International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:10, 2016

A Spectral Decomposition Method for Ordinary
Differential Equation Systems with Constant or
Linear Right Hand Sides

R. B. Ogunrinde, C. C. Jibunoh

Abstract—In this paper, a spectral decomposition method is
developed for the direct integration of stiff and nonstiff homogeneous
linear (ODE) systems with linear, constant, or zero right hand sides
(RHSs). The method does not require iteration but obtains solutions
at any random points of t, by direct evaluation, in the interval of
integration. All the numerical solutions obtained for the class of
systems coincide with the exact theoretical solutions. In particular,
solutions of homogeneous linear systems, i.e. with zero RHS,
conform to the exact analytical solutions of the systems in terms of't.

Keywords—Spectral decomposition, eigenvalues of the Jacobian,
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1. INTRODUCTION

HE Jibunoh numerical spectral decomposition (NSD)
developed in [1] obtains direct accurate solutions of any
homogeneous linear (ODE) systems, given by,
y'=f=Ay, y(to) = Yo )]
where A is the constant Jacobian.
The solutions of the general non homogeneous counterpart,
ie.

y' =1f=Ay+b(0), y(to) = Yo )
which are easily obtained by automatic iteration using the
QBASIC codes. However, there is an interesting class of
linear nonhomogeneous ODE systems to which the NSD shall
be applicable so as to obtain accurate solutions at any random
step n, without iterations. This class constitutes the systems
with linear or constant RHSs which particularly includes the
homogeneous linear system whose RHS is constant, zero.

Suppose that a k-dim nonhomogeneous system is given by
(2). Then, the RHS, b(t), must be of the linear form

b(t)=at+c 3)

where a and ¢ are constant column vectors.

If a=0, then b(t) = ¢, so RHS is a constant. If a =c = 0, then
the system is homogeneous.

There is a vast literature on the methods of integrating ODE
systems especially with reference to those of the Euler, the RK
method, the Rosenbrock method, and the recent Jibunoh
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Exponential Method [2] etc., in which the integrations of
systems with linear RHS are subsumed under the general
integrations. These methods have no special schemes for the
direct integration of ODE systems belonging to the class of
linear RHSs. The short and quick method to be proposed here,
for this class of systems, could show the way for short and
quick methods for general ODE integrations. In this paper,
therefore, we shall follow the exposition in [1] to derive the
required formulas for integrating directly the ODE systems
whose RHSs are either linear or constant.

II. DERIVING THE INTEGRATION FORMULAS

From [1], the general integration formula for (2) subject to
spectral decomposition is given by

Yur = €y, + (" = DA™'b, @)

where A is the KxK constant Jacobian to be decomposed, h is
a constant step size, and b, = b(t,) at step n. We may put (4) in
the form

Yn+t1 = ehAyn + Mbn (5)

where M = (¢" —~T)A™, is a constant KxK matrix.
By iteration of (6), we have

y1-€"yo + Mby
Y2 = CZhAyO + ehAMbO + Mb 1

or in general

n-1 :
hAy + Y ehA(l’l -j- 1)Mbj (6)
[0} j: O

n
=€
yn

By the spectral decomposition of Jibunoh [1]

enhA _ Ae™™ +ALem™ 4+ A M (N
and
»h a.h A h
M=p & -1+Aze -1 +..+Ak7e 1 ®)
Lo A, Ay
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where A,, A, ...
[1] and where

Xk are distinct or made to be distinct as in

ex‘h-l
T:h, 1f7\.J:0

1

)

Also A, i=1 (1) K are KxK constant matrices obtained from
the matrix equation

Ayt A+ A=
AN +AM+ +AA = (10)
AN +ALR +..+AN =A7
AN HAMT AN =AY

where A is the constant Jacobian, and I is the KxK identity
matrix. The matrix equation (10) is easily deducible from (7)
by substituting for n =0 to K-1.

