key to perform cryptographic operations such as
encryption decryption, signing, verification and
authentication. The particular entity keeps the private key in
secret but the public key is distributed to all entities taking part
in the communication [1]. ECC can be used for providing the
following security services:
o confidentiality,
o authentication,
o data integrity,
o non-repudiation,
o authenticated key exchange.

Nowadays, ECC becomes a leader in the industry of
information security technology. It replaces other public key
cryptosystems such as RSA and DSA. It becomes the
industrial standard. This is a result of an increase in speed and
lower power consumption during implementation due to less
memory usage and smaller key sizes. Its security depends on
the difficulty of solving the Elliptic Curve Discrete Logarithm
Problem (ECDLP). Although the ECDLP is thought to be an
intractable problem, it has not stopped attackers/intruders
attempting to attack on elliptic curve cryptosystems. Various
attacks have been invented, tested and analyzed by many
mathematicians over the years, in efforts to find flaws in
elliptic curve cryptosystems. Some attacks have been partially
successful, but others have not.

The purpose of this paper is to study the general common
attacks against the ECDLP and to apply the knowledge of

Tun Myat Aung and Ni Ni Hla are with the University of Computer
Studies, Yangon (UCSY), Myanmar (e-mail: tma.mephi@gmail.com).

them in an effort to choose cryptographically strong elliptic
curves over prime field and binary field under large integer.
The organization of this paper is as follows. Section II
includes finite field and its properties. In Section III, we
discuss ECC over prime field and binary field and its
geometric properties. Section IV describes in details the
ECDLP, its properties and its general common attacks. In
Section V, we discuss our attack experiments over prime field
and binary field. Finally, in Section VI we conclude our
discussion by describing expected running time of the attacks
and by suggesting strong curves for secure implementation of
ECC systems.

II. FINITE FIELD ARITHMETIC

A finite field, denoted by F, is a field containing a finite
number of elements. Fields are used to number systems such
as the rational numbers, the real numbers, and the complex
numbers. They consist of a set of elements that can perform
two arithmetic operations: addition denoted by (+) and
multiplication denoted by (·). They satisfy the following
arithmetic properties:
o (F,+) is a finite group with additive identity denoted by 0.
o (F\{0}, ·) is a finite group with multiplicative identity

denoted by 1.
o Elements of finite group follow the distributive law: (a+b)

· c = (a · c) + (b · c) for all a, b, c ∈ F.
If the elements of the field are finite, then the field is said to

be finite [3]. Galois presented that the elements in the field to
be finite and the number of elements should be pm, where p is
a prime number called the characteristic of the field and m is a
positive integer. The finite fields are usually called Galois
fields and also denoted as GF(pm). If m = 1, then the field
GF(p) is called a prime field. If m ≥ 2, then the field GF(pm) is
called an extension field. The number of elements in a finite
field is the order of the field. Any two fields are isomorphic if
their orders are the same [11].

A. Field Operations

A finite field F has two arithmetic operations, addition and
multiplication. However, the subtraction of elements in a
finite field is defined in the expression of addition. For
instance, let a, b ∈ F, a −b is defined as a +(−b), in this case
−b is the single element in the field such that b+(−b) = 0. −b is
called additive inverse of b. Similarly, the division of elements
in a finite field is defined in the expression of multiplication.
For instance, let a, b ∈ F with b ≠ 0, a/b is defined as a · b−1,
in this case b−1 is the single element in the field such that b ·
b−1 = 1 [3]. b−1 is called the multiplicative inverse of b.

A Study of General Attacks on Elliptic Curve Discrete
Logarithm Problem over Prime Field and Binary Field

Tun Myat Aung, Ni Ni Hla

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1222

B. Prime Field

Let p be a prime number. A set of integer elements modulo
p, consisting of the integers {0,1,2,..., p−1} with addition and
multiplication performed modulo p, is a finite field of prime
order p. It is called prime field denoted by GF(p) and p is
called the modulus of GF(p). For any integer a, a mod p
denotes the integer remainder r obtained upon dividing a by p.
This operation is called reduction modulo p. The remainder r
is the single integer element between 0 and p−1, i.e. 0 ≤r ≤
p−1 [3].
Example 1. (prime field GF(29)) The elements of GF(29) are
{0,1,2,...,28}. The following are some examples of arithmetic
operations in GF(29).
(a). Addition: 27+10 = 8 since 37 mod 29 = 8.
(b). Subtraction: 10−27 = 12 since −17 mod 29 = 12.
(c). Multiplication: 27 · 10 = 9 since 270 mod 29 = 9.
(d). Inversion: 27−1 = 14 since 27 · 14 mod 29 = 1.

C. Binary Field

A finite field of order 2m is called binary field denoted by
GF(2m). It also refers to the finite field with characteristic-two.
One approach to construct GF(2m) is to apply a polynomial
basis representation denoted by (1). In this case, the elements
of GF(2m) are the binary polynomials of degree at most m −1.

ሺ2௠ሻܨܩ ൌ ܽ௠ିଵݔ௠ିଵ ൅ ܽ௠ିଶݔ௠ିଶ ൅⋯൅ ܽଶݔଶ ൅ ܽଵݔ ൅ ܽ଴, ܽ௜ ∈

ሼ0,1ሽ. (1)

An irreducible binary polynomial f (x) of degree m is

chosen. Irreducibility of f(x) means that f(x) cannot be factored
as a product of binary polynomials each of degree less than m.
Addition of binary field elements is the usual addition of
polynomials, with coefficient arithmetic performed modulo 2.
Multiplication of binary field elements is performed modulo
the reduction polynomial f(x). For any binary polynomial a(x),
a(x) mod f(x) shall denote the unique remainder polynomial
r(x) of degree less than m obtained upon long division of a(x)
by f(x); this operation is called reduction modulo f(x) [3].
Example 2. (Binary Field GF(24)). In Table I, the elements of
GF(24) are the 16 binary polynomials of degree at most 3.

