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Abstract—In this paper, we present a simplified higher-order 

Markov chain model for multiple categorical data sequences also 
called as simplified higher-order multivariate Markov chain model. 
The number of the parameters of the new model is only 

))(( 2smsnO +  which is less than )(( 22mnsO  in the higher-order 
multivariate Markov chain model. Numerical experiments illustrate 
the benefits of our new model. 

 
Keywords—Higher-order multivariate Markov chain model, 

Categorical data sequences, Multivariate Markov chain. 

I. INTRODUCTION 
ARKOV chains are of interest in a wide range of 
applications, for example, telecommunication systems, 

manufacturing systems and inventory systems, see for instance 
[6] and the references therein. In recent years, the prediction of 
categorical data sequences [4] has become more and more 
useful in many real world applications such as sales demand 
predictions [1]-[3], DNA sequencing [5] and credit data 
modeling [8]-[11]. Improving the models for exploring these 
relationships among the given categorical data sequences is an 
important research area in these years. 

Different models have been proposed for multiple 
categorical data sequences predictions. A multivariate Markov 
chain model has been presented in [1]. They constructed a new 
matrix by means of the transition probability matrices among 
different sequences. For effectiveness, an improved 
multivariate Markov chain model has been exhibited to speed 
up the convergent rate of computing the stationary or steady 
state solutions. In the improved model, they incorporated the 
positive and negative association parts [8]. The number of the 
parameters is )(( 22 ssmO + . A more advanced, namely, 
higher-order multivariate Markov chain model has been studied 
in [7]. Moreover, there are some other papers contribute to the 
multivariate Markov chain model, e.g., [5], [13]-[15], [17]. 

However, with the development of science technologies and 
their applications, the data sequences will be longer, the 
prediction results needed to be more precise. It is inevitable that 
the computation from a large categorical data sequence group 
will cause high computational cost. Now, the higher-order 
multivariate Markov chain model performs the best in the 
prediction of multivariate discrete-time Markov chains. Thus, it 
is useful to simplify the higher-order multivariate Markov 
chain model. For the above purpose, we propose a simplified 
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higher-order multivariate Markov chain model in this paper. 
The rest of the paper is organized as follows. In Section II, 

we review the Markov chain model [3], the multivariate 
Markov chain model [1], the higher-order multivariate Markov 
chain model [7] and two lemmas [16], [18]. In Section III, we 
present a simplified higher-order multivariate Markov chain 
model for multiple categorical data sequences. Moreover, some 
properties of the simplified higher-order multivariate Markov 
chain model are also analyzed. Section IV gives estimation 
method for the parameters of the simplified higher-order 
multivariate Markov chain model. Numerical experiments on 
two examples demonstrate the benefits of our new model in 
Section V. Finally, concluding remarks are given in Section VI. 

II. A REVIEW ON THE MARKOV CHAIN MODELS 
In this section, we briefly introduce some Markov chain 

models and several lemmas, e.g., the Markov chain model, the 
multivariate Markov chain model, the higher-order multivariate 
Markov chain model, and the Perron-Frobenius theorem. 

A. The Markov Chain Model 
First, we introduce some definitions of the Markov chain 

from [1], [12]. Consider the state set of the categorical data 
sequence be {1, 2, }.M m=  The discrete-time Markov chain 
with m states satisfies the following relationships: 
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where ,t Mθ ∈  {1,2, }t ∈ . The conditional probabilities 

1 1Prob( | )t t t tx xθ θ+ += =  are called the one-step transition 
probabilities of the Markov chain. If we rewrite the transition 
probabilities as 
 
                     

1 1=Prob( | ),ij t t t tp x xθ θ+ += = , ,i j M∈                  (1) 

 
the Markov chain model can be represented as follows: 
 

1t tX PX+ = , 
where 

1
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P p p p i j M
=
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and 0X  is the initial probability distribution, 

1 2( , , )m T
t t t tX x x x=  is the state probability distribution. 

B. The Multivariate Markov Chain Model 
A multivariate Markov chain model has been proposed in [1] 
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where the number of categorical data sequences is 1s > and it 
has the following form: 
 

     ( ) ( ) ( )
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where 
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Here, ( )

0
jx  is the initial probability distribution of the jth 

sequence. ( )k
rx is the state probability distribution of the kth 

sequence at time r. ( )
1

j
rx +  is the state probability distribution of 

the jth sequence at time 1r + . Here, ( )jkP  is the one-step 
transition probability matrix from the states in the kth sequence 
at time t  to the states in the jth sequence at time 1t + . In matrix 
form, we have 
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where ( )jkP can be obtained directly from the s  categorical 
data sequences and the parameters jkλ  can be got by the linear 

programming, details in [1].  

