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 
Abstract—This paper begins by describing basic properties of 

finite field and elliptic curve cryptography over prime field and 
binary field. Then we discuss the discrete logarithm problem for 
elliptic curves and its properties. We study the general common 
attacks on elliptic curve discrete logarithm problem such as the Baby 
Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman 
method, and describe in detail experiments of these attacks over 
prime field and binary field. The paper finishes by describing 
expected running time of the attacks and suggesting strong elliptic 
curves that are not susceptible to these attacks.  
 

Keywords—Discrete logarithm problem, general attacks, elliptic 
curves, strong curves, prime field, binary field, attack experiments. 

I. INTRODUCTION 

LLIPTIC Curve Cryptography (ECC) is an alternative 
approach for implementing public-key cryptography 

(PKC) in which each entity (user or device) taking part in the 
communication generally has a couple of keys, a public key 
and a private key to perform cryptographic operations such as 
encryption decryption, signing, verification and 
authentication. The particular entity keeps the private key in 
secret but the public key is distributed to all entities taking part 
in the communication [1]. ECC can be used for providing the 
following security services: 
o confidentiality, 
o authentication, 
o data integrity, 
o non-repudiation, 
o authenticated key exchange. 

Nowadays, ECC becomes a leader in the industry of 
information security technology. It replaces other public key 
cryptosystems such as RSA and DSA. It becomes the 
industrial standard. This is a result of an increase in speed and 
lower power consumption during implementation due to less 
memory usage and smaller key sizes. Its security depends on 
the difficulty of solving the Elliptic Curve Discrete Logarithm 
Problem (ECDLP). Although the ECDLP is thought to be an 
intractable problem, it has not stopped attackers/intruders 
attempting to attack on elliptic curve cryptosystems. Various 
attacks have been invented, tested and analyzed by many 
mathematicians over the years, in efforts to find flaws in 
elliptic curve cryptosystems. Some attacks have been partially 
successful, but others have not.  

The purpose of this paper is to study the general common 
attacks against the ECDLP and to apply the knowledge of 
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them in an effort to choose cryptographically strong elliptic 
curves over prime field and binary field under large integer. 
The organization of this paper is as follows. Section II 
includes finite field and its properties. In Section III, we 
discuss ECC over prime field and binary field and its 
geometric properties. Section IV describes in details the 
ECDLP, its properties and its general common attacks. In 
Section V, we discuss our attack experiments over prime field 
and binary field. Finally, in Section VI we conclude our 
discussion by describing expected running time of the attacks 
and by suggesting strong curves for secure implementation of 
ECC systems. 

II. FINITE FIELD ARITHMETIC 

A finite field, denoted by F, is a field containing a finite 
number of elements. Fields are used to number systems such 
as the rational numbers, the real numbers, and the complex 
numbers. They consist of a set of elements that can perform 
two arithmetic operations: addition denoted by (+) and 
multiplication denoted by (·). They satisfy the following 
arithmetic properties: 
o (F,+) is a finite group with additive identity denoted by 0. 
o (F\{0}, ·) is a finite group with multiplicative identity 

denoted by 1. 
o Elements of finite group follow the distributive law: (a+b) 

· c = (a · c) + (b · c) for all a, b, c ∈ F. 
If the elements of the field are finite, then the field is said to 

be finite [3]. Galois presented that the elements in the field to 
be finite and the number of elements should be pm, where p is 
a prime number called the characteristic of the field and m is a 
positive integer. The finite fields are usually called Galois 
fields and also denoted as GF(pm). If m = 1, then the field 
GF(p) is called a prime field. If m ≥ 2, then the field GF(pm) is 
called an extension field. The number of elements in a finite 
field is the order of the field. Any two fields are isomorphic if 
their orders are the same [11].  

A. Field Operations 

A finite field F has two arithmetic operations, addition and 
multiplication. However, the subtraction of elements in a 
finite field is defined in the expression of addition. For 
instance, let a, b ∈ F, a −b is defined as a +(−b), in this case 
−b is the single element in the field such that b+(−b) = 0. −b is 
called additive inverse of b. Similarly, the division of elements 
in a finite field is defined in the expression of multiplication. 
For instance, let a, b ∈ F with b ≠ 0, a/b is defined as a · b−1, 
in this case b−1 is the single element in the field such that b · 
b−1 = 1 [3]. b−1 is called the multiplicative inverse of b. 
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B. Prime Field 

Let p be a prime number. A set of integer elements modulo 
p, consisting of the integers {0,1,2,..., p−1} with addition and 
multiplication performed modulo p, is a finite field of prime 
order p. It is called prime field denoted by GF(p) and p is 
called the modulus of GF(p). For any integer a, a mod p 
denotes the integer remainder r obtained upon dividing a by p. 
This operation is called reduction modulo p. The remainder r 
is the single integer element between 0 and p−1, i.e. 0 ≤r ≤ 
p−1 [3]. 
Example 1. (prime field GF(29)) The elements of GF(29) are 
{0,1,2,...,28}. The following are some examples of arithmetic 
operations in GF(29). 
(a). Addition: 27+10 = 8 since 37 mod 29 = 8. 
(b). Subtraction: 10−27 = 12 since −17 mod 29 = 12. 
(c). Multiplication: 27 · 10 = 9 since 270 mod 29 = 9. 
(d). Inversion: 27−1 = 14 since 27 · 14 mod 29 = 1. 

C. Binary Field 

A finite field of order 2m is called binary field denoted by 
GF(2m). It also refers to the finite field with characteristic-two. 
One approach to construct GF(2m) is to apply a polynomial 
basis representation denoted by (1). In this case, the elements 
of GF(2m) are the binary polynomials of degree at most m −1. 

 
ሺ2௠ሻܨܩ ൌ ܽ௠ିଵݔ௠ିଵ ൅ ܽ௠ିଶݔ௠ିଶ ൅⋯൅ ܽଶݔଶ ൅ ܽଵݔ ൅ ܽ଴, ܽ௜ ∈

ሼ0,1ሽ.     (1) 
 
An irreducible binary polynomial f (x) of degree m is 

chosen. Irreducibility of f(x) means that f(x) cannot be factored 
as a product of binary polynomials each of degree less than m. 
Addition of binary field elements is the usual addition of 
polynomials, with coefficient arithmetic performed modulo 2. 
Multiplication of binary field elements is performed modulo 
the reduction polynomial f(x). For any binary polynomial a(x), 
a(x) mod f(x) shall denote the unique remainder polynomial 
r(x) of degree less than m obtained upon long division of a(x) 
by f(x); this operation is called reduction modulo f(x) [3]. 
Example 2. (Binary Field GF(24)). In Table I, the elements of 
GF(24) are the 16 binary polynomials of degree at most 3. 

