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 
Abstract—The exact theoretical expression describing the 

probability distribution of nonlinear sea-surface elevations derived 
from the second-order narrowband model has a cumbersome form 
that requires numerical computations, not well-disposed to theoretical 
or practical applications. Here, the same narrowband model is re-
examined to develop a simpler closed-form approximation suitable 
for theoretical and practical applications. The salient features of the 
approximate form are explored, and its relative validity is verified 
with comparisons to other readily available approximations, and 
oceanic data.  
 

Keywords—Ocean waves, probability distributions, second-order 
nonlinearities, skewness coefficient, wave steepness. 

I. INTRODUCTION 

HE second-order narrowband model describing long-
crested surface waves observed in time t at a fixed point in 

deep water is given by [1] 
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1  is the linear Gaussian surface elevation,   amplitude or 

envelope of 1 , and 2  represents second-order nonlinear 

corrections, all scaled with the root-mean-square (rms) σof 1 . 

It is assumed that the spectral density of 1 is unimodal and 

narrowband over frequencies and directions. The rms of   is 

also σ, correct to ).(O The dimensionless parameter 1  

and defined as mk  , where mk = spectral-mean 

wavenumber, corresponds to the rms gradient of 1 . In the 

context of narrowband approximation, it serves as an integral 
measure wave steepness. Further, )(ttm   = total wave 

phase, m = spectral-mean frequency such that gk mm /2 , g 

= gravitational acceleration, and  wave phase. Finally,   is 

Rayleigh distributed while  and therefore are uniformly 

random over an interval of 2 . 
Representation (1) has been used successfully to describe 

the distributions of nonlinear surface elevations and various 
other surface features, including wave crest and trough 
amplitudes, wave heights, envelopes and phases in nonlinear 
seas successfully in [4]-[13] and a variety other practical and 
theoretical studies, with extension and generalizations to large 
waves and shallower water depths in [14], [15]. 
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 Despite the apparent simplicity of , its probability density 

function p  cannot be obtained in an explicit closed form [1]. 

Therefore, its applications rely on either rather cumbersome 
numerical computations or require further approximations. 
One particular approximation that has been devised in [2] and 
often used in practical and theoretical studies has the form 
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where 121  zG   and 8/3z . A second and more 

conventional alternative that follows from expanding p  in a 

Gram-Charlier [3] series is given, correct to )(O , by    
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where || z and  3
3  is the skewness coefficient. For 

(1),  33 to )( 2O  so that .3/3  In oceanic wind seas, 

including those generated by extreme storms 3.00 3  

typically. The preceding expression then suggests that 
1.00    as a typical range.  

Since the first-order linear 1  is zero-mean Gaussian, its 

marginal probability density p and cumulative distribution P 

are given, respectively, by 
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Similarly, the conjugate  sin1̂   is also zero-mean 

Gaussian, with the marginal density and distribution 
identically described by (5) and (6), respectively. Finally, 
because 1̂  and 1  are uncorrelated, their joint probability 

density reduces to a product of their marginal densities.  
It is noted that while both (2) and (3) are simple enough, (2) 

has a somewhat restricted domain. In contrast, the domain 
over which (3) is non-negative is restricted to

),(     where 3/12/12 }/])1(1[{   . 

Evidently, the latter expression can also be expressed in 
terms of 3 since .3/3   For instance, when 3.03  , (3) 

is non-negative provided that 08.3  whereas (2) is valid 
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for 75.38/3   , a somewhat larger domain than that 

of (3). In addition, both (2) and (3) are not entirely zero-mean 
or normalized to unity over their restricted domains. 

This study represents an attempt to develop a new simpler 
approximation for the density and cumulative distribution of 
(1), and explores its salient features relative to (2) and (3). 
Eventually, the new approximation is compared with (2), (3) 
and oceanic measurements to investigate its relative validity. 

II. APPROXIMATE PROBABILITY STRUCTURE 

For simplicity in notation, (1) is rewritten as 
 

),(
2

1
),( 22 yxxyxz              (6) 

 

where  cosx and  siny . It is recalled that the joint 

probability density of x and y is a product of two marginal 
standard Gaussian densities, each of the form (4). 
Consequently, the conditional density of , given y , follows 

from a simple change of variables as 
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The approximation 
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can now be used to rewrite (9) as 
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Finally, the substitutions of (10) and (11) in (7) leads to an 

expression independent of y. As a result, (7) reduces to the 
approximation sought in the form 
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The corresponding cumulative distribution is given by 
 

)./1()/()(   PGPzP         (13) 

 

Both expressions are defined for 2/1z , a wider 
domain than either (2) or (3) in particular. The normalization 
of (12) and (13) requires that 
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For 1/1  , the asymptotic expansion of )/1( P  gives 

[16] 
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Therefore,  
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The variation of )/3(/1)/1(/1 3 PP  with  33  is 

shown in Fig. 1. It is seen that that β = 1 for ,6.00 3    a 

much wider range than the typical range 3.00 3    

observed under oceanic conditions. For instance, if 3.03  , 

then β = 1 + O(10-16 ). For 6.03  , β = 1 + O(10-7). Therefore, 

there is essentially no need for introducing any normalization 
in (12) or (13) for oceanic applications. 

