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A Simple Device for in-situ Direct Shear and
Sinkage Tests

A. Jerves, H. Ling, J. Gabaldon, M. Usoltceva, C. Cousté, A. Agarwal, R. Hurley, J. Andrade

Abstract—This work introduces a simple device designed to
perform in-situ direct shear and sinkage tests on granular materials
as sand, clays, or regolith. It consists of a box nested within a larger
box. Both have open bottoms, allowing them to be lowered into the
material. Afterwards, two rotating plates on opposite sides of the
outer box will rotate outwards in order to clear regolith on either
side, providing room for the inner box to move relative to the plates
and perform a shear test without the resistance of the surrounding
soil. From this test, Coulomb parameters, including cohesion and
internal friction angle, as well as, Bekker parameters can be inferred.
This device has been designed for a laboratory setting, but with few
modifications, could be put on the underside of a rover for use in
a remote location. The goal behind this work is to ultimately create
a compact, but accurate measuring tool to put onto a rover or any
kind of exploratory vehicle to test for regolith properties of celestial
bodies.
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I. INTRODUCTION

CURRENTLY, the standard method for testing shear
strength from a remote location, such as, on a rover,

as described in [1], is to use a component of the wheel
itself. The advantage here is that it takes up no space on
the rover’s body. However, testing with the wheel generates
noisy data, and causes a loss of cohesion within the soil.
Therefore, great efforts are required in an attempt to recover an
accurate data and infer cohesion. The advantage of the device
herein described is its compact nature and low requirement
of energy. Although, it is slightly less space efficient, the
nature of the data that can be obtained and inferred from
the mentioned device is crucial for unraveling the geological
history, overcoming exploratory difficulties, landing vehicles,
and developing any kind of infrastructure on celestial bodies.

II. EXPERIMENTAL SETUP

The direct shear test [6] yields the Mohr-Coulomb failure
criterion [3], [4]. Thus, by obtaining a maximum shear stress,
τ , (at failure) for each value of the applied normal stress,
σ, a linear fit can be obtained and friction angle as well as
cohesion can be inferred, as shown in Fig. 1, and expressed
mathematically by (1).

τ = σ tanφ+ c (1)

In addition to the direct shear test, a sinkage test will also
be performed to infer the so-called Bekker parameters [2],
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Fig. 1. Mohr-Coulomb failure criterion

[5], k and n, that satisfy the equation σ = kzn, and where k
also satisfies the Bernstein-Goriatchkin model, k = kc/b+kφ,
depicted in Fig. 2
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Fig. 2. Bernstein-Goriatchkin model

Thus, combining the Bekker expression and the Bernstein-
Goriatchkin model, we arrive to the following expression

σ =

(
kc
b

+ kφ

)
zn

where b is the plate width, kc is the cohesive modulus, kφ
is the frictional modulus, k = kc/b + kφ is the soil stiffness
constant for sinkage, and n is the exponent of soil deformation.
In our test, we will be measuring the sinkage, z. However, we
will not have an opportunity to measure k and n for different
values of b, and that is why we will not obtain kc and kφ [5]
(See Appendix A).

The two components of the direct shear test that must be
applied are normal stress, σ, and shear stress, τ . In a traditional
laboratory setting, a sample of soil can be taken from a site
and experimented on. However, in cases where this is not

device, regolith.
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possible, such as on a celestial body, a lack of resources
would demand an in-situ method. The standard method for the
direct shear test on a rover is described in [1]. Ridges on the
rover wheels are used to create a circular failure surface rather
than the traditionally linear one. While this is a space-efficient
design, only the friction angle is obtained experimentally.
Cohesion is obtained analytically, because of how the soil is
being disturbed as the wheel sinks into position. In the case
of the herein propossed device (shown in Fig. 3), cohesion
and internal friction angle can both be obtained by in-situ
experimentation.

Fig. 3. Full mechanism from isometric view

The dimensions of the entire device, as seen in Fig. 3,
including the external frame are 40.08 cm × 40.08 cm ×
55.08 cm . However, the area being sheared is only 4.6 cm ×
5.2 cm. This is due to the fact that the mentioned frame has
been added to the design only for testing purposes, where it
is used to provide normal stress to the prototype. Hence, the
frame is not part of the prototype, and, therefore, it will not
be present if the proposed device is added to a rover, or any
other exploratory vehicle.