TABLE I

BINARY POLYNOMIALS
ଷݔ ଷݔ ଶݔ 0 ൅ ଶݔ

ଶݔ 1 ൅ ଷݔ 1 ൅ ଷݔ 1 ൅ ଶݔ ൅ 1

ଶݔ ݔ ൅ ଷݔ ݔ ൅ ଷݔ ݔ ൅ ଶݔ ൅ ݔ

ݔ ൅ ଶݔ 1 ൅ ݔ ൅ ଷݔ 1 ൅ ݔ ൅ ଷݔ 1 ൅ ଶݔ ൅ ݔ ൅ 1

The following are some examples of arithmetic operations

in GF(24) with reduction Polynomial ݂ሺݔሻ ൌ ସݔ ൅ ݔ ൅ 1.
ሺaሻ. Addition: ሺݔଷ ൅ ଶݔ ൅ 1ሻ ൅ ሺݔଶ ൅ ݔ ൅ 1ሻ ൌ ଷݔ ൅ .ݔ
ሺbሻ. Subtraction: ሺݔଷ ൅ ଶݔ ൅ 1ሻ െ ሺݔଶ ൅ ݔ ൅ 1ሻ ൌ ଷݔ ൅ .ݔ
ሺcሻ. Multiplication: ሺݔଷ ൅ ଶݔ ൅ 1ሻ. ሺݔଶ ൅ ݔ ൅ 1ሻ ൌ ଶݔ ൅ 1 since

ሺݔଷ ൅ ଶݔ ൅ 1ሻ. ሺݔଶ ൅ ݔ ൅ 1ሻ ൌ ହݔ ൅ ݔ ൅ 1 and ሺݔହ ൅ ݔ ൅
1ሻ	݉݀݋	ሺݔସ ൅ ݔ ൅ 1ሻ ൌ ଶݔ	 ൅ 1.

ሺdሻ. Inversion: ሺݔଷ ൅ ଶݔ ൅ 1ሻିଵ ൌ ଷݔsince ሺ	ଶݔ ൅ ଶݔ ൅
1ሻ. ସݔሺ	݀݋݉	ଶݔ ൅ ݔ ൅ 1ሻ ൌ 1.

III. ELLIPTIC CURVE ARITHMETIC

A. Elliptic Curves over Prime Field -GF(p)

The elliptic curve over finite field E(GF) is a cubic curve
defined by the general Weierstrass equation:	ݕଶ ൅ ܽଵݕݔ ൅
ܽଷݕ ൌ ଷݔ ൅ ܽଶݔଶ ൅ ܽସݔ ൅ ܽ଺ over GF where ܽ௜ ∈ and GF is ܨܩ
a finite field. The following elliptic curves are adopted from
the general Weierstrass equation. The elliptic curve E(GF(p))
over prime field GF(p) is defined by (2) [2]:

ଶݕ	 ൌ ଷݔ ൅ ݔܽ ൅ ܾ (2)

where ݌ ൐ 3 is a prime and ܽ, ܾ ∈ ሻ satisfy that the݌ሺܨܩ
discriminant 4ܽଷ ൅ 27ܾଶ ് 0 (a1 = a2 = a3 = 0; a4 = a and
a6 = b corresponding to the general Weierstrass equation).

1). Points on E(GF(p))

The elliptic curve E(GF(p)) consists of a set of points
ሼܲ ൌ ሺݔ, ଶݕ	|ሻݕ ൌ ଷݔ ൅ ݔܽ ൅ ܾ, ,ݔ ,ݕ ܽ, ܾ ∈ ሻሽ together with a݌ሺܨܩ
point at infinity denoted as O. Every point on the curve has its
inverse. The inverse of a point (x, y) on E(GF(p)) is
(x, -y). The number of points on the curve, including a point at
infinity, is called its order #E. The pseudocode for finding the
points on the elliptic curve E(GF(p)) is shown in Algorithm
(1).

Algorithm (1). Pseudocode for finding the points on the elliptic curve
E(GF(p))
Input: a, b, p
Output: ௜ܲ ൌ ሺݔ௜, ௜ሻݕ
Begin
x = 0;
while(x < p){
ݓ ൌ ሺݔଷ ൅ ݔܽ ൅ ܾሻ݉݀݋	݌.
If(w is perfect square in ܼ௣) output ሺݔ, ,ݔሻ ሺݓ√ െ√ݓሻ
x = x + 1.

}
End

(0, 2) (0, 11)
(1, 6) (1, 7)
(2, 3) (2, 10)
(4, 6) (4, 7)
(6, 4) (6, 9)
(8, 6) (8, 7)

(10, 1) (10, 12)
(11, 5) (11, 8)

(a) Points (b) Graph

Fig. 1 Points on :ܧ	ݕଶ ൌ ଷݔ ൅ ݔ5 ൅ 4

Example 3. Let p = 13 and consider the elliptic curve
ଶݕ	:ܧ ൌ ଷݔ ൅ ݔ5 ൅ 4 defined over GF(p) where a = 5 and b = 4.
Note that 4ܽଷ ൅ 27ܾଶ ൌ 500 ൅ 432 ൌ 13	݀݋݉	932 ൌ 9, so E is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1223

indeed an elliptic curve. The points on the curve and its graph
are shown in Figs. 1 (a) and (b). The order of the elliptic curve
ଶݕ	:ܧ ൌ ଷݔ ൅ ݔ5 ൅ 4 over GF(13) is 17.

2). Arithmetic Operations on E(GF(p))

The chord-and-tangent rule is applied for adding two points
on an elliptic curve E(GF(p)) to give a third point on the
curve. Using this addition operation with the points on
E(GF(p)) generates a group with point at infinity O serving as
its identity. It is the group that is used in the construction of
elliptic curve cryptosystems [5]. The addition rule is the best
to explain geometrically. Let ܲ ൌ ሺݔଵ, ܳ ଵሻ andݕ ൌ ሺݔଶ, ଶሻ beݕ
two distinct points on an elliptic curve E(GF(p)). Then the
third point ܴ ൌ ሺݔଷ, ଷሻ is obtained by addition of P and Q asݕ
follows. First draw the line through P and Q; this line
intersects the elliptic curve in a third point. Then R is the
reflection of this point in the x-axis. This is illustrated in Fig. 2
(a). The elliptic curve in the figure consists of two parts, the
ellipse-like figure and the infinite curve. If ܲ ൌ ሺݔଵ, ଵሻ, thenݕ
the double of P, denoted ܴ ൌ ሺݔଷ, .ଷሻ, is defined as followsݕ
First draw the tangent line to the elliptic curve at P. This line
intersects the elliptic curve in a second point. Then R is the
reflection of this point in the x-axis. This is illustrated in Fig. 2
(b).