 
TABLE I 

BINARY POLYNOMIALS 
ଷݔ ଷݔ ଶݔ 0 ൅  ଶݔ

ଶݔ 1 ൅ ଷݔ 1 ൅ ଷݔ 1 ൅ ଶݔ ൅ 1 

ଶݔ ݔ ൅ ଷݔ ݔ ൅ ଷݔ ݔ ൅ ଶݔ ൅  ݔ

ݔ ൅ ଶݔ 1 ൅ ݔ ൅ ଷݔ 1 ൅ ݔ ൅ ଷݔ 1 ൅ ଶݔ ൅ ݔ ൅ 1 

 
The following are some examples of arithmetic operations 

in GF(24) with reduction Polynomial ݂ሺݔሻ ൌ ସݔ ൅ ݔ ൅ 1. 
ሺaሻ. Addition: ሺݔଷ ൅ ଶݔ ൅ 1ሻ ൅ ሺݔଶ ൅ ݔ ൅ 1ሻ ൌ ଷݔ ൅  .ݔ
ሺbሻ. Subtraction: ሺݔଷ ൅ ଶݔ ൅ 1ሻ െ ሺݔଶ ൅ ݔ ൅ 1ሻ ൌ ଷݔ ൅  .ݔ
ሺcሻ. Multiplication: ሺݔଷ ൅ ଶݔ ൅ 1ሻ. ሺݔଶ ൅ ݔ ൅ 1ሻ ൌ ଶݔ ൅ 1 since 

ሺݔଷ ൅ ଶݔ ൅ 1ሻ. ሺݔଶ ൅ ݔ ൅ 1ሻ ൌ ହݔ ൅ ݔ ൅ 1 and ሺݔହ ൅ ݔ ൅
1ሻ	݉݀݋	ሺݔସ ൅ ݔ ൅ 1ሻ ൌ ଶݔ	 ൅ 1. 

ሺdሻ. Inversion: ሺݔଷ ൅ ଶݔ ൅ 1ሻିଵ ൌ ଷݔsince ሺ	ଶݔ ൅ ଶݔ ൅
1ሻ. ସݔሺ	݀݋݉	ଶݔ ൅ ݔ ൅ 1ሻ ൌ 1. 

III.  ELLIPTIC CURVE ARITHMETIC 

A. Elliptic Curves over Prime Field -GF(p) 

The elliptic curve over finite field E(GF) is a cubic curve 
defined by the general Weierstrass equation:	ݕଶ ൅ ܽଵݕݔ ൅
ܽଷݕ ൌ ଷݔ ൅ ܽଶݔଶ ൅ ܽସݔ ൅ ܽ଺ over GF where ܽ௜ ∈  and GF is ܨܩ
a finite field. The following elliptic curves are adopted from 
the general Weierstrass equation. The elliptic curve E(GF(p)) 
over prime field GF(p) is defined by (2) [2]: 

 
ଶݕ	 ൌ ଷݔ ൅ ݔܽ ൅ ܾ     (2) 

 
where ݌ ൐ 3 is a prime and ܽ, ܾ ∈  ሻ satisfy that the݌ሺܨܩ
discriminant 4ܽଷ ൅ 27ܾଶ ് 0 (a1 = a2 = a3 = 0; a4 = a and  
a6 = b corresponding to the general Weierstrass equation).  

1). Points on E(GF(p)) 

The elliptic curve E(GF(p)) consists of a set of points 
ሼܲ ൌ ሺݔ, ଶݕ	|ሻݕ ൌ ଷݔ ൅ ݔܽ ൅ ܾ, ,ݔ ,ݕ ܽ, ܾ ∈  ሻሽ together with a݌ሺܨܩ
point at infinity denoted as O. Every point on the curve has its 
inverse. The inverse of a point (x, y) on E(GF(p)) is  
(x, -y). The number of points on the curve, including a point at 
infinity, is called its order #E. The pseudocode for finding the 
points on the elliptic curve E(GF(p)) is shown in Algorithm 
(1).  

 
Algorithm (1). Pseudocode for finding the points on the elliptic curve 
E(GF(p)) 
Input: a, b, p 
Output: ௜ܲ ൌ ሺݔ௜,  ௜ሻݕ
Begin 
x = 0; 
while(x < p){ 
ݓ ൌ ሺݔଷ ൅ ݔܽ ൅ ܾሻ݉݀݋	݌. 
If(w is perfect square in ܼ௣) output ሺݔ, ,ݔሻ ሺݓ√ െ√ݓሻ 
x = x + 1. 

} 
End 
 

 
 

(0, 2) (0, 11) 
(1, 6) (1, 7) 
(2, 3) (2, 10) 
(4, 6) (4, 7) 
(6, 4) (6, 9) 
(8, 6) (8, 7) 

(10, 1) (10, 12) 
(11, 5) (11, 8) 

 

(a) Points (b) Graph 

Fig. 1 Points on :ܧ	ݕଶ ൌ ଷݔ ൅ ݔ5 ൅ 4 
 
Example 3. Let p = 13 and consider the elliptic curve 
ଶݕ	:ܧ ൌ ଷݔ ൅ ݔ5 ൅ 4 defined over GF(p) where a = 5 and b = 4. 
Note that 4ܽଷ ൅ 27ܾଶ ൌ 500 ൅ 432 ൌ 13	݀݋݉	932 ൌ 9, so E is 
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indeed an elliptic curve. The points on the curve and its graph 
are shown in Figs. 1 (a) and (b). The order of the elliptic curve 
ଶݕ	:ܧ ൌ ଷݔ ൅ ݔ5 ൅ 4 over GF(13) is 17. 

