
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

641

Abstract— Factoring Boolean functions is one of the basic
operations in algorithmic logic synthesis. A novel algebraic
factorization heuristic for single-output combinatorial logic functions
is presented in this paper and is developed based on the set theory
paradigm. The impact of factoring is analyzed mainly from a low
power design perspective for standard cell based digital designs in
this paper. The physical implementation of a number of
MCNC/IWLS combinational benchmark functions and sub-functions
are compared before and after factoring, based on a simple
technology mapping procedure utilizing only standard gate primitives
(readily available as standard cells in a technology library) and not
cells corresponding to optimized complex logic. The power results
were obtained at the gate-level by means of an industry-standard
power analysis tool from Synopsys, targeting a 130nm (0.13μm)
UMC CMOS library, for the typical case. The wire-loads were
inserted automatically and the simulations were performed with
maximum input activity. The gate-level simulations demonstrate the
advantage of the proposed factoring technique in comparison with
other existing methods from a low power perspective, for arbitrary
examples. Though the benchmarks experimentation reports mixed
results, the mean savings in total power and dynamic power for the
factored solution over a non-factored solution were 6.11% and 5.85%
respectively. In terms of leakage power, the average savings for the
factored forms was significant to the tune of 23.48%. The factored
solution is expected to better its non-factored counterpart in terms of
the power-delay product as it is well-known that factoring, in general,
yields a delay-efficient multi-level solution.

Keywords—Factorization, Set theory, Logic function, Standard
cell based design, Low power.

I. INTRODUCTION

WO-LEVEL circuits are widely used to implement Boolean
functions through conventional programmable logic

devices such as PLA or PAL. However, in modern VLSI
design, they are economically implemented by multilevel
circuits. Factorization techniques are key tools in facilitating
multilevel synthesis. Finding a minimum factored expression
can be a cumbersome task. So we are compelled to resort to
heuristic algorithms in order to find a 'good', if not best
solution in reasonable time. The general strategy employed by
such algorithms is as follows. A divisor of a Boolean function
F to be factored is singled out. Then F is divided by this

Padmanabhan Balasubramanian is with the School of Computer Science,
The University of Manchester, Manchester, MAN M13 9PL, UK (phone:
+44-161-275 6294; e-mail: padmanab@cs.man.ac.uk).

Ryuta Arisaka is with the School of Computer Science, The University of
Manchester, Manchester, MAN M13 9PL, UK (phone: +44-161-275 6294;
e-mail: ryuta@cs.man.ac.uk).

divisor. Such a procedure is recursively applied to the quotient
and the remainder of the division. Computing time and
factorization quality depend on the way in which a divisor is
chosen and the type of division performed i.e., algebraic or
Boolean. In this paper, a novel heuristic developed on the
basis of set theory for algebraic factorization of single-output
Boolean functions is presented. The algorithm has been
implemented as a stand-alone factorization tool in a high-level
language, Java in MS-Windows OS, and takes as input the
reduced logic expressions resulting from a standard two-level
logic minimizer such as Espresso and outputs the factorized
solution in the same algebraic expression format after
compilation. Simultaneous factorization of any number of
different single output Boolean functions is made possible.
Rather than comparing the time taken for factorization with
other existing techniques, we instead focus on the power
quality of the resulting solution after implementation using
standard cells corresponding to a 130nm UMC CMOS library.

The proliferation of portable hand-held electronics
combined with increasing packaging costs is forcing circuit
designers to adopt low power design methodologies. Power
wall is a clear roadblock in the semiconductor industry [4].
Low power design of ASICs result in increased battery life and
enhances reliability. Infact, the Semiconductor Industry
Association technology roadmap [5] has underlined low power
design techniques as a critical need. Hence, it is indispensable
for circuit designers to acknowledge the importance of limiting
power consumption and subsequently improve energy
efficiency, possibly at all levels of the design hierarchy,
starting from even the lower levels of design abstraction. Gate-
level optimization achieves power savings; in some specific
cases more than 50% reduction in power, without loss of
performance, may be achieved [2]; though in general the
reduction is around 5%-15% [3]. The other advantage being
that logic-level optimization is relatively low cost in terms of
design effort in comparison with strategies employed at other
levels. We analyze the effect of factoring of logic functions
from a low power point of view and make an effort to address
the burning issue of power dissipation at the gate-level mainly
with respect to the above operation.

The remaining part of this paper is organized as follows. In
section 2, the different components of power consumption in
digital CMOS circuits are discussed. In the next section, basic
and background information pertaining to logic functions has
been first presented. Then the issue of factorization, which is

A Set Theory Based Factoring Technique and Its
Use for Low Power Logic Design

Padmanabhan Balasubramanian, and Ryuta Arisaka

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

642

basically a logic optimization (restructuring step), performed
with the intention of reducing the literal costs at the technology
independent stage is briefly dealt with. Algebraic and Boolean
division operations are concisely explained with simple
Boolean functions. In section 4, the proposed factorization
technique based on the notion of set theory is then presented
with an illustration, followed by a generalized algorithm.
Section 5 elucidates the hardware implementation issues
involved and about the choice of the base-function set for
technology binding. In the subsequent section, a variety of
examples follow; to illustrate the significance of the proposed
factorization technique in comparison with other schemes,
from a low power perspective. In section 7, the power
estimation methodology is highlighted. Then the impact of the
factoring operation on logic functions is then analyzed
extensively from a power dissipation perspective for many
MCNC/IWLS combinational benchmark functions and sub-
functions [7] [8]. The power results were obtained using an
industry-standard power analysis tool, Synopsys PrimePower,
and correspond to a 130nm (0.13μm) UMC CMOS library,
comprising high density standard cells, for the typical case.
The wire loads were automatically selected for simulation
purpose, based on the cells used and their assigned drive
strengths. Section 8 presents a concise summary and also the
conclusion borne out of this research, followed by the
bibliography.