(a) Addition (R = P + Q) (b) Doubling (R = P + P)

Fig. 2 Geometric Description

The following algebraic methods for the addition of two
points and the doubling of a point can be resulted from the
geometric description [2].
(a). P + O = O + P = P for all ܲ ∈ .ሻሻ݌ሺܨܩሺܧ
(b). If ܲ ൌ ሺݔ, ሻݕ ∈ ,ݔሻሻ, then ሺ݌ሺܨܩሺܧ ሻݕ ൅ ሺݔ,െݕሻ ൌ ܱ. The

point (x, -y) denoted by (-P) is called the inverse of P; –P
is a point on the curve.

(c). (Point addition). Let ܲ ൌ ሺݔଵ, ଵሻݕ ∈ ܳ ሻሻ and݌ሺܨܩሺܧ ൌ
ሺݔଶ, ଶሻݕ ∈ ܲ ሻሻ, where݌ሺܨܩሺܧ ് േܳ. Then ܲ ൅ ܳ ൌ ሺݔଷ, ,ଷሻݕ
where ݔଷ ൌ ଶߣ െ ଵݔ െ ଷݕ ଶ andݔ ൌ ଵݔሺߣ െ ଷሻݔ െ ଵ. In thisݕ
case, ߣ ൌ ሺݕଶ െ ଵሻݕ ሺݔଶ െ ⁄ଵሻݔ .

(d). (Point doubling). Let ܲ ൌ ሺݔଵ, ଵሻݕ ∈ ሻሻ, where݌ሺܨܩሺܧ
ܲ ് െܲ. Then 2ܲ ൌ ሺݔଷ, ଷݔ ଷሻ, whereݕ ൌ ଶߣ െ ଵ andݔ2
ଷݕ ൌ ଵݔሺߣ െ ଷሻݔ െ ߣ ,ଵ. In this caseݕ ൌ ሺ3ݔଵଶ ൅ ܽሻ ⁄ଵݕ2 .

Example 4. (Elliptic curve addition and doubling) Let’s
consider the elliptic curve defined in Example (3).
a. Addition. Let ܲ ൌ ሺ1, 6ሻ and ܳ ൌ ሺ4, 6ሻ. Then ܲ ൅ ܳ ൌ

ሺ8, 7ሻ.
b. Doubling. Let ܲ ൌ ሺ1, 6ሻ. Then 2ܲ ൌ ሺ10, 1ሻ.
c. Inverse. Let ܲ ൌ ሺ1, 6ሻ. Then െܲ ൌ ሺ1, 7ሻ.

B. Elliptic Curves over Binary Field - GF(2m)

A reduction polynomial ݂ሺݔሻ must be firstly chosen to
construct a binary field GF(2m). The elements generated by the
reduction polynomial are applied to construct an elliptic curve
E(GF(2m)). The elliptic curve E(GF(2m)) over binary field
GF(2m) is defined by (3) [2]:

ଶݕ ൅ ݕݔ ൌ ଷݔ ൅ ݔܽ ൅ ܾ (3)

where ܽ, ܾ ∈ ܾ ሺ2௠ሻ andܨܩ ് 0.

1). Points on E(GF(2m))

The elliptic curve E(GF(2m)) consists of a set of points:
ሼܲ ൌ ሺݔ, ଶݕ|ሻݕ ൅ ݕݔ ൌ ଷݔ ൅ ݔܽ ൅ ܾ, ,ݔ ,ݕ ܽ, ܾ ∈ ሺ2௠ሻሽ togetherܨܩ
with a point at infinity denoted as O. Every point on the curve
has its inverse. The inverse of a point (x, y) on E(GF(2m)) is
ሺݔ, ݔ ሻ. The number of points on the curve, including aݕ⨁
point at infinity, is called its order #E. The pseudocode for
finding the points on the elliptic curve E(GF(2m)) is shown in
Algorithm (2).

Algorithm (2). Pseudocode for finding the points on the elliptic curve
E(GF(2m))
Input: a, b,	݂ሺݔሻ
Output: ௜ܲ ൌ ሺݔ௜, ௜ሻݕ
Begin
x௜ ൌ ሼ0, 1, ݃ଵ, … , ݃௠ିଶ	ሽ
௝ݕ ൌ ሼ0, 1, ݃ଵ,… , ݃௠ିଶሽ

for(i=0; i<2m; i++){

for(j=0; j < 2m;j++){

ଵݓ ൌ ௜ଷݔ ⊕ ௜ݔܽ ⊕ ܾ.
ଶݓ ൌ ௝ଶݕ ⊕ ௝ݕ௜ݔ
If(ݓଵ ൌ ,௜ݔଶ) output ሺݓ ,௜ݔ௝ሻ ሺݕ ௝ݕ ௜ሻݔ⨁	
}

}
End

Example 5. Let ݂ሺݔሻ ൌ ସݔ ൅ ݔ ൅ 1 be the reduction
polynomial. Then 16 elements of GF(24) are shown in Table
II.

TABLE II

ELEMENTS OF GF(24)
 ଷݔ 1000 0 0000

ଷݔ 1001 1 0001 ൅ 1

ଷݔ 1010 ݔ 0010 ൅ ݔ

ݔ 0011 ൅ ଷݔ 1011 1 ൅ ݔ ൅ 1

ଷݔ ଶ 1100ݔ 0100 ൅ ଶݔ

ଶݔ 0101 ൅ ଷݔ 1101 1 ൅ ଶݔ ൅ 1

ଶݔ 0110 ൅ ଷݔ 1110 ݔ ൅ ଶݔ ൅ ݔ

ଶݔ 0111 ൅ ݔ ൅ ଷݔ 1111 1 ൅ ଶݔ ൅ ݔ ൅ 1

Table III shows the power representation of g for elements
of GF(24) generated by the polynomial ݂ሺݔሻ ൌ ସݔ ൅ ݔ ൅ 1. The
element of ݃ ൌ ݔ ൌ ሺ0010ሻ is a generator of GF(24) because its
order is 15 ሺ2ସ െ 1ሻ.