2). Arithmetic Operations on E(GF(p)) 

The chord-and-tangent rule is applied for adding two points 
on an elliptic curve E(GF(p)) to give a third point on the 
curve. Using this addition operation with the points on 
E(GF(p)) generates a group with point at infinity O serving as 
its identity. It is the group that is used in the construction of 
elliptic curve cryptosystems [5]. The addition rule is the best 
to explain geometrically. Let ܲ ൌ ሺݔଵ, ܳ ଵሻ andݕ ൌ ሺݔଶ,  ଶሻ beݕ
two distinct points on an elliptic curve E(GF(p)). Then the 
third point ܴ ൌ ሺݔଷ,  ଷሻ is obtained by addition of P and Q asݕ
follows. First draw the line through P and Q; this line 
intersects the elliptic curve in a third point. Then R is the 
reflection of this point in the x-axis. This is illustrated in Fig. 2 
(a). The elliptic curve in the figure consists of two parts, the 
ellipse-like figure and the infinite curve. If ܲ ൌ ሺݔଵ,  ଵሻ, thenݕ
the double of P, denoted ܴ ൌ ሺݔଷ,  .ଷሻ, is defined as followsݕ
First draw the tangent line to the elliptic curve at P. This line 
intersects the elliptic curve in a second point. Then R is the 
reflection of this point in the x-axis. This is illustrated in Fig. 2 
(b). 

 

 

(a) Addition (R = P + Q) (b) Doubling (R = P + P) 

Fig. 2 Geometric Description 
 

The following algebraic methods for the addition of two 
points and the doubling of a point can be resulted from the 
geometric description [2]. 
(a). P + O = O + P = P for all ܲ ∈  .ሻሻ݌ሺܨܩሺܧ
(b). If ܲ ൌ ሺݔ, ሻݕ ∈ ,ݔሻሻ, then ሺ݌ሺܨܩሺܧ ሻݕ ൅ ሺݔ,െݕሻ ൌ ܱ. The 

point (x, -y) denoted by (-P) is called the inverse of P; –P 
is a point on the curve. 

(c). (Point addition). Let ܲ ൌ ሺݔଵ, ଵሻݕ ∈ ܳ ሻሻ and݌ሺܨܩሺܧ ൌ
ሺݔଶ, ଶሻݕ ∈ ܲ ሻሻ, where݌ሺܨܩሺܧ ് േܳ. Then ܲ ൅ ܳ ൌ ሺݔଷ,  ,ଷሻݕ
where ݔଷ ൌ ଶߣ െ ଵݔ െ ଷݕ ଶ andݔ ൌ ଵݔሺߣ െ ଷሻݔ െ  ଵ. In thisݕ
case, ߣ ൌ ሺݕଶ െ ଵሻݕ ሺݔଶ െ ⁄ଵሻݔ . 

(d). (Point doubling). Let ܲ ൌ ሺݔଵ, ଵሻݕ ∈  ሻሻ, where݌ሺܨܩሺܧ
ܲ ് െܲ. Then 2ܲ ൌ ሺݔଷ, ଷݔ ଷሻ, whereݕ ൌ ଶߣ െ  ଵ andݔ2
ଷݕ ൌ ଵݔሺߣ െ ଷሻݔ െ ߣ ,ଵ. In this caseݕ ൌ ሺ3ݔଵଶ ൅ ܽሻ ⁄ଵݕ2 .  

Example 4. (Elliptic curve addition and doubling) Let’s 
consider the elliptic curve defined in Example (3). 
a. Addition. Let ܲ ൌ ሺ1, 6ሻ and ܳ ൌ ሺ4, 6ሻ. Then ܲ ൅ ܳ ൌ

ሺ8, 7ሻ. 
b. Doubling. Let ܲ ൌ ሺ1, 6ሻ. Then 2ܲ ൌ ሺ10, 1ሻ. 
c. Inverse. Let ܲ ൌ ሺ1, 6ሻ. Then െܲ ൌ ሺ1, 7ሻ. 

B. Elliptic Curves over Binary Field - GF(2m) 

A reduction polynomial ݂ሺݔሻ must be firstly chosen to 
construct a binary field GF(2m). The elements generated by the 
reduction polynomial are applied to construct an elliptic curve 
E(GF(2m)). The elliptic curve E(GF(2m)) over binary field 
GF(2m) is defined by (3) [2]: 

 
ଶݕ  ൅ ݕݔ ൌ ଷݔ ൅ ݔܽ ൅ ܾ    (3) 

 
where ܽ, ܾ ∈ ܾ ሺ2௠ሻ andܨܩ ് 0.  

1). Points on E(GF(2m)) 

The elliptic curve E(GF(2m)) consists of a set of points: 
ሼܲ ൌ ሺݔ, ଶݕ|ሻݕ ൅ ݕݔ ൌ ଷݔ ൅ ݔܽ ൅ ܾ, ,ݔ ,ݕ ܽ, ܾ ∈  ሺ2௠ሻሽ togetherܨܩ
with a point at infinity denoted as O. Every point on the curve 
has its inverse. The inverse of a point (x, y) on E(GF(2m)) is 
ሺݔ, ݔ  ሻ. The number of points on the curve, including aݕ⨁
point at infinity, is called its order #E. The pseudocode for 
finding the points on the elliptic curve E(GF(2m)) is shown in 
Algorithm (2).  

 
Algorithm (2). Pseudocode for finding the points on the elliptic curve 
E(GF(2m)) 
Input: a, b,	݂ሺݔሻ  
Output: ௜ܲ ൌ ሺݔ௜,  ௜ሻݕ
Begin 
x௜ ൌ ሼ0, 1, ݃ଵ, … , ݃௠ିଶ	ሽ 
௝ݕ ൌ ሼ0, 1, ݃ଵ,… , ݃௠ିଶሽ 
 
for(i=0; i<2m; i++){ 

for(j=0; j < 2m;j++){ 
 
ଵݓ ൌ ௜ଷݔ ⊕ ௜ݔܽ ⊕ ܾ. 
ଶݓ ൌ ௝ଶݕ ⊕  ௝ݕ௜ݔ
If(ݓଵ ൌ ,௜ݔଶ) output ሺݓ ,௜ݔ௝ሻ ሺݕ ௝ݕ  ௜ሻݔ⨁	
} 

} 
End 
 
Example 5. Let ݂ሺݔሻ ൌ ସݔ ൅ ݔ ൅ 1 be the reduction 
polynomial. Then 16 elements of GF(24) are shown in Table 
II.  