C.  The Higher-Order Multivariate Markov Chain Model 

Let the number of categorical data sequences be 1s > ,  m  
be the number of states in every sequences. The higher-order 
multivariate Markov chain model [7] can be presented as 
follows: 
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where )(

0
)2(

0
)1(

0 ,, nxxx  are the initial  probability 

distributions , and )(
,
h
kjλ  satisfies 
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Here, )(

1
k

hrx +− is the state probability distribution of the kth 

sequence at time 1+− hr , ),( kj
hP  is the hth-step transition 

probability matrix from the states in the kth sequence at time 
1+−= hrt  to the states in the jth sequence at time 1−= jt , 

)(
1

j
rx +  is the state probability distribution of the jth sequence at 

time 1+r . Moreover, it has the following form: 
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In matrix form, we have 
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Each column sum of the iterative matrix B is not necessary 

equal to one while each the column sum of transition 
probability matrices ),( kj

hP  is equal to one. 
For analyzing the properties of the simplified higher-order 

multivariate Markov chain model that will be presented in next 
section, two Lemmas are given at first. 

Lemma 1. (Perron-Frobenius Theorem [12])  Let m mA R ×∈  
be a non-negative and irreducible matrix. Then; 
(1). A   has a positive real eigenvalue λ  equal to its spectral 

radius, i.e., max ( )kk
Aλ λ=  where ( )k Aλ  denotes the 

k th eigenvalue of A . 
(2). To λ  there is an eigenvector z  of its entries being real 

and positive, such that Az zλ= . 
(3). λ  is a simple eigenvalue of A . 
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Lemma 2. ([15]) Let B  be a iterative matrix of multivariate 
Markov chain model and tX  be a state distribution at time t. If 

B  is irreducible and aperiodic, then there is a unique stationary 
distribution π  satisfying π π= P  and lim .π

→∞
=tt

X  

III. SIMPLIFIED HIGHER-ORDER MULTIVARIATE MARKOV 
CHAIN MODEL 

In this section, for reducing the number of the parameters, we 
propose a simplified higher-order multivariate Markov chain 
model for s categorical sequences and briefly discuss some 
properties of the new model. 

In this new model, the state probability distribution of the jth 
sequence at time 1++ rt  depends on the state probability 
distribution of all the sequences at time

1,,1, +−−= nrrrt . For },,1{, skj ∈∀ , 

},1,{ −∈ nnr  the simplified higher-order multivariate 
Markov chain model is given as follows: 
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where .,,2,1 sj =∀  In matrix form, the simplified  
higher-order multivariate Markov chain model can be 
presented as 
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Each the column sum of transition matrix ),( kj

hP  is equal to 
one. The number of the parameters of the proposed new model 
is only 2)( smsnO + , which is less than )( 22mnsO of the 
higher-order multivariate Markov chain model.  

Next, some properties of the simplified higher-order 
multivariate Markov chain model are discussed. 

Theorem 1: In the simplified higher-order multivariate 
Markov chain model, if 0)(

, ≥h
kjλ  for },,1{, skj ∈∀ , 

},,2,1{ nh ∈ , then the matrix B  has an eigenvalue equal 
to one and the modulus of all its eigenvalues are less than or 
equal to one. 
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From (10), the matrix Λ  is non-negative and its each 

column sum is equal to one. Using the properties of connection, 
Λ is irreducible. According to Lemma 2, there exists a positive 
vector 
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hP is a probability transition matrix, for  
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such that one is an eigenvalue of B . 

Subsequently, we prove the modulus of all the eigenvalues of 
B  are less than or equal to one. Suppose that )(vdiagDv =  
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The conclusions of this theorem have been proved.                 □ 
To keep the irreducible of B , we fill the column of ),( ji

hP  

with 
m

1  when the column sum of B  is zero. If ),( ji
hP  is 

irreducible, then B  is also irreducible. From Lemma 2, there 
exists a unique positive vector X  such that XBX = .         