Using the elliptic curve :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅ ݃ଵଵݔ ൅ ݃ଵଷ, with
ܽ ൌ ݃ଵଵ and ܾ ൌ ݃ଵଷ, we can find the points on the curve, as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1224

shown in Fig. 3. The points on the curve and its graph are
shown in Figs. 3 (a) and (b). The order of the elliptic curve

ଶݕ	:ܧ ൅ ݕݔ ൌ ଷݔ ൅ ݃ଵଵݔ ൅ ݃ଵଷ is 22.

(0, ݃ଵସ) O
ሺ1, ݃଻ሻ ሺ1, ݃ଽሻ
ሺ݃, ଼݃ሻ ሺ݃, ݃ଵ଴ሻ
ሺ݃ଶ, 0ሻ ሺ݃ଶ, ݃ଶሻ
ሺ݃ହ, 0ሻ ሺ݃ହ, ݃ହሻ
ሺ݃଺, 0ሻ ሺ݃଺, ݃଺ሻ
ሺ଼݃, ݃଻ሻ ሺ଼݃, ݃ଵଵሻ
ሺ݃ଽ, 1ሻ ሺ݃ଽ, ݃଻ሻ
ሺ݃ଵଶ, ݃ସሻ ሺ݃ଵଶ, ݃଺ሻ
ሺ݃ଵଷ, 1ሻ ሺ݃ଵଷ, ݃଺ሻ
ሺ݃ଵସ, 1ሻ ሺ݃ଵସ, ݃ଷሻ

(a) Points (b) Graph

Fig. 3 Points on :ܧ ଶݕ ൅ ݕݔ ൌ ଷݔ ൅ ݃ଵଵݔ ൅ ݃ଵଷ

TABLE III
POWER REPRESENTATION OF ELEMENTS

݃ 0010 ݃ହ 0110 ݃ଽ 1010 ݃ଵଷ 1101

݃ଶ 0100 ݃଺ 1100 ݃ଵ଴ 0111 ݃ଵସ 1001

݃ଷ 1000 ݃଻ 1011 ݃ଵଵ 1110 ݃ଵହ 0001

݃ସ 0011 ଼݃ 0101 ݃ଵଶ 1111

2). Arithmetic Operations on E(GF(2m))

As with elliptic curves over GF(p), the chord-and-tangent
rule is also applied for adding two points on an elliptic curve
E(GF(2m)) to give a third point on the curve. Using this
addition operation with points on E(GF(2m)) generates a group
with O serving as its identity [5]. The algebraic methods for
the addition of two points and the doubling of a point are the
following [2].
(a). P + O = O + P = P for all ܲ ∈ .ሺ2௠ሻሻܨܩሺܧ
(b). If ܲ ൌ ሺݔ, ሻݕ ∈ ,ݔሺ2௠ሻሻ, then ሺܨܩሺܧ ሻݕ ൅ ሺݔ, ݔ ൅ ሻݕ ൌ ܱ.

The point (x, x+y) denoted by (-P) is called the inverse of
P; –P is a point on the curve.

(c). (Point addition). Let ܲ ൌ ሺݔଵ, ଵሻݕ ∈ ሺ2௠ሻሻ andܨܩሺܧ
ܳ ൌ ሺݔଶ, ଶሻݕ ∈ ܲ ሺ2௠ሻሻ, whereܨܩሺܧ ് േܳ. Then ܲ ൅ ܳ ൌ
ሺݔଷ, ଷݔ ଷሻ, whereݕ ൌ ଶߣ ൅ ߣ ൅ ଵݔ ൅ ଶݔ ൅ ܽ and ݕଷ ൌ
ଵݔሺߣ ൅ ଷሻݔ ൅ ଷݔ ൅ ߣ ,ଵ. In this caseݕ ൌ ሺݕଶ ൅ ଵሻݕ ሺݔଶ ൅ ⁄ଵሻݔ .

(d). (Point doubling). Let ܲ ൌ ሺݔଵ, ଵሻݕ ∈ ሺ2௠ሻሻ, whereܨܩሺܧ
ܲ ് െܲ. Then 2ܲ ൌ ሺݔଷ, ଷݔ ଷሻ, whereݕ ൌ ଶߣ ൅ ߣ ൅ ܽ and
ଷݕ ൌ ଵଶݔ ൅ ଷݔߣ ൅ ߣ ,ଷ. In this caseݔ ൌ ଵݔ ൅ ሺݕଵ ⁄ଵሻݔ .

Example 6. (elliptic curve addition and doubling) Let’s
consider the elliptic curve defined in Example 5.
a. Addition. Let ܲ ൌ ሺ݃ଶ, ݃ଶሻ and ܳ ൌ ሺ݃଺, ݃଺ሻ. Then

ܲ ൅ ܳ ൌ ሺ݃ହ, 0ሻ.
b. Doubling. Let ܲ ൌ ሺ݃ଶ, ݃ଶሻ. Then 2ܲ ൌ ሺ݃ଵସ, 1ሻ.
c. Inverse. Let ܲ ൌ ሺ݃ଶ, ݃ଶሻ. Then െܲ ൌ ሺ݃ଶ, 0ሻ.

III. ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM

The security of ECC depends on the ability to solve
ECDLP. Let P be a point on an elliptic curve and point Q is a
point on the curve such that Q = kP, where k is an integer.
Given two points, P and Q, it is not able to compute k, if the
group order of the points is sufficiently large. k is called the
discrete logarithm of Q to the base P.

A. Point Multiplication

Another main operation involved in ECC is point
multiplication. The multiplication of a scalar k with any point
P on the curve generates another point Q on the curve [1].
This is achieved by repeating point addition and doubling
operations based on binary representation of integer k. The
binary representation of integer k is shown as (4)

 ݇ ൌ ݇௡ିଵ2௡ିଵ ൅ ݇௡ିଶ2௡ିଶ ൅ ⋯൅ ݇ଵ ൅ ݇଴ (4)

where ݇௡ିଵ ൌ 1 and ݇௜ ∈ ሼ0, 1ሽ, ݅ ൌ 0, 1, 2,… , ݊ െ 1. This method
is called binary method [3] which scans the bits of k either
from left-to-right or right-to-left. Algorithm 3 given illustrates
the computation of kP using binary method. It can be used for
both elliptic curves over prime field GF(p) and binary field
GF(2m).
Algorthm (3). Binary Method

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1225

Input: point P and binary representation of integer k
Output: point Q such that Q = kP
Q=P
For i = n-1 to 0 do
Q = Point Doubling of Q
If ki = 1 then
Q = Point Addition of P and Q
Return Q

The cost of multiplication depends on the number of 1s in
binary representation of k. The number of 1s is called the
Hamming Weight of scalar. In an average, binary method
requires (n-1) point doublings and (n-1)/2 point additions. For
each bit .1., we need to perform point doubling and point
addition, if the bit is .0., we need only point doubling
operation. Therefore, reducing the number of 1s in the binary
representation will improve the speed of elliptic curve scalar
multiplication [4].