 
TABLE II 

ELEMENTS OF GF(24) 
 ଷݔ 1000 0 0000

ଷݔ 1001 1 0001 ൅ 1 

ଷݔ 1010 ݔ 0010 ൅  ݔ

ݔ 0011 ൅ ଷݔ 1011 1 ൅ ݔ ൅ 1 

ଷݔ ଶ 1100ݔ 0100 ൅  ଶݔ

ଶݔ 0101 ൅ ଷݔ 1101 1 ൅ ଶݔ ൅ 1 

ଶݔ 0110 ൅ ଷݔ 1110 ݔ ൅ ଶݔ ൅  ݔ

ଶݔ 0111 ൅ ݔ ൅ ଷݔ 1111 1 ൅ ଶݔ ൅ ݔ ൅ 1 
 

Table III shows the power representation of g for elements 
of GF(24) generated by the polynomial ݂ሺݔሻ ൌ ସݔ ൅ ݔ ൅ 1. The 
element of ݃ ൌ ݔ ൌ ሺ0010ሻ is a generator of GF(24) because its 
order is 15 ሺ2ସ െ 1ሻ. 

Using the elliptic curve :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅ ݃ଵଵݔ ൅ ݃ଵଷ, with 
ܽ ൌ ݃ଵଵ and ܾ ൌ ݃ଵଷ, we can find the points on the curve, as 
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shown in Fig. 3. The points on the curve and its graph are 
shown in Figs. 3 (a) and (b). The order of the elliptic curve 

ଶݕ	:ܧ ൅ ݕݔ ൌ ଷݔ ൅ ݃ଵଵݔ ൅ ݃ଵଷ is 22. 

 

  
(0, ݃ଵସ) O 
ሺ1, ݃଻ሻ ሺ1, ݃ଽሻ
ሺ݃, ଼݃ሻ  ሺ݃, ݃ଵ଴ሻ 
ሺ݃ଶ, 0ሻ ሺ݃ଶ, ݃ଶሻ 
ሺ݃ହ, 0ሻ ሺ݃ହ, ݃ହሻ 
ሺ݃଺, 0ሻ ሺ݃଺, ݃଺ሻ 
ሺ଼݃, ݃଻ሻ ሺ଼݃, ݃ଵଵሻ 
ሺ݃ଽ, 1ሻ ሺ݃ଽ, ݃଻ሻ 
ሺ݃ଵଶ, ݃ସሻ ሺ݃ଵଶ, ݃଺ሻ 
ሺ݃ଵଷ, 1ሻ ሺ݃ଵଷ, ݃଺ሻ 
ሺ݃ଵସ, 1ሻ ሺ݃ଵସ, ݃ଷሻ 

 

 

(a) Points (b) Graph 

Fig. 3 Points on :ܧ ଶݕ ൅ ݕݔ ൌ ଷݔ ൅ ݃ଵଵݔ ൅ ݃ଵଷ 
 

TABLE III 
POWER REPRESENTATION OF ELEMENTS 

݃ 0010 ݃ହ 0110 ݃ଽ 1010 ݃ଵଷ 1101 

݃ଶ 0100 ݃଺ 1100 ݃ଵ଴ 0111 ݃ଵସ 1001 

݃ଷ 1000 ݃଻ 1011 ݃ଵଵ 1110 ݃ଵହ 0001 

݃ସ 0011 ଼݃ 0101 ݃ଵଶ 1111 

2). Arithmetic Operations on E(GF(2m)) 

As with elliptic curves over GF(p), the chord-and-tangent 
rule is also applied for adding two points on an elliptic curve 
E(GF(2m)) to give a third point on the curve. Using this 
addition operation with points on E(GF(2m)) generates a group 
with O serving as its identity [5]. The algebraic methods for 
the addition of two points and the doubling of a point are the 
following [2]. 
(a). P + O = O + P = P for all ܲ ∈  .ሺ2௠ሻሻܨܩሺܧ
(b). If ܲ ൌ ሺݔ, ሻݕ ∈ ,ݔሺ2௠ሻሻ, then ሺܨܩሺܧ ሻݕ ൅ ሺݔ, ݔ ൅ ሻݕ ൌ ܱ. 

The point (x, x+y) denoted by (-P) is called the inverse of 
P; –P is a point on the curve. 

(c). (Point addition). Let ܲ ൌ ሺݔଵ, ଵሻݕ ∈  ሺ2௠ሻሻ andܨܩሺܧ
ܳ ൌ ሺݔଶ, ଶሻݕ ∈ ܲ ሺ2௠ሻሻ, whereܨܩሺܧ ് േܳ. Then ܲ ൅ ܳ ൌ
ሺݔଷ, ଷݔ ଷሻ, whereݕ ൌ ଶߣ ൅ ߣ ൅ ଵݔ ൅ ଶݔ ൅ ܽ and ݕଷ ൌ
ଵݔሺߣ ൅ ଷሻݔ ൅ ଷݔ ൅ ߣ ,ଵ. In this caseݕ ൌ ሺݕଶ ൅ ଵሻݕ ሺݔଶ ൅ ⁄ଵሻݔ . 

(d). (Point doubling). Let ܲ ൌ ሺݔଵ, ଵሻݕ ∈  ሺ2௠ሻሻ, whereܨܩሺܧ
ܲ ് െܲ. Then 2ܲ ൌ ሺݔଷ, ଷݔ ଷሻ, whereݕ ൌ ଶߣ ൅ ߣ ൅ ܽ and 
ଷݕ ൌ ଵଶݔ ൅ ଷݔߣ ൅ ߣ ,ଷ. In this caseݔ ൌ ଵݔ ൅ ሺݕଵ ⁄ଵሻݔ .  

Example 6. (elliptic curve addition and doubling) Let’s 
consider the elliptic curve defined in Example 5. 
a. Addition. Let ܲ ൌ ሺ݃ଶ, ݃ଶሻ and ܳ ൌ ሺ݃଺, ݃଺ሻ. Then 

ܲ ൅ ܳ ൌ ሺ݃ହ, 0ሻ. 
b. Doubling. Let ܲ ൌ ሺ݃ଶ, ݃ଶሻ. Then 2ܲ ൌ ሺ݃ଵସ, 1ሻ. 
c. Inverse. Let ܲ ൌ ሺ݃ଶ, ݃ଶሻ. Then െܲ ൌ ሺ݃ଶ, 0ሻ. 