 

 

Fig. 1 Variation of normalization parameter β with λ3 = 3 ε 
 
The mean of  implied by (13) is given by 
 

.2/)(2/
22/1    eO                   (17)  

 
The approximate density (13) can now be centralized to 

zero mean by replacing z  with 2/z to obtain  
 

,2)1/()2/exp[)( 22  HHzp              (18) 

 

where  2/)1( 2z , and  
 

.1)2/(21   zH             (19) 

 
The corresponding cumulative distribution is obtained by 
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replacing G in (14) with H as 
 

)./(~)/1()/()(  HPPHPzP                (20) 

 
The mean-square of  follows after some algebra as 
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So, the corresponding variance and rms are given by, 
respectively,  
 

),(12/1)var( 22  O                  (22) 

 
and 
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Finally, the skewness coefficient associated with the final 
form of the approximate density (19) is given by 
 

,)/(3 3
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as it is to be expected. 

III. COMPARISONS 

The comparisons between the final form of present 
approximation (18) with (2), (3) and (4) are shown in Fig. 2, 
where 3.03  . Numerical comparisons indicate that the 

present approximation is by and large the same as the exact 
density such that the differences between the two cannot be 
differentiated in this figure. It is evident that the present 
approximation (18) is also the same as (2) except over large 
negative values at and beyond 75.38/3  z , where (2) 

has a singularity. The differences between (2) and/or (18) and 
Gram-Charlier series (3) are more noticeable, particularly over 
the range of relatively large negative as well as positive 
values. Further, (3) becomes negative for 08.3z . In 
contrast with (2) and/or (3), (18) is well-behaved and valid up 
to 05.5z , where it also has a singularity. In oceanic 

applications where 3.00 3   , it has already been shown 

above that the domain  z 2/)1( 2  of (18) contains 

practically the whole probability mass over it. 
The comparisons with oceanic data will consider two sets of 

wave measurements. These datasets represent oceanic waves 
measured during severe storms, one set comprising surface 
measurements collected by a wave staff from an offshore 
platform in the Gulf of Mexico during the passage of 
hurricane Camille in August, 1969, and the other 
measurements gathered by a Marex radar from the Tern 
platform in the northern North Sea in January, 1993. These 
data will be denoted as Camille and Tern93, respectively.  

Both Tern93 and Camille are characterized with nonlinear 
distortions and rather large waves with heights nearly as large 

as 25 m in Tern93 and 27 m in Camille. Tern93 is suggestive 
of a relatively steady sea state whereas Camille is 
conspicuously not so, judging from the temporal variation of σ 
from about 1.85 m almost linearly to about 3.5 m as the 
hurricane approached the measurement site. 

There is no rigorous analytical proposition of practical value 
for analyzing the statistical structure of non-stationary random 
functions based on a single realization. To compensate for the 
general temporal variability of σ, surface displacements from 
the mean-zero level are estimated in both cases from 30-
minute consecutive segments and scaled with the 
corresponding segmental estimates of σ. The parameters in 
Table I represent overall averages derived from the segmental 
estimates. The variations of segmental estimates of σ and λ3 
are displayed in Fig. 3. 

The comparisons of the density estimates observed in 
Tern93 and Camille to the Gaussian form of (4) and the 
present approximation (18) are shown in Figs. 4 and 5, 
respectively. It appears that the present approximation does 
reasonably well in describing the observed data. 

 

 

Fig. 2 Comparisons of probability densities predicted from (2), (3), 
present approximation (19) and Gaussian density (5) for λ3 = 0.30  

 
TABLE I 

PARTICULARS OF OCEANIC MEASUREMENTS 

description       Tern93 Camille 

duration (h) 9.00 6.30 

Sampling rate (Hz) 5.12 10.0 

σavg(m) 3.02 2.61 

λ3 avg 0.17 0.15 

ε~λ3 avg / 3 0.06 0.05 

 
IV. CONCLUSIONS 

The second-order narrowband model describing long-
crested deep-water waves was used to develop a simple and 
yet fairly accurate approximation to the probability structure 
of sea-surface elevations.  

Comparisons with the two sets of measurements 
representative of nonlinear storm seas indicate that the 
approximation developed works fairly well in representing the 
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observed data. The comparisons of the approximation with 
two presently popular approximations also suggest that it has 
advantages over these in terms of its relative simplicity and, in 
particular, its validity over a wider range of surface elevations. 

 

 

Fig. 3 Segmental variations of (a) σ and (b) λ3 in Tern93 and Camille 
 

 

Fig. 4 Tern93: the density estimates observed (points) compared to 
Gaussian density (5) and present approximation (19) 

 

 

Fig. 5 Same as Fig 4 except for Camille 
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