                                                        

IV. ESTIMATING THE PARAMETERS OF SIMPLIFIED 
HIGHER-ORDER MULTIVARIATE MARKOV CHAIN MODEL  
In this section, we will estimate the parameters of the new 

multivariate Markov chain model. Let's first estimate the 
transition matrices ),( kj

hP . If the data sequences are given and 
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,

hkj
ii kj

F  is frequency from 

the ki  state in the k th sequence at time 1+−= hrt  to the ji  

state in the j th sequence at time 1t r= +  for 1 ,j ki i m∀ ≤ ≤ , 

then the transition frequency matrices ),( kj
hF  of the data 

sequences can be constructed as: 
                          

.

),,(
,

),,(
2,

),,(
1,

),,(
,2

),,(
2,2

),,(
1,2

),,(
,1

),,(
2,1

),,(
1,1

),(

mm
hkj

mm
hkj

m
hkj

m

hkj
m

hkjhkj

hkj
m

hkjhkj

kj
h

fff

fff
fff

F

×
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=  

 
Transition probability matrices ),( kj

hP can be obtained by 
normalizing the frequency transition matrices as follows:  
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Subsequently, the way of estimating the parameters )(

,
h
kjλ  

will be introduced. Consider X  being a joint stationary 
probability distribution and X  can be presented as 
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Certainly, non-equality (20) can be rewritten as: 
 

                             ,BX X ω− ≤                                     (21)             

 
where 0ω >  and is as small as possible.  

One way of estimating )(
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kjλ  is to transform (21) into a 

minimization problem as the following form: 
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Here, we choose the norm as infinite norm, and thus the 

above minimization problem (22) can be presented as: 
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where [ ]i⋅  is the i th entry of the vector. Using the idea of [1], 
the minimization problem (23) becomes a linear programming 
problem as follows: 
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V. NUMERICAL EXPERIMENTS 
In this section, we report on the numerical results with 

different higher-order multivariate Markov chain models for 
two examples obtained with a Matlab 7.0.1 implementation of a 
Windows XP with 2.93GHz 64-bit processor and 2GB 
memory. 

A Simple Example  
There are two categorical data sequences 
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In this example, we aim at constructing a simplified 

2th-order multivariate Markov chain model. Counting the first 
lag transition frequencies, we have 
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With the same process, the second lags transition frequencies 

are given as follows: 
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Counting the inner first lags transition frequencies, it has 
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Normalizing the transition frequency matrices, we obtain the 

transition probability matrices: 
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The initial state probability distributions can be obtained by 

computing the proportion of the occurrence of each state in 
each of the sequence 
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and )(

,
h
kjλ can be calculated by linear programming problem 

which corresponds to the simplified second-order multivariate 
Markov chain model of the two categorical data sequences. 
With the results of )(

,
h
kjλ the simplified 2th-order multivariate 

Markov chain model is presented as follows: 
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B. An Application to Sales Demand Prediction  
In this part, the sales demand sequences are presented to 

show the effectiveness of the simplified higher-order 
multivariate Markov chain model for multivariate Markov 
chains. Since the requirement of the market fluctuates heavily, 
the production planning and the inventory control directly 
affect the estate cost. Thus, studying the interplay between the 
storage space requirement and the overall growing sales 
demand is a pressing issue for the company. Here, our goal is to 
predict the sales demand of the market for minimizing the 
estate cost. Consider the products can be classified into six 
possible states (1, 2, 3, 4, 5, 6), e.g., 1 = no sales volume, 2 = 
vary low sales volume, 3 = low sales volume, 4 = standard sales 
volume, 5 = fast sales volume, 6 = vary fast sales volume. The 
customer’s sales demand of five important products of the 
company for a year has been given in [1]. 

We choose the simplified 8th-order multivariate Markov 
chain model to model five categorical data sequences. By 
computing the proportion of the occurrence of each state in 
each of the sequence, the initial probability distributions of the 
five categorical data sequences are  
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The transition probability matrices ),( kj

hP  can be obtained 
after normalizing the transition frequency matrices. By solving 
the corresponding linear programming problem, )(