III.  ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM 

The security of ECC depends on the ability to solve 
ECDLP. Let P be a point on an elliptic curve and point Q is a 
point on the curve such that Q = kP, where k is an integer. 
Given two points, P and Q, it is not able to compute k, if the 
group order of the points is sufficiently large. k is called the 
discrete logarithm of Q to the base P.  

A. Point Multiplication 

Another main operation involved in ECC is point 
multiplication. The multiplication of a scalar k with any point 
P on the curve generates another point Q on the curve [1]. 
This is achieved by repeating point addition and doubling 
operations based on binary representation of integer k. The 
binary representation of integer k is shown as (4) 

 
 ݇ ൌ ݇௡ିଵ2௡ିଵ ൅ ݇௡ିଶ2௡ିଶ ൅ ⋯൅ ݇ଵ ൅ ݇଴   (4) 

 
where ݇௡ିଵ ൌ 1 and ݇௜ ∈ ሼ0, 1ሽ, ݅ ൌ 0, 1, 2,… , ݊ െ 1. This method 
is called binary method [3] which scans the bits of k either 
from left-to-right or right-to-left. Algorithm 3 given illustrates 
the computation of kP using binary method. It can be used for 
both elliptic curves over prime field GF(p) and binary field 
GF(2m). 
Algorthm (3). Binary Method 
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Input: point P and binary representation of integer k 
Output: point Q such that Q = kP 
Q=P 
For i = n-1 to 0 do 
Q = Point Doubling of Q 
If ki = 1 then 
Q = Point Addition of P and Q 
Return Q 

The cost of multiplication depends on the number of 1s in 
binary representation of k. The number of 1s is called the 
Hamming Weight of scalar. In an average, binary method 
requires (n-1) point doublings and (n-1)/2 point additions. For 
each bit .1., we need to perform point doubling and point 
addition, if the bit is .0., we need only point doubling 
operation. Therefore, reducing the number of 1s in the binary 
representation will improve the speed of elliptic curve scalar 
multiplication [4]. 

B. Order of Points 

Let P ∈ E(GF(p)). The order of P is the smallest positive 
integer, N, such that NP = O where O is the group identity. 
Hasse’s theorem proved (5) [7]. 

 

݌  ൅ 1 െ 2ඥ݌ 	൑ ܰ ൑ ݌ ൅ 1 ൅ 2ඥ(5)   .݌ 
 

All values of N need to be tried in this range and see which 
ones satisfy NP = O.  
Example 7. Let E be the elliptic curve :ܧ	ݕଶ ൌ ଷݔ ൅ ݔ5 ൅ 4 
over GF(13). The point (0, 2) can be shown to have order 17. 
Hasse’s theorem says that 13 ൅ 1 െ 2√13 	൑ ܰ ൑ 13 ൅ 1 ൅
2√13; we could try all values of N in this range, 7 ൑ ܰ ൑ 21, 
and find 17 that satisfy NP = O. Therefore, N = 17. 

C. Attacks on ECDLP 

The discrete logarithm problem is fundamentally important 
to the area of PKC. Almost all of the most commonly used 
public key cryptographic systems are based on the assumption 
that the discrete logarithm is extremely difficult to compute; 
the more difficult it is, the more security it supports. One way 
to increase the difficulty of the discrete logarithm problem is 
to base the public key cryptosystems on a larger group order 
under large integer. 

The following algorithms can solve the elliptic curve 
discrete logarithm under small integer. General attacks on the 
ECDLP can be grouped into three classes [8]: 
1). Algorithms based on random walks, such as the 

exhaustive search method and the Baby-Step Giant-Step 
method, 

2). Algorithms based on random walks with special 
conditions, like Pollard’s rho method and Pollard’s 
lambda method, and 

3). Algorithms based on multiplicative groups, such as the 
Index Calculus method and Pohlig-Hellman method. 

We studied the following general common attacks on the 
ECDLP. 

1). Baby-Step Giant-Step Method 

This method was developed by D. Shanks for computations 

in algebraic number theory. Let P,Q ∈ E(GF(p)). Suppose that 
we want to solve Q = [k]P. P has prime order N. First, we need 
to find the order N of P. The method requires approximately 

√ܰ steps and around √ܰ storage. Therefore it only works well 
for moderate sized N. The procedure is as follows [7]. 
1. Define an integer m such that ݉ ൌ ඃ√ܰඇ and compute mP. 
2. Compute and keep a list of iP for 0 ≤ i < m. 
3. Compute the points such that Q − jmP for j = 0, 1, ∙ ∙ ∙,  

m − 1 until one of resulting points matches one from the 
stored list. 

4. If iP = Q − jmP, then Q = kP with k ≡ i + jm  
(mod N). 

The points for iP are calculated by adding P (a “baby step”) 
to (i − 1)P. The points for Q − jmP are computed by adding 
−mP (a “giant step”) to Q − (j −1)mP. The algorithm as 
presented above may require roughly m steps to find a match 
and expected running time is ܱሺ√ܰ	ሻ [7]. 

2). Pollard’s Rho Method 

Let E(GF(p)) be an elliptic curve and ܲ ∈  .ሻ൯݌ሺܨܩ൫ܧ
Suppose that P has order N, where N is prime, and let	ܳ ∈	൏
ܲ ൐. Suppose that we want to solve Q = [k]P. In this attack we 
will attempt to find distinct pairs of integers (a, b) and ሺܽᇱ, ܾᇱሻ 
modulo N such that ሾܽሿܲ	 ൅ 	ሾܾሿܳ	 ൌ 	 ሾܽᇱሿܲ	 ൅	ሾܾᇱሿܳ. One 
method for finding these pairs of integers is to simply select 
ܽ, ܾ	 ∈ ൣ0, ܰ	– 	1൧ uniformly at random, compute the point [a]P 
+ [b]Q, and then store the triple (a, b, [a]P + [b]Q). We 
continue to generate pairs (a, b) uniformly at random and 
check these against all previously stored triples until we find a 
pair ሺܽᇱ, ܾᇱሻ with ሾܽᇱሿܲ	 ൅	 ሾܾᇱሿܳ where ሺܽ, ܾሻ ് ሺܽᇱ, ܾᇱሻ. When 
this happens we have solved the ECDLP and as mentioned 
above, we can rearrange (6) 