The frame consists of 4 vertical 80/20 aluminum shafts
connected to each other with 8 additional beams along the
top and bottom for stability, and used to guide vertically the
loading plate that, at the same time, is connected to the device
itself. Thus, in order to provide normal stress to the prototype,
weights will be applied onto the loading plate.

On the other hand, and for testing purposes as well, the shear
stress is applied through a system of rails between the loading
plate and the shearing box. As the actuator pushes against the
mounting bar, the shearing box will also move (see, Fig. 4).
Furthermore, the shear force is measured by a load cell located
at the end of the actuator (see, Fig. 5), which experiences a
force when pushed against the mounting bar connecting two
sliders being, at the same time, guided by a system of rails.
Finally, the mentioned sliders are connected to a plate with
a shaft that goes directly into the shearing device providing
horizontal motion to it.

Moreover, in order to rotate the plates, a mechanism was
developed that will cause the plates to open once the box
has been submerged in regolith. A component will hang over
the entire shearing box with 4 guiding rods, constraining it to

Fig. 4. A: Driving mechanism from isometric view (with actuator contracted)
B: Driving mechanism from isometric view (with actuator expanded)

Fig. 5. Load cell mounted onto the actuator

move vertically (see, Fig. 6). The surface of regolith where the
box is being submerged will push the component upwards as
the entire mechanism is lowered, until it presses up against,
and eventually unlocks a hinge. The two plates are secured
together in an unstable equilibrium by this locked hinge, with
2 springs connecting the two plates at the top (see, Fig. 7).
Once the hinge begins to open, the force of the springs will
continue to pull it with enough force to clear the nearby
regolith. Afterwards, the shearing mechanism will be free to
move relative to the rotating plates (see, Appendix B - C).

Fig. 6. A: Opening mechanism from isometric view (closed) B: Opening
mechanism from isometric view (open)

Finally, we allow the shearing unit to move independently
with respect to the clearing plates by a trench in the horizontal
plate to which the rotating flaps are connected (see, Fig. 8).
Once the clearing plates open, the shearing unit is free to move
while the plates remain stationary. Once the entire mechanism
is lifted out of the regolith and the plates are closed, the
box will return to a default position because of the slots
in the clearing plates. This design allows the mechanism to
consistently perform the test many times.
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Fig. 7. A: Shearing mechanism from side view (closed) B: Shearing
mechanism from side view (open)

Fig. 8. Trench from below

A. Shear Test Procedure

Unfortunately, after the device was constructed, we had to
implement a modified testing procedure. This changes were
due to the low quality of materials used for the automated
clearing unit and the limited budged/time provided for the
project. Then, we decided to, at least, prove the proposed
concept: “in-situ shear and sinkage tests with a small hollow
shearing box”. Hence, the regolith was instead cleared man-
ually before shearing. The rest of the procedure and related
equipment remained the same, and is described below step by
step.

1) Compact regolith with plate under box 35 times.
2) Lower manually the loading plate while controlling

horizontality with a level and using a counterweight
opposite, in position, to the actuator until the box has
sunk into the regolith (This, due to the lack of stability
in the vertical movement, and inherent to the external
frame and corresponding vertical sliders).

3) Add 15 weights (3.5 lb., each) onto the loading plate.
4) Clear carefully by hand the soil in front of the box.
5) Remove all the weights.
6) Add weights (3.5 lb., each) onto the loading plate until

desired weight is achieved.
7) Run the actuator for the full length of the rails, stopping

the actuator before it reaches the end.
8) Record min/max data from the oscilloscope.
9) Retract actuator.

10) Lift box out of regolith.

III. TESTS AND RESULTS

Recalling, and as described in the previous sections of this
document, we designed the proposed device to perform two
types of tests: in-situ simple shear test, and in-situ sinkage
test. As usual, the proposed model had to be built, and then
tested in order to obtain and infer data that can be compared
to the data from other similar well-proven procedures and
equipment and for a same kind of materials. Hence, for the
tests, we used Mojave Mars Simulant with particles less than
2mm in size (MMS<2mm), which was provided by JPL
(NASA’s Jet Propulsion Laboratory at the California Institute
of Technology).

