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Abstract—This paper presents a simple three phase power flow 

method for solution of three-phase unbalanced radial distribution 
system (RDN) with voltage dependent loads. It solves a simple 
algebraic recursive expression of voltage magnitude, and all the data 
are stored in vector form. The algorithm uses basic principles of 
circuit theory and can be easily understood. Mutual coupling between 
the phases has been included in the mathematical model. The 
proposed algorithm has been tested with several unbalanced radial 
distribution networks and the results are presented in the article. 8-
bus and IEEE 13 bus unbalanced radial distribution system results 
are in agreements with the literature and show that the proposed 
model is valid and reliable. 

 
Keywords—radial distribution networks, load flow, circuit 

model, three-phase four-wire, unbalance. 

I. INTRODUCTION 
OAD flow technique is very important tool for analysis of 
power systems and used in operational as well as planning 
stages. Certain applications, particularly in distribution 

automation and optimization require repeated load flow 
solutions. As the power distribution networks become more 
and more complex, there is a higher demand for efficient and 
reliable system operation. Consequently, the most important 
system analysis tool, load flow studies, must have the 
capability to handle various system configurations with 
adequate accuracy and speed. In many cases, it is observed 
that the radial distribution systems are unbalanced because of 
single-phase, two-phase and three-phase loads. Thus, load 
flow solution for unbalanced case and, hence special treatment 
is required for solving such networks. 

Due to the high R/X ratios and unbalanced operation in 
distribution systems, the Newton-Raphson and ordinary Fast 
Decoupled Load Flow method may provide inaccurate results 
and may not be converged. Therefore, conventional load flow 
methods cannot be directly applied to distribution systems. In 
many cases, the radial distribution systems include 
untransposed lines which are unbalanced because of single 
phase, two phase and three phase loads. Thus, load flow 
analysis of balanced radial distribution systems [1-3] will be 
inefficient to solve the unbalanced cases and the distribution 
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systems need to be analyzed on a three phase basis instead of 
single phase basis. 

There have been a lot of interests in the area of three phase 
distribution load flows. A fast decoupled power flow method 
has been proposed in [4]. This method orders the laterals 
instead of buses into layers, thus reducing the problem size to 
the number of laterals. Using of lateral variables instead of 
bus variables makes this method more efficient for a given 
system topology, but it may add some difficulties if the 
network topology is changed regularly, which is common in 
distribution systems because of switching operations. In [5], a 
method for solving unbalanced radial distribution systems 
based on the Newton-Raphson method has been proposed. 
Thukaram et al. [6] have proposed a method for solving three-
phase radial distribution networks. This method uses the 
forward and backward propagation to calculate branch 
currents and bus voltages. A new three-phase decoupled 
power flow method has been proposed in [7]. This decoupled 
power flow method method uses traditional Newton-Raphson 
algorithm in a rectangular coordinate system.  

In recent years the three-phase current injection method 
(TCIM) has been proposed [8]. TCIM is based on the current 
injection equations written in rectangular coordinates and is a 
full Newton method. As such, it presents quadratic 
convergence properties and convergence is obtained for all 
but some extremely ill-conditioned cases. Further TCIM 
developments led to the representation of control devices [9], 
[10]. Miu et al., [11] have also proposed method for solving 
three-phase radial distribution networks.  

A fast decoupled G-matrix method for power flow, based 
on equivalent current injections, has been proposed in [12] 
.This method uses a constant Jacobian matrix which needs to 
be inverted only once. However, the Jacobian matrix is 
formed by omitting the reactance of the distribution lines with 
the assumption that R>>X; and fails if X>R. In [14], a method 
has been suggested for three phase power flow analysis in 
distribution networks by combining the implicit Z-bus method 
[13] and the Gauss-Seidel method. This method uses 
fractional factorization of Y-bus matrix. Thus, large 
computational time is necessary for this method. The Network 
Topology method uses two matrices, viz. bus injection to 
branch current (BIBC) and branch-current to bus-voltage 
(BCBV) matrices, to find out the solution [15]. The Ladder 
Network theory [16], [17] based on approaches trace the 
network to and fro from its load end to source end. However, 
methods proposed by researchers reviewed above are very 
cumbersome and large computation time is required. 
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In this article, a simple algorithm is developed which is 
based on basic systems analysis method and circuit theory. 
The purpose of this paper is to develop a new computation 
model for unbalanced radial distribution network, which 
requires lesser computer memory and is computationally fast. 
The proposed method involves only recursive algebraic 
equations to be solved to get the following information: 

• Status of the feeder line, and overloading of the 
conductor and feeder line currents. 