 
ሾܽሿܲ	 ൅ ሾܾሿܳ	 ൌ 	 ሾܽᇱሿܲ	 ൅ ሾܾᇱሿܳ	   (6) 

 
as ሾܽ െ ܽᇱሿܲ ൌ ሾܾᇱ െ ܾሿܳ ൌ ሾܾᇱ െ ܾሿሺሾ݇ሿܲሻ, and thus ݇ ≡
ሺܽ െ ܽᇱሻሺܾᇱ െ ܾሻିଵ݉݀݋	ܰ. This first method gives an expected 
running time of ܱሺ√2/ܰߨሻ [7], but unfortunately requires 
approximately ܱሺ√2/ܰߨሻ amount of storage for the triples that 
we have computed. 

 A second approach that has roughly the same running time, 
but uses less storage is also known. Instead of storing a list of 
triples, we define a function ݂:൏ ܲ ൐	→	൏ ܲ ൐ so that for any 
ܴ ∈	൏ ܲ ൐ and ܽ, ܾ	 ∈ ሾ0, ܰ െ 1ሿ with ܴ ൌ ሾܽሿܲ ൅ ሾܾሿܳ, we can 
easily compute ܴ ൌ ݂ሺܴᇱሻ	and ܽᇱ, ܾᇱ 	 ∈ ሾ0,ܰ െ 1ሿ with ܴᇱ ൌ
ሾܽᇱሿܲ ൅ ሾܾᇱሿܳ. One way to define such a function is to partition 
< P > into L sets of roughly equal size, say ሼ ଵܵ, ܵଶ, … , ܵ௅ሽ. We 
define a second function H so that H(X) = j if ܺ ∈ ௝ܵ. Then 

௝ܽ , ௝ܾ ∈ ሾ0, ܰ െ 1ሿ are chosen uniformly at random for 1 ൑ ݆ ൑
Now our function ݂:൏ .ܮ ܲ ൐	→	൏ ܲ ൐ is defined by (7) 

 
݂ሺܴሻ ൌ ܴ ൅ ൣ ௝ܽ൧ܲ ൅ ൣ ௝ܾ൧ܳ, ݆	݁ݎ݄݁ݓ ൌ  ሺܺሻ.  (7)ܪ

 
So, if ܴ ൌ ሾܽሿܲ ൅ ሾܾሿܳ, then ݂ሺܴሻ ൌ ܴᇱ ൌ ሾܽᇱሿܲ ൅ ሾܾᇱሿܳ where 
ܽᇱ ൌ ܽ ൅ ௝ܽ	݉݀݋	݊ and ܾᇱ ൌ ܾ ൅ ௝ܾ	݉݀݋	ܰ. This then determines 
a sequence of points in < P >. Since < P > is finite we will 
eventually obtain a collision, thus obtaining our pairs of 
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integers (a, b) and ሺܽᇱ, ܾᇱሻ, and so enabling us to solve the 
ECDLP. As mentioned, this approach has a similar running 
time to the first, but requires less storage, since we are no 
longer required to store ordered triples in order to find a 
collision. The diagram of the sequence looks like the Greek 
letter ρ. That is why this method is called the Pollard-Rho 
method. 

3). Pohlig-Hellman Method 

This method is a special purpose algorithm used for 
computing discrete logarithms in a multiplicative group with 
order of smooth integer.  

Let P and Q be points on an elliptic curve. Suppose that we 
want to solve an integer k such that Q = [k]P. In this attack we 
know the order N of P and we first compute the prime 
factorization of N satisfied by (8): 

 
ܰ ൌ ∏ ௜௘೔௜ݍ      (8) 

 

The idea of this algorithm is to find k (mod ݍ௜௘
೔
) for each i, 

use the Chinese Remainder theorem [6] to combine them and 
then obtain k (mod N). Let q be a prime, and let ݍ௘ be the 
exact power of q dividing N. Write k in its base q expansion as 
(9) 

 
݇ ൌ ݇଴ ൅ ݇ଵݍ ൅ ݇ଶݍଶ ൅⋯  (9) 

 
where 0 ൑ ݇௜ ൏  ௘ሻ byݍ	݀݋ሺ݉	We will evaluate ݇ .ݍ
successively determining ݇଴, ݇ଵ, ݇ଶ, . . . . , ݇݁െ1. The procedure is 
as follows [7]: 

1. Compute ܶ ൌ ሼ݆. ቀ
ே

௤
. ܲቁሽ, 0 ≤ j ≤ q-1. 

2. Compute 
ே

௤
. ܳ. This will be an element of ݇଴ሺ

ே

௤
. ܲሻ of T. 

3. If e = 1, stop. Otherwise, continue. 
4. Let ܳଵ ൌ ܳ െ ݇଴ܲ. 

5. Compute 
ே

௤మ
ܳ. This will be an element of ݇ଵሺ

ே

௤మ
. ܲሻ of T. 

6. if e=2, stop. Otherwise, continue. Suppose we have 
computed ݇ଵ, ݇ଶ, … , ݇௥ିଵ and ܳଵ, ܳଶ, … , ܳ௥ିଵ. 

7. Let ܳ௥ ൌ ܳ௥ିଵ െ ݇௥ିଵݍ௥ିଵܲ. 
8. Determine ݇௥ such that ே

௤ೝశభ
. ܳ௥ ൌ ݇௥ሺ

ே

௤
ܲሻ. 

9. If r = e -1, stop. Otherwise, return to step (7). 
Then ݇ ≡ ݇଴ ൅ ݇ଵݍ ൅⋯൅ ݇௘ିଵݍ௘ିଵ	ሺ݉݀݋	ݍ௘ሻ. Therefore we 

find ݇ଵ. Similarly, the method produces ݇ଶ, ݇ଷ, ….We have to 
stop after r = e-1. The expected running time of this algorithm 
is ܱሺඥݍ	ሻ [7], where q is the largest prime divisor of N. In 
practice this attack becomes infeasible when N has a large 
prime divisor. If this is the case, it then becomes difficult to 
make and store the list T to find matches. 