The results of some of the test are explained and shown in
the subsections below.

A. Direct Shear Test

As shown in Fig. 9, the internal friction angle inferred
from our experimental results is 50.2◦, being similar to the
corresponding 46.4◦ provided by JPL for MMS < 2mm.
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Fig. 9. Results of the in-situ simple shear test (blue circles) and corresponding
best linear fit (black line)

An important aspect of our data is that the resulting cohesion
is -48.82 kPa, compared to the cohesion of 3.53 kPa provided
by JPL for the same simulant. The resulting error is most
likely due to the fact that the normal stress is not what we
believe it to be. This could be due to the fact that the frame
that stabilizes the device is taking some of the load, thereby
reducing the effective normal stress. However, because these
experiments produce an accurate friction angle, the device
works in principle, and cohesion would be obtainable with a
more reliable method of applying or measuring normal stress
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as, for instance, locating a load cell inside (on the upper wall)
of the hollow shear box, or improving stability on the vertical
motion of the device provided by the external frame for the
prototype testing.

B. Force vs. Time and Force vs. Displacement

Fig. 10 A and B show how the shear force first increases
in magnitude, as time evolves, before the shearing box moves.
Then, once the mentioned box starts to move and shear the
soil below it, note that the shear force first decreases slowly,
and then stays relatively constant for the remainder of the test.
This is in accordance to the kind of behavior expected from
a granular (frictional/plastic) material undergoing a classical
direct shear test.

A B

Fig. 10. A: Force vs. time graph. B: Force vs. displacement

C. Bekker Parameters

The device can also be used, as mentioned before, to
perform sinkage tests in order to obtain the so-called Bekker
parameters [2], [5], which are commonly used for path-
planning and/or to select adequate landing sites. The results
of the sinkage tests and their least squares fit to the Bekker
equation, σ = kzn, are shown by Fig. 11.
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Fig. 11. Results of the sinkage test (blue circles) and corresponding fit to
the Bekker equation σ = kzn

Hence, our test results give us a soil stiffness constant for
sinkage, k = 100055.495 kN/mn+2, as well as, an exponent
of soil deformation, n=1.205. Unfortunately, so far, we have

not been able to obtain official values of these parameters from
JPL or any other University, laboratory, or publication, so we
cannot compare our data or calibrate our experimental setup.
However, this is used as a proof of concept, to show that, in
fact, an in-situ sinkage test can be performed using the device
herein proposed.

IV. CONCLUSIONS

With the objective of inferring regolith properties of celestial
bodies, a compact and efficient device must be designed
in order to accommodate for the limited space and energy
disposability in a rover or exploratory vehicle. The device
has been designed with the intention of performing in-situ
tests on regolith or soil. While such a mechanism exists,
it sacrifices accuracy for practicality. This device seeks to
minimize the amount of space occupied, while still providing
a higher degree of reliability in results.

The most significant problems encountered in this study
were of constructive type, and due to the poor quality of the
materials and procedures used to build the device. However,
an improved version was designed and is presented in the
videos on the website of the Keck Institute for Space Studies
dedicated to this project: http://kiss.caltech.edu/study/regolith/.
This improved version includes load cells placed inside of the
shearing box. Additionally, a new external frame is designed
for improved linear vertical motion and strain control rather
than force control.

Finally, the “in-situ simple shear test” concept and device
was proven, obtaining a friction angle value similar to the
provided by JPL for the regolith simulant, MMS<2mm, used
for the tests of the proposed prototype. Hence, the device
appears to work, and with the proposed improvements more
consistent and automated measurements will be possible.