B. Order of Points

Let P ∈ E(GF(p)). The order of P is the smallest positive
integer, N, such that NP = O where O is the group identity.
Hasse’s theorem proved (5) [7].

݌ ൅ 1 െ 2ඥ݌ 	൑ ܰ ൑ ݌ ൅ 1 ൅ 2ඥ(5) .݌

All values of N need to be tried in this range and see which
ones satisfy NP = O.
Example 7. Let E be the elliptic curve :ܧ	ݕଶ ൌ ଷݔ ൅ ݔ5 ൅ 4
over GF(13). The point (0, 2) can be shown to have order 17.
Hasse’s theorem says that 13 ൅ 1 െ 2√13 	൑ ܰ ൑ 13 ൅ 1 ൅
2√13; we could try all values of N in this range, 7 ൑ ܰ ൑ 21,
and find 17 that satisfy NP = O. Therefore, N = 17.

C. Attacks on ECDLP

The discrete logarithm problem is fundamentally important
to the area of PKC. Almost all of the most commonly used
public key cryptographic systems are based on the assumption
that the discrete logarithm is extremely difficult to compute;
the more difficult it is, the more security it supports. One way
to increase the difficulty of the discrete logarithm problem is
to base the public key cryptosystems on a larger group order
under large integer.

The following algorithms can solve the elliptic curve
discrete logarithm under small integer. General attacks on the
ECDLP can be grouped into three classes [8]:
1). Algorithms based on random walks, such as the

exhaustive search method and the Baby-Step Giant-Step
method,

2). Algorithms based on random walks with special
conditions, like Pollard’s rho method and Pollard’s
lambda method, and

3). Algorithms based on multiplicative groups, such as the
Index Calculus method and Pohlig-Hellman method.

We studied the following general common attacks on the
ECDLP.

1). Baby-Step Giant-Step Method

This method was developed by D. Shanks for computations

in algebraic number theory. Let P,Q ∈ E(GF(p)). Suppose that
we want to solve Q = [k]P. P has prime order N. First, we need
to find the order N of P. The method requires approximately

√ܰ steps and around √ܰ storage. Therefore it only works well
for moderate sized N. The procedure is as follows [7].
1. Define an integer m such that ݉ ൌ ඃ√ܰඇ and compute mP.
2. Compute and keep a list of iP for 0 ≤ i < m.
3. Compute the points such that Q − jmP for j = 0, 1, ∙ ∙ ∙,

m − 1 until one of resulting points matches one from the
stored list.

4. If iP = Q − jmP, then Q = kP with k ≡ i + jm
(mod N).

The points for iP are calculated by adding P (a “baby step”)
to (i − 1)P. The points for Q − jmP are computed by adding
−mP (a “giant step”) to Q − (j −1)mP. The algorithm as
presented above may require roughly m steps to find a match
and expected running time is ܱሺ√ܰ	ሻ [7].

2). Pollard’s Rho Method

Let E(GF(p)) be an elliptic curve and ܲ ∈ .ሻ൯݌ሺܨܩ൫ܧ
Suppose that P has order N, where N is prime, and let	ܳ ∈	൏
ܲ ൐. Suppose that we want to solve Q = [k]P. In this attack we
will attempt to find distinct pairs of integers (a, b) and ሺܽᇱ, ܾᇱሻ
modulo N such that ሾܽሿܲ	 ൅ 	ሾܾሿܳ	 ൌ 	 ሾܽᇱሿܲ	 ൅	ሾܾᇱሿܳ. One
method for finding these pairs of integers is to simply select
ܽ, ܾ	 ∈ ൣ0, ܰ	– 	1൧ uniformly at random, compute the point [a]P
+ [b]Q, and then store the triple (a, b, [a]P + [b]Q). We
continue to generate pairs (a, b) uniformly at random and
check these against all previously stored triples until we find a
pair ሺܽᇱ, ܾᇱሻ with ሾܽᇱሿܲ	 ൅	 ሾܾᇱሿܳ where ሺܽ, ܾሻ ് ሺܽᇱ, ܾᇱሻ. When
this happens we have solved the ECDLP and as mentioned
above, we can rearrange (6)

ሾܽሿܲ	 ൅ ሾܾሿܳ	 ൌ 	 ሾܽᇱሿܲ	 ൅ ሾܾᇱሿܳ	 (6)

as ሾܽ െ ܽᇱሿܲ ൌ ሾܾᇱ െ ܾሿܳ ൌ ሾܾᇱ െ ܾሿሺሾ݇ሿܲሻ, and thus ݇ ≡
ሺܽ െ ܽᇱሻሺܾᇱ െ ܾሻିଵ݉݀݋	ܰ. This first method gives an expected
running time of ܱሺ√2/ܰߨሻ [7], but unfortunately requires
approximately ܱሺ√2/ܰߨሻ amount of storage for the triples that
we have computed.

 A second approach that has roughly the same running time,
but uses less storage is also known. Instead of storing a list of
triples, we define a function ݂:൏ ܲ ൐	→	൏ ܲ ൐ so that for any
ܴ ∈	൏ ܲ ൐ and ܽ, ܾ	 ∈ ሾ0, ܰ െ 1ሿ with ܴ ൌ ሾܽሿܲ ൅ ሾܾሿܳ, we can
easily compute ܴ ൌ ݂ሺܴᇱሻ	and ܽᇱ, ܾᇱ 	 ∈ ሾ0,ܰ െ 1ሿ with ܴᇱ ൌ
ሾܽᇱሿܲ ൅ ሾܾᇱሿܳ. One way to define such a function is to partition
< P > into L sets of roughly equal size, say ሼ ଵܵ, ܵଶ, … , ܵ௅ሽ. We
define a second function H so that H(X) = j if ܺ ∈ ௝ܵ. Then