V.  EXPERIMENTS 

We implemented well-known general common attacks such 
as Baby-Step Giant-Step algorithm, Pollard’s rho method and 
the Pohlig-Hellman method by using our implementations of 
finite field arithmetic operations [9] and elliptic curve 
arithmetic operations [12] under java BigInteger class. 

A. Baby-Step Giant-Step Attack 

Prime Field: Let an elliptic curve be ܧ: ଶݕ	 ൌ ଷݔ ൅ ݔ5 ൅ 4 over 
GF(13), P = (0, 2) and Q = (6, 4). We suppose that we 
determine the unique integer k such that Q = [k]P by using 
Baby-Step, Giant-Step method. P has order 17. We first 
compute ݉ ൌ ඃ√17ඇ ൌ 4. The points iP for 1 ≤ i ≤ 4 are (0, 
2), (4, 6), (10, 1), (6, 9). We calculate Q − jmP for j = 0, 1, 2, 
3, … and obtain (6, 4), (11, 5), (8, 6), (0, 2) at which point we 
stop since this fourth point matches P. Since j = 3 yielded the 
match, we have (6, 4) = (1 + 3 ∙ 4)P = 13P.Therefore k = 13. 
Binary Field: Let an elliptic curve be :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅
݃ଵଵݔ ൅ ݃ଵଷ over GF(24), P = ሺ݃ଽ, 1ሻ and Q = ሺ݃଺, ݃଺ሻ. We suppose 
that we determine the unique integer k such that Q = [k]P by 
using Baby-Step, Giant-Step method. P has order 11. We first 
compute ݉ ൌ ඃ√11ඇ ൌ 4. The points iP for 1 ≤ i ≤ 4 are 
ሺ݃ଽ, 1ሻ, ሺ݃ଵଶ, ݃ସሻ, ሺࢍ૟, ૙ሻ, ሺ݃ଵସ, 1ሻ. We calculate Q − jmP for j = 0, 
1, 2, 3, 4, … and obtain ሺ݃଺, ݃଺ሻ, ሺ݃ଵସ, 1ሻ, ܱ, ሺ݃ଵସ, ݃ଷሻ, ሺࢍ૟, ૙ሻ, at 
which point we stop since this fourth point matches 3P. Since 
j = 4 yielded the match, we have ሺ݃଺, ݃଺ሻ = ((3 + 4 ∙ 4) mod 11) 
P = 8P. Therefore k = 8. 

B. Pollard’s Rho Attack 

Prime Field: Let an elliptic curve be ܧ: ଶݕ	 ൌ ଷݔ ൅ ݔ5 ൅ 4 over 
GF(13), P = (0, 2) and Q = (6, 4). We suppose that we 
determine the unique integer k such that Q = [k]P by using 
Pollard’s rho method. The base point P has prime order 17. 
We choose uniformly at random ܽ, ܾ	 ∈ ሾ0, 17ሿ, calculate 
ܴ	 ൌ 	 ሾܽሿܲ	 ൅	 ሾܾሿܳ and store the triple (a, b, R) until such 
time we encounter a second triple ሺܽᇱ, ܾᇱ, ܴᇱሻ such that ܴ ൌ ܴᇱ 
or ܴ ൌ െܴᇱ. We have that [5]P + [12]Q = [2]P + [7]Q. Then 
݇ ൌ ሺ5 െ 2ሻሺ7 െ 12ሻିଵ݉݀݋	17;݇ ൌ 3ሺെ5ሻିଵ݉݀݋	17; ݇ ൌ
3.  .hence k =13 ;17	݀݋݉	10

 
TABLE IV 

DATA FOR POLLARD’S RHO ATTACK 

On ܧ: ଶݕ ൌ ଷݔ ൅ ݔ5 ൅ 4 over GF(13) 

[a] [b] R=[a]P + [b]Q 

5 12 (11,8) 

3 8 (8,6) 

10 4 (2,3) 

6 11 (6,4) 

2 7 (11,8) 

1 15 (11,5) 

7 10 (0,2) 

⋮ ⋮ ⋮ 

 
Binary Field: Let an elliptic curve be :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅
݃ଵଵݔ ൅ ݃ଵଷ over GF(24), P = ሺ݃ଽ, 1ሻ and Q = ሺ݃଺, ݃଺ሻ. We suppose 
that we determine the unique integer k such that Q = [k]P by 
using Pollard’s rho method. The base point P has prime order 
11. We choose uniformly at random ܽ, ܾ	 ∈ ሾ0, 11ሿ, calculate 
ܴ	 ൌ 	 ሾܽሿܲ	 ൅	 ሾܾሿܳ and store the triple (a, b, R) until such 
time we encounter a second triple ሺܽᇱ, ܾᇱ, ܴᇱሻ such that ܴ ൌ ܴᇱ 
or ܴ ൌ െܴᇱ. We have that [10]P + [5]Q = [7]P + [4]Q. Then 
݇ ൌ ሺ10 െ 7ሻሺ4 െ 5ሻିଵ݉݀݋	11; ݇ ൌ 3ሺെ1ሻିଵ݉݀݋	11; ݇ ൌ
3.  .hence k =8 ;11	݀݋݉	10
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TABLE V 
DATA FOR POLLARD’S RHO ATTACK ON :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅ ݃ଵଵݔ ൅ ݃ଵଷ OVER 

GF(24) 

[a] [b] R=[a]P + [b]Q 

10 5 ሺࢍ૚૜, ૚ሻ 
8 3 ሺ݃ଽ, ݃଻ሻ 
4 10 ሺ݃ଵସ, ݃ଷሻ 
5 6 ሺ݃ଵଶ, ݃଺ሻ 
7 4 ሺࢍ૚૜, ૚ሻ 
2 7 ሺ݃଺, 0ሻ 
⋮ ⋮ ⋮ 

C. Pohlig-Hellman Attack 

Prime Field: Let an elliptic curve be ܧ: ଶݕ	 ൌ ଷݔ ൅ ݔ77 ൅ 28 
over GF(157), P = (9, 115) and Q = (2, 70). We suppose that 
we determine the unique integer k such that Q = [k]P by using 
Pohlig Hellman method. The order N of point P is 162. The 
prime factorization of N is ૛. ૜૝. We’ll compute k mod 2, and 
mod 81, then recombine them to obtain k mod 162 using the 
Chinese Remainder Theorem. 
k mod 2. We compute T = {(24, 0)}. Since ே