From (10), we obtain the values for A;, A,, ... Ay as
A, 11 1Y
Az 7‘1 }“2 }\‘k Al
A=l A A2 A A’ (11)
Ak }\‘;(—l 7\‘1;—1 }\‘K—] Ak71
Using (7) and (8), we write (6) as;
e)Llhn
ekzhn
Ya :[AIYU’A2YO"“AI<YO] . +
Ahn
© (12)
IRAICERD
n-1 ekzh(n-j -
> [ AMb,A,Mb,...A Mb, ]|
i= :
JRAICERD

where [AlyO,AzyO,...Akyo] is a KxK matrix whose

columns are given by Ay, i= 1(1)K and
lAlej,Aszj,,,,AkajJis also a KxK matrix whose

columns are given by

AiMbj i=1(DK, j=0()n-1

By (3),

(13)

bjzatj+C

Then, since t, = ty + nh + g at step n, where g is Jibunoh
correction for continuity [1], we have

. h

Thus, by = jah + a(ty +3) + ¢ = jah + u (14)

where u = a(ty + 2) + c. Therefore, (12) can be expressed in the

form
z oMh(n—j-1)
_ i M2h(n-j-1)
n=Yn+t [AlMah,AzMah,...AkMah] j=0

(15)

n-1 ) i
3 jexk h(n—j-1)
=0

n—1 .
3 oMh(n—j-1)

T (rah(n-j-1)
+|:A]Mu,A2Mu,...AkMu:| =0

n-1 ' .
> e)»kh(nfrl)
=0

where yn is the first part of (2.9) for any particular Ki #0,i

= 1(1)K. At any step n, it is easily derived that

-1 A;hi Aih
E jexih(n_j_l) _ v B —ne +n —1 _r
- h 2 4 (16)
=0 (e —1)
and
—l
zeXh(n j- 1) Si
—l
If A; = 0, then we obtain
n—1
z elh(n]l) n(n_l)_r
J 5 (17

=0
n—1
Z ehho=iD _ 4 s,
j=0

By computations, the integration formula (15) is expanded
and simplified to obtain the component by component
integration formulas (Y., Yan, --- ykn)T. This will make
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integration easy. During computations, any number or

resultant number of the formed a X 107" = 0, by definition,

provided |a] <10 and r = 6. eg. 2.561 Xx107°=0 or

—3.1124 x 1078 = 0.

We take note of the following;

i.  The integration formula (15) is the formula for the general
case in which the RHS is b(t) = at + ¢, where a and c are
constant column vectors, a # 0, ¢ # 0. It is possible to
havea # 0,butc=0.

ii. If a =c = 0, then the system is homogeneous and from
(16), we have

ek]hn
A,hn
- (&
Yo=Y = [A1YOaA2YOa---AkYO . (18)
ekkhn
which translates as in [1] to
et
et
y.(t) = [AIYO,A2YO,"'AkYO . (19)
et

iii. If the RHS of the system b(t) = at + ¢ is such that a = 0
but ¢ # 0, then the integration formula (15) is not very
adequate. Therefore, we derive an alternative preferred
formula for this case, as follows.

By (4),
Var1 = ey, + (€™ -~ DA™,

Since b, is a constant, let us denote it by by = ¢, a constant
column vector. Then, by iteration

yi=€"(yo+ Abo) - Aby (20)
y2=e"(yo+ A'bg) - A'bo (21)
and in general, for all n,
Yo =e""(yo + A'bg) - A'by, (22)
since b; = by, j =0(1)n-1.
Let yor=yo + A”'by (23)
such that, by (22), y, = ey - A'b, (24)

Therefore, applying the NSD steps (7) and (11), we obtain
the integration formula

e}\]hn
exzhn
Y. = [AIYO*’AZyO*""Ak Yo _Ailbo (29
e).khn
or as in the homogeneous case
eklt
Aot
Y*(t) = [AIYO*’A2YO*""AI<YO* . _Ailbo (26)
exkx

where by is the constant column vector on the RHS of the
system.

The formula (25) or (26) assumes that A™' exists. If A™ does
not exist, we revert to the integration formula (15) with a =0
and by =u.

We shall denote the integration formulas (15) and (26) by
the acronym (NSDL), i.e. the NSD formulas for systems with
constant or linear RHSs.