,
h
jiλ is 

obtained and the simplified 2nd-order multivariate Markov 
chain model can be presented as follows: 
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Next we use the simplified 8th-order multivariate Markov 

chain model to predict the next state of the kth sequence )(k
tx  at 

time t , which can be taken as the state with the maximum 
probability, i.e.,   
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For evaluating the performance and the effectiveness of 

different multivariate Markov chain models, the prediction 
accuracy r  is proposed in [1] and defined as: 
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where T  is the length of the data sequence and 
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For comparisons, the numerical results of the 8th-order 

multivariate Markov chain are also presented in Table I, where 
we denote “time” is the computational time, “np” is the number 
of the parameters in the models, “H” is a higher-order 
multivariate Markov chain model, “SH” is a simplified 
higher-order multivariate Markov chain model and the 
prediction accuracies of Product A, Product B, Product C, 
Product D, Product E are denoted as “A”, “B”, “C”, “D”, “E” 
respectively. Observing the data in Table I, the prediction 
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accuracies of our new model are nearly the same as the 
higher-order multivariate Markov chain model’s. In addition, it 
is obviously that the computational time and the number of the 

parameters of our new model are much less than those of the 
higher-order multivariate Markov chain model. 

 
TABLE I 

PREDICTION ERRORS OF THE SIMPLIFIED HIGHER-ORDER MULTIVARIATE MARKOV CHAIN MODEL AND HIGHER-ORDER MULTIVARIATE MARKOV CHAIN MODEL 
IN SALES DEMAND PREDICTIONS 

 A B C D E time np 
H 0.4275 0.3978 0.6283 0.3569 0.3569 0.4688 61 
SH 0.4275 0.3978 0.6283 0.3569 0.3569 0.6875 201 

 
Subsequently, another prediction criterion for Markov chain 

models is introduced. Note that “nA” is the number of the 
categorical data in the sequences, ` is a predict probability at 
time t, tX  is a fact value at time t and Ts

ttt XXX ],,[ 1= . If 

tm  is the fact state at t in ith categorical data sequence, 
1
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We denote the 

prediction error in the models as “pe” which can be estimated 
by the equation: 
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In Table II, we denote that the prediction error of the 

simplified higher-order multivariate Markov chain model is 
“ 1pe ”, the prediction error of the higher-order multivariate 

Markov chain model is “ 2pe ”, the number of the parameters of 
the simplified higher-order multivariate Markov chain model is 
““ 1np ””, the number of the parameters of the higher-order 
multivariate Markov chain model is “ 2np ”, the computational 
time of the simplified higher-order multivariate Markov chain 
model is “ 1time ”, the computational time of the higher-order 

multivariate Markov chain model is “ 2time ”, respectively. 
Stop criterion of the linear programming problem can be found 
in Matlab order linprog.   

Table II provides that the performance of the prediction 
errors in simplified higher-order multivariate Markov chain 
model which is comparable with the higher-order multivariate 
Markov chain model. Table II illustrates the benefits of the 
simplified higher-order multivariate Markov chain model in 
terms of the computational time and the number of parameters 
controlling. 

 
TABLE II 

PREDICTION ERRORS OF THE SIMPLIFIED HIGHER-ORDER MULTIVARIATE MARKOV CHAIN MODEL AND HIGHER-ORDER MULTIVARIATE MARKOV CHAIN MODEL 
IN SALES DEMAND PREDICTIONS 

 pe1 np1 time1 pe2 np2 time2 
n=1 372.1810 25 0.0781 372.1810 25 0.0781 
n=2 353.3360 50 0.0925 365.2160 30 0.0781 
n=3 352.5338 75 0.1250 352.5689 35 0.0781 
n=4 353.3630 100 0.1406 353.4019 40 0.0925 
n=5 357.6212 125 0.1763 353.8105 45 0.0925 
n=6 356.8549 150 0.2031 353.8092 50 0.1094 
n=6 357.4291 175 0.2500 353.6237 55 0.1094 
n=6 354.7548 200 0.2969 355.7788 60 0.1094 

 
VI. CONCLUSION 

In real application, it is inevitable that the computation from 
a large categorical data sequence group which will cause high 
computational cost. For saving computational cost, we propose 
a simplified higher-order multivariate Markov chain model in 
this paper. The number of the parameters of the new model is 
only ))(( 2smsnO +  which is less than ))(( 22mnsO  of the 
higher-order multivariate Markov chain model. The results of 
the prediction accuracy and the prediction error in these two 
model are comparable or nearly the same. Moreover, numerical 
experiments illustrate the benefits of our new model in time 
consuming, the number of the parameters controlling and the 
storage requirements. Certainly, the simplified higher-order 
multivariate Markov chain model can also be applied in credit 
risk and other research areas. 
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