ଶ
ܳ ൌ ሺ24, 0ሻ ൌ

1. ሺ
ே

ଶ
ܲሻ, we have ݇଴ ൌ 1. Therefore ࢑ ≡ ૚	ሺࢊ࢕࢓	૛ሻ. 

k mod 81. We compute T = {(57,41), (5, 99), (57, 116), O}.  
Since ே

ଷ
ܳ ൌ ሺ57, 41ሻ ൌ 1. ሺே

ଷ
ܲሻ, we have ݇଴ ൌ 1. Therefore 

ܳଵ ൌ ܳ െ 1. ܲ ൌ ሺ5, 99ሻ. Since ே

ଽ
ܳଵ ൌ ܱ ൌ 0. ሺ

ே

ଷ
ܲሻ, we have 

݇ଵ ൌ 0. Therefore ܳଶ ൌ ܳଵ െ 0.3. ܲ ൌ ܳଵ. Since ே

ଶ଻
ܳଶ ൌ

ሺ57, 116ሻ ൌ 2. ሺே
ଷ
ܲሻ, we have ݇ଶ ൌ 2. Therefore ܳଷ ൌ ܳଶ െ

2.9. ܲ ൌ ሺ57, 41ሻ. Since ே

଼ଵ
ܳଷ ൌ ሺ57, 116ሻ ൌ 2. ሺே

ଷ
ܲሻ, we have 

݇ଷ ൌ 2. Therefore ࢑ ൌ ૚ ൅ ૙. ૜ ൅ ૛. ૢ ൅ ૛. ૛ૠ ≡ ૠ૜	ሺࢊ࢕࢓	ૡ૚ሻ. 
We now have the simultaneous congruence: 
 

k ≡ 1 (mod 2) 
k ≡ 73 (mod 81). 

 
Then we use the Chinese Remainder theorem to recombine 
these, and we obtain k = 73. ܯଵ ൌ 162 2⁄ ൌ ଵݕ .81 ൌ
ଵܯ
ିଵ	݉݀݋	2 ൌ ଶܯ .1 ൌ 162 81⁄ ൌ ଶݕ .2 ൌ ଶܯ

ିଵ	݉݀݋	81 ൌ 41. 
݇ ൌ 1. ሺ81ሻ. 1 ൅ 73. ሺ2ሻ. 41	ሺ݉݀݋	162ሻ ൌ 73. 
Binary Field: Let an elliptic curve be :ܧ	ݕଶ ൅ ݕݔ ൌ ଷݔ ൅
݃ଵଵݔ ൅ ݃ଵଷ over GF(24), P = ሺ݃ଶ, ݃ଶሻ and Q = ሺ݃଺, ݃଺ሻ. We 
suppose that we determine the unique integer k such that  
Q = [k]P by using Pohlig Hellman method. The order N of 
point P is 22. The prime factorization of N is ૛. ૚૚. We’ll 
compute k mod 2, and mod 11, then recombine them to obtain 
k mod 22 using the Chinese Remainder Theorem. 
k mod 2. We compute T = {O}.  
Since ே

ଶ
ܳ ൌ ܱ ൌ 0. ሺே

ଶ
ܲሻ, we have ݇଴ ൌ 0. Therefore ࢑ ≡

૙	ሺࢊ࢕࢓	૛ሻ. 
k mod 11. We compute T = {ሺ݃ଵଷ, ݃଺ሻ}.  
Since ே

ଵଵ
ܳ ൌ ሺ݃ଵଷ, ݃଺ሻ ൌ 4. ሺே

ଵଵ
ܲሻ, we have ݇଴ ൌ 4. Therefore 

࢑ ≡ ૝	ሺࢊ࢕࢓	૚૚ሻ. 
We now have the simultaneous congruence: 

 
k ≡ 0 (mod 2) 

k ≡ 4 (mod 11). 
 

Then we use the Chinese Remainder theorem to recombine 
these, and we obtain k = 4. ܯଵ ൌ 22 2⁄ ൌ ଵݕ .11 ൌ ଵܯ

ିଵ	݉݀݋	2 ൌ
ଶܯ .1 ൌ 22 11⁄ ൌ ଶݕ .2 ൌ ଶܯ

ିଵ	݉݀݋	11 ൌ 6. ݇ ൌ 0. ሺ11ሻ. 1 ൅
4. ሺ2ሻ. 6	ሺ݉݀݋	22ሻ ൌ 4. 

VI.  CONCLUSION 

The cryptographic strength of elliptic curve cryptosystems 
lies in the difficulty of solving ECDLP for a cryptanalyst to 
determine the secret random number k from kP. Table VI 
summarizes the expected running time of our general common 
attacks. Our research study found that these general common 
attacks can solve ECDLP within the following corresponding 
expected running time when the group order N of the elliptic 
curve is small and its prime factorization is composed of small 
primes. All of the general common attacks on the ECDLP are 
expected to run in fully exponential time. 

 
TABLE VI 

EXPECTED RUNNING TIME 
Attacks Expected Running Time 

Baby-Step Giant-Step ܱሺ√ܰሻ  
Pollard’s rho ܱሺ√2/ܰߨ)  

Pohlig-Hellman ܱሺඥݍ	ሻ  

 
When implementing the elliptic curve cryptosystem, the 

following several classes of elliptic curves should be used if 
we want to achieve the maximum possible security level of the 
cryptosystems. T The National Institute of Standards and 
Technology (NIST) submitted a report to recommend a set of 
elliptic curves with larger key sizes for federal government use 
[10].  

NIST recommends the following fifteen elliptic curves.  
o Five elliptic curves over prime fields GF(p) for certain 

primes p of sizes 192, 224, 256, 384, and 521 bits. [10]. 
o Five elliptic curves over binary fields GF(2m) for m equal 

163, 233, 283, 409, and 571. For each of the binary fields, 
one Koblitz curve is recommended [10]. 

The NIST recommendation thus contains a total of five 
prime curves and ten binary curves. These curves should be 
chosen for optimal security and implementation efficiency. 
The group order for each of these curves is large and has large 
prime factors. Therefore, these curves are resistant to the 
attacks described above. 
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