III.STEPSIZE FOR THE INTEGRATIONS AND COMPUTATIONAL
PROCEDURES OF THE NSDL
The stepsize defined for all integrations is h = 0.001, or h =
10" where r = 3 is an integer, for stiff and nonstiff systems.
On computational procedures, the following sequence is
recommended.

i.  Obtain the eigenvalues of the Jacobian A, i.e. A, A, ...
}\’k

ii. For spectral decomposition of €™ obtain the matrices A,
A,,... Ay from the equation

A, | EPPE | I
AZ }\'l }\'2 }\'k Al
A=l R 2| | A2
Ak )\‘:(—l )\‘1;—1 }\‘1;—] Ak71

provided 4; , i= 1(1)K are distinct.
iii. Obtain the matrix M given by (8), i.e.

eAih—1

given that —— =h,ifA4; =0

iv. The RHS of the system is b; = at; + ¢ as in (13). From this,
we saw in (14) that
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. h .
b; = jah +u, where u = a(t, + ;) + ¢ is a column vector.
Compute for the column vectors

(a) Ma

(b) Mu

v. Obtain the column vectors;

AMa, AMa, ... AtMa
AMu, AoMu,... AAM

vi. Set up the matrices

(a) h[A;Ma, A,Ma, ... AtMa], where h is the stepsize.

(b) [AMu, A,Mu, ... AiMu]

vii. Write down the integration formula at any step n, as the
simplified (15).

el

e)»zhn
Yo = [AYeA Yoo ALY, ] S

Aychn

i

r2
h[A Ma,A,Ma, ..A, Ma]| |+

rk

Sl

S

[AMu,A,Mu, ..A Mu]|
Sk

where r; and s; are defined in (16) or (17) depending on
whether A; # 0 or A; = 0.

For any randomly chosen value of t > t; in the interval of
integration, the corresponding step is n = % Then, y, is the
accurate numerical solution corresponding to y(t).

The integration formula y, is then expanded and simplified
as earlier explained to obtain the component by component
integration formulas (Y1, Yon, .- ykn)T.

The steps of integration outlined above are mainly for the
general case in which the RHS of the system is any of the
forms
e Db(t)=at+c, a#0,c#0
e Dbt)=at+c,a#0,c=0 27
e b(t)=at+c,a=0,c=0,the homogenous case

For the particular case,

e b(t)=at+c, a=0, c=bhy a constant column vector,
(28)

The additional steps after steps (i) and (ii) above are the
inverse of the Jacobian and yo- = y, + A™'b,. These are
important components of the integration formula (26), i.e.

Mt

€ _
Y*(t) = [AIYO*’A2YO* ol - A lbo

Note: All the eigenvalues of the Jacobian so far under
description are assumed to be distinct and real. For cases in
which the eigenvalues are complex or not distinct, the
mathematical procedures are available in the literature, or in
the alternative, see Jibunoh [1] for the necessary exposition.

IV. NUMERICAL APPLICATIONS
Example I

1 =32y, + 66 +2t+2
Y1 Y2 3 3

’~<
N
Il

1=-66 133 1t !
Y2 = V1 Y2 3 3

1
y1(0) =y,(0) = 3 0<t<1

This is a stiff system from Burden and Faires [3] with a
linear RHS. The theoretical solutions are given by

2 2 1
Y1(t) = §t + §e‘t - §e‘1°°t

1 1 2
)= ——t——e t 4 —e—100t
y2(t) 3 36 +3€

The eigenvalues of the Jacobian are A; = —1, A, = —100.
By applying the procedures in Section III, with h = 0.001,
we obtain the integration formula

1(2 —=1)(em
)
.l( 000005997 oj(nj]+
9(-.0000029985 0 )(r,

1( 0059999995  0)(s,
'5(-=00299999975 OJ(SZJ

o (ef.oom —ne™™ 4+n _1)
! .000000999

where

L (e—l).ln —ne™! +n_1)
: 009055917

~ (ef.oom _ 1)

5T 0009995
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( e _ 1) of integration. This shows the efficiency of the NSDL in stiff
S, =—————"— systems.
—.095162582 Example 2

We now substitute for r; and s; in i=1(1)2 in the matrix gy
equation. Then, computing and simplifying on component by a 4x—5y+4t—1
component basis, we have

Y2yt
A
yln :%e—.OOIn _le—O.ln + dt Y
3 3 x(0) =y(0) =0, 0<t<1
lxw(e"w" —ne ! +n—1) + This is a nonstiff system from Krasnov et al. [5]. The
9 .000000999 theoretical solutions are
1,.0059999995 (e 1) -
9 —.0009995
y(t) =0.
Vo = _ée“om“ + %e_o']" + The RHS is linear i.e.
l % -.0000029985 (e—omn e - 1) n b(t) = at +c, where a = (411) and ¢ = (_01)
9 .000000999
1 -.00299999975 We shall let x =y, and y = y,. The eigenvalues of the
_x'—(e"omn — ) Jacobian are \; = 32, = —1.
9 —.0009995