௝ܽ , ௝ܾ ∈ ሾ0, ܰ െ 1ሿ are chosen uniformly at random for 1 ൑ ݆ ൑
Now our function ݂:൏ .ܮ ܲ ൐	→	൏ ܲ ൐ is defined by (7)

݂ሺܴሻ ൌ ܴ ൅ ൣ ௝ܽ൧ܲ ൅ ൣ ௝ܾ൧ܳ, ݆	݁ݎ݄݁ݓ ൌ ሺܺሻ. (7)ܪ

So, if ܴ ൌ ሾܽሿܲ ൅ ሾܾሿܳ, then ݂ሺܴሻ ൌ ܴᇱ ൌ ሾܽᇱሿܲ ൅ ሾܾᇱሿܳ where
ܽᇱ ൌ ܽ ൅ ௝ܽ	݉݀݋	݊ and ܾᇱ ൌ ܾ ൅ ௝ܾ	݉݀݋	ܰ. This then determines
a sequence of points in < P >. Since < P > is finite we will
eventually obtain a collision, thus obtaining our pairs of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1226

integers (a, b) and ሺܽᇱ, ܾᇱሻ, and so enabling us to solve the
ECDLP. As mentioned, this approach has a similar running
time to the first, but requires less storage, since we are no
longer required to store ordered triples in order to find a
collision. The diagram of the sequence looks like the Greek
letter ρ. That is why this method is called the Pollard-Rho
method.

3). Pohlig-Hellman Method

This method is a special purpose algorithm used for
computing discrete logarithms in a multiplicative group with
order of smooth integer.

Let P and Q be points on an elliptic curve. Suppose that we
want to solve an integer k such that Q = [k]P. In this attack we
know the order N of P and we first compute the prime
factorization of N satisfied by (8):

ܰ ൌ ∏ ௜௘೔௜ݍ (8)

The idea of this algorithm is to find k (mod ݍ௜௘
೔
) for each i,

use the Chinese Remainder theorem [6] to combine them and
then obtain k (mod N). Let q be a prime, and let ݍ௘ be the
exact power of q dividing N. Write k in its base q expansion as
(9)

݇ ൌ ݇଴ ൅ ݇ଵݍ ൅ ݇ଶݍଶ ൅⋯ (9)

where 0 ൑ ݇௜ ൏ ௘ሻ byݍ	݀݋ሺ݉	We will evaluate ݇ .ݍ
successively determining ݇଴, ݇ଵ, ݇ଶ, , ݇݁െ1. The procedure is
as follows [7]:

1. Compute ܶ ൌ ሼ݆. ቀ
ே

௤
. ܲቁሽ, 0 ≤ j ≤ q-1.

2. Compute
ே

௤
. ܳ. This will be an element of ݇଴ሺ

ே

௤
. ܲሻ of T.

3. If e = 1, stop. Otherwise, continue.
4. Let ܳଵ ൌ ܳ െ ݇଴ܲ.

5. Compute
ே

௤మ
ܳ. This will be an element of ݇ଵሺ

ே

௤మ
. ܲሻ of T.

6. if e=2, stop. Otherwise, continue. Suppose we have
computed ݇ଵ, ݇ଶ, … , ݇௥ିଵ and ܳଵ, ܳଶ, … , ܳ௥ିଵ.

7. Let ܳ௥ ൌ ܳ௥ିଵ െ ݇௥ିଵݍ௥ିଵܲ.
8. Determine ݇௥ such that ே

௤ೝశభ
. ܳ௥ ൌ ݇௥ሺ

ே

௤
ܲሻ.

9. If r = e -1, stop. Otherwise, return to step (7).
Then ݇ ≡ ݇଴ ൅ ݇ଵݍ ൅⋯൅ ݇௘ିଵݍ௘ିଵ	ሺ݉݀݋	ݍ௘ሻ. Therefore we

find ݇ଵ. Similarly, the method produces ݇ଶ, ݇ଷ, ….We have to
stop after r = e-1. The expected running time of this algorithm
is ܱሺඥݍ	ሻ [7], where q is the largest prime divisor of N. In
practice this attack becomes infeasible when N has a large
prime divisor. If this is the case, it then becomes difficult to
make and store the list T to find matches.

V. EXPERIMENTS

We implemented well-known general common attacks such
as Baby-Step Giant-Step algorithm, Pollard’s rho method and
the Pohlig-Hellman method by using our implementations of
finite field arithmetic operations [9] and elliptic curve
arithmetic operations [12] under java BigInteger class.

A. Baby-Step Giant-Step Attack

Prime Field: Let an elliptic curve be ܧ: ଶݕ	 ൌ ଷݔ ൅ ݔ5 ൅ 4 over
GF(13), P = (0, 2) and Q = (6, 4). We suppose that we
determine the unique integer k such that Q = [k]P by using
Baby-Step, Giant-Step method. P has order 17. We first
compute ݉ ൌ ඃ√17ඇ ൌ 4. The points iP for 1 ≤ i ≤ 4 are (0,
2), (4, 6), (10, 1), (6, 9). We calculate Q − jmP for j = 0, 1, 2,
3, … and obtain (6, 4), (11, 5), (8, 6), (0, 2) at which point we
stop since this fourth point matches P. Since j = 3 yielded the
match, we have (6, 4) = (1 + 3 ∙ 4)P = 13P.Therefore k = 13.
Binary Field: Let an elliptic curve be :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅
݃ଵଵݔ ൅ ݃ଵଷ over GF(24), P = ሺ݃ଽ, 1ሻ and Q = ሺ݃଺, ݃଺ሻ. We suppose
that we determine the unique integer k such that Q = [k]P by
using Baby-Step, Giant-Step method. P has order 11. We first
compute ݉ ൌ ඃ√11ඇ ൌ 4. The points iP for 1 ≤ i ≤ 4 are
ሺ݃ଽ, 1ሻ, ሺ݃ଵଶ, ݃ସሻ, ሺࢍ૟, ૙ሻ, ሺ݃ଵସ, 1ሻ. We calculate Q − jmP for j = 0,
1, 2, 3, 4, … and obtain ሺ݃଺, ݃଺ሻ, ሺ݃ଵସ, 1ሻ, ܱ, ሺ݃ଵସ, ݃ଷሻ, ሺࢍ૟, ૙ሻ, at
which point we stop since this fourth point matches 3P. Since
j = 4 yielded the match, we have ሺ݃଺, ݃଺ሻ = ((3 + 4 ∙ 4) mod 11)
P = 8P. Therefore k = 8.