APPENDIX A
BEKKER PARAMETERS APPROXIMATION

A. Least Squares

Let y = f(x, b) be a given function. On the other hand, as
a result of m observations we have a series of yμ, xμ values
(μ=1, ... , m). Hence, we can compute:

ŷμ = f(xμ, b)

Then, a vector of residuals is defined by the difference:

eμ = yμ − ŷμ = yμ − f(xμ, b)

which, in its turn, is a function of the parameters b. Thus,
the residual sum of squares (RSS) can be minimized to obtain
an approximation, b̂, of the mentioned parameters.

b̂ = arg min RSS(b)

which can also be expressed as:

M(b) = RSS(b) = eTμ eμ =

m∑
μ=1

(yμ − f(xμ, b))
2
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In the case of inferring Bekker parameters, σ = znk, we
have

M(k, n) =

m∑
μ=1

(σμ − znμk)
2

Minimizing this last expression with respect to k and n

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m∑
μ=1

(σμ − znμk)z
n
μ = 0

m∑
μ=1

(σμ − znμk)z
n
μ ln (zμ) = 0

so, we have a system of two equations with two unknowns.
Hence, we have

k =

m∑
μ=1

σμz
n
μ

m∑
μ=1

z2nμ

and,

f(n) =
m∑

μ=1
z2nμ

m∑
μ=1

σμz
n
μ ln (zμ)−

m∑
μ=1

σμz
n
μ

m∑
μ=1

z2nμ ln (zμ) = 0

with corresponding first derivative given by

f ′(n) =
m∑

μ=1
z2nμ ln (zμ)

m∑
μ=1

σμz
n
μ ln (zμ)+

m∑
μ=1

z2nμ
m∑

μ=1
σμz

n
μ ln2(zμ)−

2
m∑

μ=1
σμz

n
μ

m∑
μ=1

z2nμ ln2(zμ)

Finally, since f(n) is a non-liner equation with no analytical
solution, we use the Newton-Raphson method to find its roots,
as described in the following subsection.

B. The Newton-Raphson Method

The Newton-Raphson is a method for finding successively
better approximations to the roots, f(n) = 0, of a real-valued
function f . A first educated guess, n0, for a root of f , starts
the method. Then, the next approximation, n1, is given by

n1 = n0 − f(n0)

f ′(n0)

The process is iteratively repeated as:

ni+1 = ni − f(ni)

f ′(ni)

until an “accurate enough” value is reached. This method
has quadratic convergence, as long as, the first approximation
is chosen correctly enough. Otherwise, the method may fail
to converge.

APPENDIX B
DISPLACEMENT OF REGOLITH BY ROTATING PANELS

A. Calculation of the Force Required to Displace Regolith

External plates will first rotate to clear regolith on either side
of the proposed mechanism in order to allow the shearing unit
to move as shown in Fig. 7 and Fig. 12. The total amount of
force required is 750.137 N or 168.638 lb. These values were
calculated with the following properties:

ρ = 2000 kg/m3, patm = 101325 Pa, g = 9.81 m/s2,

w = 0.0635 m, h = 0.1153 m

Fig. 12. Calculation of the force exerted by the regolith on the clearing
plates

Also, from Fig. 12 we know that y′ = l cot(θ), and h1 =
h cos(θ). Hence, a general expression for the force is derived

F =
1

2
hw cos(θ) (ρgh cos(θ) + 2patm)

APPENDIX C
CALCULATION OF MOMENT DUE TO REGOLITH

If we want to clear the regolith by rotating the clearing
plates with respect to the top plate, the moment that the
regolith exerts on them must be overcome. Based on our data,
the length of the moment arm is 5.7862 cm.

A. Calculating the Center of Gravity of the Displaced Regolith

Finally, we compute the point at which the total force
exerted by the regolith on the clearing plates is applied on
them, based on the corresponding pressure prism as depicted
by Fig. 13.

The point at which the total force is being applied can be
computed from the following expression

ȳTAT = ȳrAr + ȳtAt

where, AT , Ar, and At are the areas of the total
trapezoid (pressure prism), as well as, the rectangle and
triangle, respectively. In the same way yT , yr, and yt are
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Fig. 13. Pressure prism produced by the regolith acting on the clearing walls
(worst case scenario)

the centers of masses of the corresponding geometric figures.
Hence, the trapezoids area is

AT =
(ρgh+ 2patm)h

2

In the same way,

ȳTAT =
h

2
hpatm +

h

3

1

2
ρghh

=
h2

6
(3patm + ρgh)

Hence,

ȳT =
h

3

3patm + ρgh

2patm + ρgh

But we want the arm y′T = h− ȳT , so

y′T = h

(
1− 1

3

3ρatm + ρgh

2ρatm + ρgh

)
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