• Whether the system can maintain adequate voltage 
level for the remote loads.  

• The line losses in each segment. 
• It can also suggest the necessity of re-routing or 

network reconfiguration for the existing distribution 
network. 

The algorithm has been developed considering that all loads 
draw constant power. However, the algorithm can easily 
accommodate composite load modeling, if the composition of 
load is known. The algorithm has good convergence property 
for practical unbalanced radial distribution networks. 

II. SYSTEM MODELING 
For the purposes of power flow studies, we model a radial 

distribution system as a network of buses connected by 
distribution lines, switches, or transformers to a voltage 
specified source bus. Each bus may also have a corresponding 
load, shunt capacitor, and or cogenerator connected to it. The 
model can be represented by a radial interconnection of copies 
of the basic building block shown in Figure 2. The dotted 
lines from the cogenerator, shunt capacitor, and load to 
ground are to indicate that these elements may be connected in 
an ungrounded delta-configuration. Since a given branch may 
be single-phase, two phase, or three-phase, each of the labeled 
quantities is respectively a scalar, 2 x 1, or 3 x 1 complex 
vector. For the simplicity of presentation we will occasionally 
assume everything is three-phase, although both single and 
two phase laterals are handled by our program. 

A. Distribution system line Model 

 
Fig. 1 Model of the three-phase four-wire distribution line 

 
For instance a four-wire grounded wye overhead 

distribution line shown in fig. 1 results in a 4×4 impedance 
matrix. The corresponding equations are   
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Also representable in matrix form as  
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If the neutral is grounded, the voltage n
pV and n

qV can be 
considered to be equal. In case, from the lst row of eqn. (2), it 
is possible to obtain 

abc
pq

Tn
pq Iz

1−
−= nn

pq
n
pq zI            (3) 

and substituting eqn.(3) into eqn. (2), the final form 
corresponding to the Kron’s reduction becomes 

   abc
pq
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pq

abc
q

abc
p IZeVV +=           (4) 
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abc
pqI  is the current vector through line between bus p and q, 

can be equal to, the sum of the load currents of all the buses 
beyond line between bus p and q plus the sum of the charging 
currents of all the buses beyond line between bus p and q, of 
each phase. 

Therefore the bus q voltage can be computed when we 
know the bus p voltage, mathematically, by rewriting eqn. (4) 
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B. Load Model 
The loads generally available in the three phase unbalanced 

distribution systems are spot and distributed loads. All the 
loads are assumed to draw complex power 
( )qqq jQLPLSL += . It is further assumed that all three-phase 
loads are star and delta connected and all double- and single-
phase loads are connected between line and neutral and line to 
line respectively. 

Figs. 2 and 3 show the three phase unbalanced spot load 
model of star and delta connected three-phase loads at bus q, 

a
qSL , b

qSL and c
qSL can be of different values or even zeroes. 

In fact, two-phase and single-phase loads are modeled by 
setting the values of the complex power of the non-existing 
phases to zero. 
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   Fig. 2 Star Load Model          Fig. 3 Delta Load Model 
 

In the case of three phase loads connected in start or single 
phase loads connected line to neutral, the load current 
injections at the qth bus can be given by: 

( )
( )
( )

( )

( )

( )

( )

( )

( )
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

n

c

c
qc

q
c
q

n

b

b
qb

q
b
q

n

a

a
qa

q
a
q

n

c

c
qc

q

n

b

b
qb

q

n

a

a
qa

q

c
q

c
q

b
q

b
q

a
q

a
q

c
q

b
q

a
q

V

V
jQLPL

V

V
jQLPL

V

V
jQLPL

V

V
SL

V

V
SL

V

V
SL

jQLPL

jQLPL

jQLPL

SL

SL

SL

0
00

0
00

0
00

0
0

0
0

0
0

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗

∗

∗

∗

∗

∗

c
q

c
q

c
q

b
q

b
q

b
q

a
q

a
q

a
q

c
q

c
q

b
q

b
q

a
q

a
q

c
q

b
q

a
q

V
jQLPL

V
jQLPL

V
jQLPL

V
SL

V
SL

V
SL

Il

Il

Il          (7) 