B. Pollard’s Rho Attack

Prime Field: Let an elliptic curve be ܧ: ଶݕ	 ൌ ଷݔ ൅ ݔ5 ൅ 4 over
GF(13), P = (0, 2) and Q = (6, 4). We suppose that we
determine the unique integer k such that Q = [k]P by using
Pollard’s rho method. The base point P has prime order 17.
We choose uniformly at random ܽ, ܾ	 ∈ ሾ0, 17ሿ, calculate
ܴ	 ൌ 	 ሾܽሿܲ	 ൅	 ሾܾሿܳ and store the triple (a, b, R) until such
time we encounter a second triple ሺܽᇱ, ܾᇱ, ܴᇱሻ such that ܴ ൌ ܴᇱ
or ܴ ൌ െܴᇱ. We have that [5]P + [12]Q = [2]P + [7]Q. Then
݇ ൌ ሺ5 െ 2ሻሺ7 െ 12ሻିଵ݉݀݋	17;݇ ൌ 3ሺെ5ሻିଵ݉݀݋	17; ݇ ൌ
3. .hence k =13 ;17	݀݋݉	10

TABLE IV

DATA FOR POLLARD’S RHO ATTACK

On ܧ: ଶݕ ൌ ଷݔ ൅ ݔ5 ൅ 4 over GF(13)

[a] [b] R=[a]P + [b]Q

5 12 (11,8)

3 8 (8,6)

10 4 (2,3)

6 11 (6,4)

2 7 (11,8)

1 15 (11,5)

7 10 (0,2)

⋮ ⋮ ⋮

Binary Field: Let an elliptic curve be :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅
݃ଵଵݔ ൅ ݃ଵଷ over GF(24), P = ሺ݃ଽ, 1ሻ and Q = ሺ݃଺, ݃଺ሻ. We suppose
that we determine the unique integer k such that Q = [k]P by
using Pollard’s rho method. The base point P has prime order
11. We choose uniformly at random ܽ, ܾ	 ∈ ሾ0, 11ሿ, calculate
ܴ	 ൌ 	 ሾܽሿܲ	 ൅	 ሾܾሿܳ and store the triple (a, b, R) until such
time we encounter a second triple ሺܽᇱ, ܾᇱ, ܴᇱሻ such that ܴ ൌ ܴᇱ
or ܴ ൌ െܴᇱ. We have that [10]P + [5]Q = [7]P + [4]Q. Then
݇ ൌ ሺ10 െ 7ሻሺ4 െ 5ሻିଵ݉݀݋	11; ݇ ൌ 3ሺെ1ሻିଵ݉݀݋	11; ݇ ൌ
3. .hence k =8 ;11	݀݋݉	10

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1227

TABLE V
DATA FOR POLLARD’S RHO ATTACK ON :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅ ݃ଵଵݔ ൅ ݃ଵଷ OVER

GF(24)

[a] [b] R=[a]P + [b]Q

10 5 ሺࢍ૚૜, ૚ሻ
8 3 ሺ݃ଽ, ݃଻ሻ
4 10 ሺ݃ଵସ, ݃ଷሻ
5 6 ሺ݃ଵଶ, ݃଺ሻ
7 4 ሺࢍ૚૜, ૚ሻ
2 7 ሺ݃଺, 0ሻ
⋮ ⋮ ⋮

C. Pohlig-Hellman Attack

Prime Field: Let an elliptic curve be ܧ: ଶݕ	 ൌ ଷݔ ൅ ݔ77 ൅ 28
over GF(157), P = (9, 115) and Q = (2, 70). We suppose that
we determine the unique integer k such that Q = [k]P by using
Pohlig Hellman method. The order N of point P is 162. The
prime factorization of N is ૛. ૜૝. We’ll compute k mod 2, and
mod 81, then recombine them to obtain k mod 162 using the
Chinese Remainder Theorem.
k mod 2. We compute T = {(24, 0)}. Since ே

ଶ
ܳ ൌ ሺ24, 0ሻ ൌ

1. ሺ
ே

ଶ
ܲሻ, we have ݇଴ ൌ 1. Therefore ࢑ ≡ ૚	ሺࢊ࢕࢓	૛ሻ.

k mod 81. We compute T = {(57,41), (5, 99), (57, 116), O}.
Since ே

ଷ
ܳ ൌ ሺ57, 41ሻ ൌ 1. ሺே

ଷ
ܲሻ, we have ݇଴ ൌ 1. Therefore

ܳଵ ൌ ܳ െ 1. ܲ ൌ ሺ5, 99ሻ. Since ே

ଽ
ܳଵ ൌ ܱ ൌ 0. ሺ

ே

ଷ
ܲሻ, we have

݇ଵ ൌ 0. Therefore ܳଶ ൌ ܳଵ െ 0.3. ܲ ൌ ܳଵ. Since ே

ଶ଻
ܳଶ ൌ

ሺ57, 116ሻ ൌ 2. ሺே
ଷ
ܲሻ, we have ݇ଶ ൌ 2. Therefore ܳଷ ൌ ܳଶ െ

2.9. ܲ ൌ ሺ57, 41ሻ. Since ே

଼ଵ
ܳଷ ൌ ሺ57, 116ሻ ൌ 2. ሺே

ଷ
ܲሻ, we have

݇ଷ ൌ 2. Therefore ࢑ ൌ ૚ ൅ ૙. ૜ ൅ ૛. ૢ ൅ ૛. ૛ૠ ≡ ૠ૜	ሺࢊ࢕࢓	ૡ૚ሻ.
We now have the simultaneous congruence:

k ≡ 1 (mod 2)
k ≡ 73 (mod 81).