From (14),u=a(ty + g) + c. Therefore, taking h = 0.001, we

Taking note during computation (as defined in Section III)  findu = (_0'998),

o . 0.0005
that any number ax 1.0 = 0, provided Ja] < 10 and r > 6, we By the procedures in Section III, with h = .001, we observe
obtain after simplification;

that the first part of (15) i.e. y_n vanishes since y;(0) = y,(0)
=0.
The integration formula then reduces to

Yin = ge-ﬂ‘““ —ée-“" +(6.666666x10*)n

_ 1 —.001n 2 —0.1n -4 = —
Y =-3e " 43e ~(3.333333056 10" )n Yn = %1 .000003004504 0000009995 ) 1,

1 ( —.0049999549 .OOO999991652J [s] J

1 [.000015022523 .0000009995][r1 ] .\

The NSDL numerical solutions (given to 8 decimal places —

or more) are obtained for random points of t in the interval 4100099999098 .000999991652 )\ s,
0 <t<1 and compared with the theoretical solutions in
Table 1. where
(e.003n —ne™ 4+n— 1)
TABLEI r, =
COMPARING THE NSDL AND THEORETIggIL SOLUTIONS OF EXAMPLE I: Tp =0, .000009027047
H=.
~.001n -001
t  n= ¥ ¥a(NSDL) r = (e —ne  +n —1)
0.3650545272  0.3650545272 2
001 ! 0.2698914454  0.2698914454 000000999
0.66987648 0.66987647 e 0030 1
0.1 100 -0.33491554 -0.33491554 Sl = ( )
05 soo 073768710 073768710 .0030045045 03
’ -0.36884355 -0.36884354 _o0ln
L0 1000 0.91191960 0.91191980 (e ’ — 1)
) -0.45595980 -0.45595980 Sz =

—.0009995001 67
From Table I, we see that the NSDL and theoretical ] ) ]
solutions coincide at all random points chosen in the interval As in Example I, we substitute for r; and s; i=1(1)2 and
reduce to the component by component basis to obtain;
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1 .000015022 523 / _ o 1 .000000999 5/ oo o0l
Y]“=*><—(e —ne +n—l)+—x7(e —ne +n—l)
4 .000009027 047 4 .000000999
1 -.004999954 9 (6,003,1 _1)+ 1 000999991 652 (e--O‘”" _1)
4 .003004500 4503 4 -.000999500 167
yo = 1 .000003004504 (e--°°3n ™ 1)+ 1 .00000099% (e--°°1n ey 1)
4 .000009027047 4 .000000999
1 -00099999098 (e 1) 1000999991652 (e 1)
4 .0030045004503 4 -.000999500167

Setting numbers or resultant numbers of the type a X
107" =0, where |a] < 10 and r > 6, we obtain after
simplification

Y= -0.001In
yZn: 0

The NSDL solutions are written down only to 4 decimal
places for the random points of t, in the interval 0 <t < 1 and
compared with the theoretical solutions in Table II.

TABLE II
COMPARING THE NSDL AND THEORETICAL SOLUTIONS OF EXAMPLE 2, To=0,
H=.001
N
t n= 001 y(t) ya(NSDL)

200010 -0.0010

0.00L 1 40000 0.0000
205000 -0.5000

0.5 300 50000 0.0000
206250 -0.6250

0625625 11000 0.0000
10000 -1.0000
10100055000 0.0000

We find from Table II that the NSDL and the theoretical
solutions coincide in the interval of integration. It
demonstrates that NSDL is also efficient in the integration of
nonstiff systems with linear RHSs.

Example 3

yi = —=0.1y; — 199.9y,
y: = =200y,
y1(0) =2, y,(0)=1

This is a stiff system with zero RHS, which means that the
system is homogeneous. The theoretical solutions are

y, (t) = e~01t 4 =200t
2(0) = €720

It was first obtained from Fatunla [4], but has been solved
accurately in Jibunoh [1]. The original application of the
nonstiff method of Adams-Moulton, Shampine and Gordon

and the application of stiff Backward Differentiation Codes of
Gear did not yield accurate results [4].