The current injections at the qth bus for three phase loads 
connected in delta or single phase loads connected line to line 
can be expressed by: 
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Eqns. (7) and (8) represents a generalized model for star and 
delta load models respectively. Where  n is defined as follows: 

n=0, constant power  
n=1, constant current 
n=2, constant impedance 

C. Line Shunt charge model 

 
Fig. 4 Shunt capacitance of line sections 
 

The previous line section model can be improved by the 
inclusion of line charging representation. The shunt 
capacitances phase to phase and phase to ground, depicted in 
Fig. 4, can be taken into account through additional current 
injections. 
 These current injections for representing line charging, 
which should be added to the respective compensation current 
injections at buses p and q, are given by 
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D. Line Shunt charge model 
Fig. 5 shows phase a of a three-phase system where lines 

between buses p and q feed the bus q and all the other lines 
connecting bus q draw current from line  between bus p and q.  

 
Fig. 5 Single phase line section with load connected at bus q between 
to phase a and neutral n 

          
Fig. 6 An eight bus system 
 

Consider the eight bus three-phase radial distribution 
system [14] shown in Fig. 6. The total line current supplied 
through the phase a of the line connected between buses 1 and 
2 or effective current of phase a  at bus 2 is  
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Thus, in general, the line current at any phase of line between 
buses p and q may be expressed as 
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E. Line Shunt charge model 
Eqn. (11) provides a method to compute the currents 

through the three phase of the branch between buses p and q. 
Power fed into the phase a of line between buses p and q at 

bus p is ( )∗⋅ a
pq

a
p IV . Power fed into the phase a of line 

between buses p and q at bus q is ( )∗⋅ a
qp

a
q IV . Therefore real 

and reactive power losses in the line between buses p and q 
may be written as: 
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III. FLOW CHART FOR THREE PHASE LOAD FLOW  
The complete algorithm is presented in the flow charts are 

shown in Figs. 7 and 8. Fig. 7 shows the algorithm to identify 
the buses and branches beyond any one particular bus. Fig.8 
shows the algorithm for load flow solution. In every iteration, 
the following steps are followed. In Fig. 5, only one line 
connecting the bus q to the substation bus p feeds the bus q. 
The total line current supplied through this line to bus q is 
determined using eqn. (11).  

With the knowledge of current flowing between buses p 
and q or at the qth bus, from eqn. (11), the proposed algorithm 
computes the voltage at receiving end bus q by using eqn. (4). 
In this method, the algorithm computes the voltages at all the 
buses of the system starting from the substation to all the 
buses downstream. The algorithm stops if the change in the 
computed bus voltage magnitudes in successive iterations is 
within tolerance limit (i.e. IT ≥ ITMAX). 
 

 
Fig. 7 Flow chart to identify the buses and branches beyond a 

particular bus 
 

 
Fig. 8 Flow chart for Load Flow solution 
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IV. RESULTS AND ANALYSIS 
The effectiveness of the proposed method has been 

explained with two unbalanced radial distribution systems. 

A. Case Study 1: 8-bus URDS  
A sample 8 bus unbalanced radial distribution network is 

shown in Fig. 7 has been taken from the Taiwan Power 
Corporation [14]. The base values of the system are 14.4 kV 
and 100 kVA. The convergence tolerance specified is 0.001 
p.u. The converged solutions (voltage magnitudes and phase 
angles) are given in Table 1. 

Table 1 shows comparison of the results obtained by 
Forward backward sweep method [6] and proposed method. 
For proposed method, the maximum deviation of voltage and 
its phase angle from the Forward backward sweep method is 
0.0001 p.u and 0.01 deg.. Thus, the two discussed methods are 
quite accurate. The minimum voltages are obtained by both 
the methods are highlighted in Table 1. 

For both the methods, load flow converged in 2 iterations 
for the tolerance of 0.001 p.u.. When the tolerance limit is set 
as 0.0001, the number of iterations required for the 
convergence is 3 for Forward backward sweep method and 2 
for proposed method. The summary of test results is given in 
Table 2. 

The execution time is 0.048 seconds for the Forward 
backward sweep method and 0.016 seconds for the proposed 
method on P-IV computer with 1.6 GHz frequency and 128 
MB RAM. 