Then we use the Chinese Remainder theorem to recombine
these, and we obtain k = 73. ܯଵ ൌ 162 2⁄ ൌ ଵݕ .81 ൌ
ଵܯ
ିଵ	݉݀݋	2 ൌ ଶܯ .1 ൌ 162 81⁄ ൌ ଶݕ .2 ൌ ଶܯ

ିଵ	݉݀݋	81 ൌ 41.
݇ ൌ 1. ሺ81ሻ. 1 ൅ 73. ሺ2ሻ. 41	ሺ݉݀݋	162ሻ ൌ 73.
Binary Field: Let an elliptic curve be :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅
݃ଵଵݔ ൅ ݃ଵଷ over GF(24), P = ሺ݃ଶ, ݃ଶሻ and Q = ሺ݃଺, ݃଺ሻ. We
suppose that we determine the unique integer k such that
Q = [k]P by using Pohlig Hellman method. The order N of
point P is 22. The prime factorization of N is ૛. ૚૚. We’ll
compute k mod 2, and mod 11, then recombine them to obtain
k mod 22 using the Chinese Remainder Theorem.
k mod 2. We compute T = {O}.
Since ே

ଶ
ܳ ൌ ܱ ൌ 0. ሺே

ଶ
ܲሻ, we have ݇଴ ൌ 0. Therefore ࢑ ≡

૙	ሺࢊ࢕࢓	૛ሻ.
k mod 11. We compute T = {ሺ݃ଵଷ, ݃଺ሻ}.
Since ே

ଵଵ
ܳ ൌ ሺ݃ଵଷ, ݃଺ሻ ൌ 4. ሺே

ଵଵ
ܲሻ, we have ݇଴ ൌ 4. Therefore

࢑ ≡ ૝	ሺࢊ࢕࢓	૚૚ሻ.
We now have the simultaneous congruence:

k ≡ 0 (mod 2)

k ≡ 4 (mod 11).

Then we use the Chinese Remainder theorem to recombine
these, and we obtain k = 4. ܯଵ ൌ 22 2⁄ ൌ ଵݕ .11 ൌ ଵܯ

ିଵ	݉݀݋	2 ൌ
ଶܯ .1 ൌ 22 11⁄ ൌ ଶݕ .2 ൌ ଶܯ

ିଵ	݉݀݋	11 ൌ 6. ݇ ൌ 0. ሺ11ሻ. 1 ൅
4. ሺ2ሻ. 6	ሺ݉݀݋	22ሻ ൌ 4.

VI. CONCLUSION

The cryptographic strength of elliptic curve cryptosystems
lies in the difficulty of solving ECDLP for a cryptanalyst to
determine the secret random number k from kP. Table VI
summarizes the expected running time of our general common
attacks. Our research study found that these general common
attacks can solve ECDLP within the following corresponding
expected running time when the group order N of the elliptic
curve is small and its prime factorization is composed of small
primes. All of the general common attacks on the ECDLP are
expected to run in fully exponential time.

TABLE VI

EXPECTED RUNNING TIME
Attacks Expected Running Time

Baby-Step Giant-Step ܱሺ√ܰሻ
Pollard’s rho ܱሺ√2/ܰߨ)

Pohlig-Hellman ܱሺඥݍ	ሻ

When implementing the elliptic curve cryptosystem, the

following several classes of elliptic curves should be used if
we want to achieve the maximum possible security level of the
cryptosystems. T The National Institute of Standards and
Technology (NIST) submitted a report to recommend a set of
elliptic curves with larger key sizes for federal government use
[10].

NIST recommends the following fifteen elliptic curves.
o Five elliptic curves over prime fields GF(p) for certain

primes p of sizes 192, 224, 256, 384, and 521 bits. [10].
o Five elliptic curves over binary fields GF(2m) for m equal

163, 233, 283, 409, and 571. For each of the binary fields,
one Koblitz curve is recommended [10].

The NIST recommendation thus contains a total of five
prime curves and ten binary curves. These curves should be
chosen for optimal security and implementation efficiency.
The group order for each of these curves is large and has large
prime factors. Therefore, these curves are resistant to the
attacks described above.

REFERENCES
[1] Anoop MS. Elliptic Curve Cryptography,

http://www.infosecwriters.com/Papers/Anoopms_ECC.pdf.
[2] Behrouz A. Forouzan, Cryptography and Network Security, McGraw-

Hill press, International Edition, 2008.
[3] Darrel Hankerson, Alfred Menezes, Scott Vanstone. Guide to Elliptic

Curve Cryptography, Springer press, 2004.
[4] E. Karthikeyan. Survey of Elliptic Curve Scalar Multiplication

Algorithms, Int. J. Advanced Networking and Applications, Volume 04,
Issue 02, 2012.

[5] Hung-Zih Liao, Yuan-Yuan Shen. On the Elliptic Curve Digital
Signature Algorithm, Tunghai Science Volume 8, July, 2006.

[6] Kenneth H. Rosen. Discrete Mathematics and its Applications, Global
Edition, 2008.

[7] Lawrence C. Washington. Elliptic curves. Discrete Mathematics and its
Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL,
2003. Number theory and cryptography.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:11, 2017

1228

[8] Matthew Musson. Attacking the Elliptic Curve Discrete Logarithm
Problem, Master Thesis of Science (Mathematics and Statistics) Acadia
University, 2006.

[9] Ni Ni Hla, Tun Myat Aung. Implementation of Finite Field Arithmetic
Operations for Large Prime and Binary Fields using java BigInteger
class, International Journal of Engineering Research and Technology
(IJERT), Volume 6, Issue 08, August – 2017

[10] Recommended Elliptic Curves for Federal Government Use, NIST,
1999.

[11] Rudolf Lidl and Harald Niederreiter, Introduction to Finite Field
Arithmetic and their Applications, Cambridge University Press, 1986.

[12] Tun Myat Aung, Ni Ni Hla. Implementation of Elliptic Curve
Arithmetic Operations for Prime Field and Binary Field using java
BigInteger class, International Journal of Engineering Research and
Technology (IJERT), Volume 6, Issue 08, August - 2017.

Tun Myat Aung passed matriculation exam with 3 subject distinctions and
got B.Econ from Institute of Economics, Yangon, and M.I.Sc. from University
of Computer Studies, Yangon (UCSY), and M.Engnn & Tech. (I.T) and Ph.D
(IT) from National Research Nuclear University M.E.Ph.I (Moscow). He is a
professor in University of Computer Studies, Yangon (UCSY). His main
research interests include programming languages, distributed and mobile
systems, computer security and privacy, software vulnerabilities and security,
e-commerce, cryptography, stenography, network and information security,
and symbolic computation.

Ni Ni Hla holds M.Sc (mathematics) and M.I.Sc, and is a lecturer in
University of Computer Studies, Yangon (UCSY). Her main research interests
include cryptography, network and information security, symbolic
computation and mathematics of computing.