NSDL reduces to NSD in homogeneous systems, and only
the first part of (12) survives. Therefore, we merely reproduce
the NSD procedure in Jibunoh [1]. The eigenvalues of the
Jacobian are A, = —0.1, A, = —200.

By (11) we obtain

AN

where A is the constant Jacobian. Thus,
AN 1 (200 1)1
A,) 1999(-0.1 -1)\A
Then,
1 200 O -0.1 -199.9
A =—— +
199.9 |:( 0 2OOJ ( 0 —-200 ﬂ

1 -1 0 1
A= and A, =
0 0 0 1

D'

i.e.

Now, y(0) = (2,
By (19),

!
Y*(t):[AIYOa AzYo:(ekzlj

. 1 1 e-O.lt
ie. y.(t)= 0 1) e

= y(t), the exact theoretical solution.

Example 4
dy
d_tl =4y, +ys3
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dyz _

dt Y3
dy;
23— 4
dt YZ

y1(0) = 5, y,(0) = 0, y;(0) = 4

This is a nonstiff linear system from Krasnov et al. [5]. The
RHS = 0, which implies that the system is homogeneous.

The eigenvalues of the Jacobian are A; =0, A, =2, A3 =
—2. The theoretical solutions are given by

yi(£) =1+ 3e? +e 2t
¥, (1) = e2t — g2t

y3(t) = 2e?t 4 272t

By the spectral decomposition method in (11),

AY (11 1 I
A l=l0 2 —2| | A
A lo 4 4)(a

where A, as usual, is the constant Jacobian of the system.
Eventually, this yields

1 4 -4 -4
=—|0 0
A 4
0 0 0
0 6 3
A2:l 0 2 1
4
0 4 2
| 0 -2 1
=—|0 2 -1
A 4
0 -4 2
Now y(0) = (5, 0, 4)".
So by (19),
ex,l
Y*(t):[A1YO7A2y0a-"A3YO ekzt
ex31
ie.
1 3 1 1
y.)=[0 1 —1]¢e*
0 2 2 )e™

=Y. (t), the exact theoretical solution.

Example 5

dy,

P S P
dy,

at =—y; + 5y,

y1(0) =3, y,(0)=1

This is a nonstiff system with constant RHS, by = ((1)),

adapted from Krasnov et al. [5]. The theoretical solutions are

1
yi(D) = 4ef == (e + 5)

1
y2(0 = et + 2 (e~ 1)

The matrix A = (_21 _54

eigenvalues A; =1, A, =6. We take h = 0.001. Then,
decomposing e we have

A = %(;‘ 411) and 4, = %(_11 _44)

To apply the integration formula (26), we first obtain

) is the constant Jacobian with

5

1) and yo, = yo + A7lby = %(23)

A7'bo = %( 7

Therefore, following (26), we have

e ) 15
Y*(t):[Al}Io*, AzYo*(e&J_g(lj

as the integration formula for the system. i.e.

124 ~1Ye) 1(5 4et—éem—§
Y« (t) == o |~ ~ = 1 1
616 1 e 6\1 et g gt _ 2
6 6
= y(t), the exact theoretical solution.

V. CONCLUSION

The spectral decomposition method developed in this paper
(i.e. the NSDL) is tailored to integrate directly stiff and
nonstiff ODE systems with linear or constant RHSs. The
method is an offshoot of the Jibunoh Spectral decomposition
for the general linear systems developed in [1].

This method for the aforementioned class of systems
obtained solutions at any random points of t by direct
evaluation, and the computations for the implementation of the
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NSDL may be handled manually or by use of a computer. In
the latter case, a computer program needs to be developed by
an interested researcher.

All the solutions obtained for the special ODE systems
coincide with the theoretical solutions. In particular, solutions
of homogeneous systems are exemplary as the numerical
solutions turn out to be exactly equal to the theoretical
(analytical) solutions of the systems, in terms of t. This
recommends the present method as an efficient technique for
homogeneous linear systems.

It must be noted that the exact or nearly exact eigenvalues
of the Jacobians are needed for the implementation of the
NSDL, if we wish to maintain the high accuracy of the
integrations.
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