 
 
 
 
 
 

From the above discussion, it is observed that the number 
of iterations for low tolerance and time of execution by the 
proposed method is superior when compared with the existing 
method. 

B. Case Study I1: 37-bus IEEE URDS  
Short and relatively highly loaded for a 4.16 kV feeder is 

very small and yet displays some very interesting 
characteristics..  One substation voltage regulator consisting 
of three single-phase units connected in wye, overhead and 
underground lines with variety of, phasing Shunt capacitor 
banks, in-line transformer and unbalanced spot and distributed 
loads. For a small feeder this will provide a good test for the 
most common features of distribution analysis software. The 
line data and load data of the system are given in [20-21]. It is 
assumed that the transformer at the substation is balanced, 
voltage regulators and capacitors at various buses is neglected. 
For the load flow, base voltage and base MVA are chosen as 
4.16 kV and 100 MVA respectively. The load flow results are 
presented in Table 3.  

The total system losses were found to be the following in 
each phase of the radial system: 

•  Phase A: 34.70 kW, 150.49 kVAr 
•  Phase B: 18.67 kW, 87.26 kVAr 
•  Phase C: 95.90 kW, 197.25 kVAr 

V. CONCLUSIONS 
In this paper, a simple and efficient computer algorithm has 

been presented to solve unbalanced radial distribution 
networks. The proposed method has good convergence 
property for any practical distribution networks with practical 
R/X ratio. Computationally, this method is extremely efficient, 
as it solves simple algebraic recursive equations for voltage 
phasors. Another advantage of the proposed method is all the 
data is stored in vector form, thus saving enormous amount of 
computer memory when tested for large systems. The 
proposed algorithm can be used effectively with Supervisory 
Control and Data Acquisition (SCADA) and Distribution 
Automation and Control (DAC) as the algorithm quickly gets 
the voltage solution and efficient operation of the system. 

TABLE  III 
TEST RESULTS OF THE IEEE 13-BUS UNBALANCED RDS 

Bus |Va|  
p.u. 

∠Va 
deg. 

|Vb| 
p.u. 

∠Vb 
deg. 

|Va| 
p.u. 

∠Va 
deg. 

1 1.00000 0.00 1.00000 -120.00 1.00000 120.00 
2 0.95376 -2.12 0.97153 -122.63 0.94217 117.46 
3 0.92698 -5.24 0.97167 -122.77 0.87823 115.04 
4 0.92698 -5.24 0.97167 -122.77 0.87823 115.04 
5 0.95064 -2.20 0.96953 -122.68 0.93937 117.45 
6 0.95064 -2.20 0.96953 -122.68 0.93937 117.45 
7 - - 0.95528 -123.27 0.94730 117.42 
8 - - 0.94965 -123.62 0.94944 117.43 
9 0.92698 -5.24 0.97167 -122.77 0.87823 115.04 
10 0.91870 -5.41 0.97289 -122.86 0.87424 115.15 
11 0.92527 -5.29 - - 0.87492 115.01 
12 - - - - 0.87163 114.93 
13 0.92005 -5.22 - - - - 

TABLE I 
VOLTAGES AND ANGLE OF THE 8-BUS UNBALANCED RDS 

Forward backward 
sweep method [6] Proposed Method Bus 

No |V| 
(p.u.) 

Angle 
(deg.) 

|V| 
(p.u.) 

Angle 
(deg.) 

1a 1.0000 0.00 1.0000 0.00 
1b 1.0000 -120.00 1.0000 -120.00 
1c 1.0000 120.00 1.0000 120.00 
2a 0.9830 0.18 0.9830 0.18 
2b 0.9714 -119.76 0.9714 -119.76 
2c 0.9745 119.97 0.9745 119.97 
3a 0.9822 0.18 0.9823 0.19 
4b 0.9655 -119.73 0.9655 -119.73 
4c 0.9716 119.93 0.9717 119.94 
5b 0.9643 -119.74 0.9644 -119.74 
6c 0.9697 119.92 0.9697 119.92 
7c 0.9731 119.96 0.9731 119.96 
8c 0.9719 119.95 0.9719 119.95 

TABLE II 
SUMMARY OF TEST RESULT OF 8 BUS UNBALANCED RADIAL DISTRIBUTION 

NETWORK 

Load Flow Method Tolerance 
0.001 

Tolerance 
0.0001 

Forward backward sweep Method 
[6] 2 3 

Proposed Method 2 2 
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