II. POWER CONSUMPTION IN DIGITAL CMOS CIRCUITS

CMOS has long been considered the technology of choice
for low power applications. The continuous shrinking of
feature sizes has made it possible to achieve even greater
integration of complex functions on a single chip. However,
the higher chip densities have resulted in one to two orders of
magnitude increase in the power consumption of many higher-
end processors. The point is being rapidly reached when
reduction of power dissipation becomes a most important
hurdle that designers and manufacturers need to tackle.

Power consumption in CMOS circuits falls into two broad
categories: dynamic power (Pdynamic) and static power (Pstatic).
Dynamic power is the power dissipated when the circuit is
active. It is composed of two kinds of power viz. switching
power (Pswitching) and internal power (Pinternal). Pswitching is due to
the charging and discharging of load capacitance at the output
of the cell as it makes transitions between '0' and '1'. The total
load capacitance at the output of a driving cell is modeled as
the sum of interconnect and gate capacitances on the driving
output. It is typically expressed as CLVdd

2E(t), where CL is the
load capacitance, Vdd is the supply voltage and E(t) is the
expected number of times that the gate switches, also called
transition activity. The quadratic dependence of Pswitching on Vdd

indicates that scaling down the supply voltage will have the
greatest impact on reducing Pswitching. This also avoids hot-
carrier effects in short-channel devices. However, the
threshold voltage Vt also has to be scaled down because
otherwise it has a much greater detrimental impact on the

delay when small geometry devices are used [18]. Thus scaling
Vt by the same factor as Vdd is needed so as not to adversely
impact delay. However, reducing Vt in small geometry
MOSFETs results in an exponential increase in the standby
current [19]. Pinternal is any power dissipated within the
boundary of a cell. During switching, a circuit dissipates
internal power by the charging or discharging of any existing
capacitances that are internal to the cell (also called intrinsic
capacitances). Pinternal also includes power dissipated during a
momentary short circuit between the pull-up and pull-down
networks of a standard cell, called as short-circuit power, Psc.
Static power consumption (Pstatic) is the power dissipated by a
gate when it is not switching, i.e., when it is inactive. The main
component of static power results from source-to-drain
subthreshold leakage, which is caused by reduced threshold
voltages that prevent the gate from completely turning off. In
other words, it is mainly due to the leakage current caused by
the reverse-biased junction leakage and sub-threshold leakage
(devices that conduct while in the OFF-state – subthreshold
conduction). Since power is dissipated when current leaks
between the diffusion layers and the substrate, static power is
also referred to as leakage power. Simulation results given in
[20] show that the power dissipation due to the standby current
dominates the switching power at low threshold voltages.
Predictions on future technologies project that the leakage
power will be so high that it will become substantial even
when the chip is in active mode.

III. FACTORIZATION OF LOGIC FUNCTIONS

A. Preliminaries
In this section, some background information about

Boolean function, network and the terminologies related with
logical division are first stated.

1) Definition 1: Boolean function
A single output Boolean function is a mapping from n-

dimensional (n -dimensional one:
{0,1}n {0,1,d}, where 'd' denotes a don't care condition. If
this condition does not exist, then the function is a completely
specified function (CSF). Each of the 2n nodes in the Boolean
space corresponds to a minterm. If a minterm is mapped to
output 1 (0 or d), then it is called an ON-set (OFF-set or DC-
set) minterm.

2) Definition 2: Boolean network
A Boolean network is usually modeled as a directed acyclic

graph (DAG) with nodes represented by Boolean functions. A
DAG is distinguished from a tree structure in that its nodes can
have unlimited fan-in and unlimited fan-out. The sources of
the graph are the primary inputs of the network; the sinks are
the primary outputs. The inputs of a node are called its fan-
in's. The output of a node may be an input to other nodes
called its fan-out's. An edge connects two nodes that are in the
fan-in/fan-out relationship.

3) Definition 3: Kernel and Co-Kernel
The quotient resulting from the algebraic division of an

expression, F, by a cube c (i.e., F/c) is the kernel k of F, if

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

643

there are at least two cubes in the quotient and the cubes do
not have any common literal. The cube divisor c used to obtain
the kernel is called its co-kernel. Different co-kernels may
produce the same kernel: hence, the co-kernel of a kernel is
not unique. If a kernel has no kernels except itself, it is said to
be a level-0 kernel. A kernel is said to be of level n if it has at
least one level-(n-1) kernel but no kernel, except itself, of level
n or greater.

Let us consider the following Boolean expression, given by,

Z(a,b,c,d,e,f,g) = abc + ac'g + b'df + b'cde (1)

The quotient of Z and the cube a is then,

Z/a = bc + c'g (2)

Similarly the quotient of Z and the cube b’ is

Z/b' = df + cde (3)

Z/a is a kernel of Z, since it has two cubes and no common
literal. The co-kernel is a. However, Z/b' is not a kernel of Z,
since literal d is common to both cubes of Z/b'.

B. Factorization – Algebraic and Boolean division
Factoring Boolean functions is one of the basic operations

in algorithmic logic synthesis. The objective of factorization is
to represent a Boolean function in a logically equivalent
factored form but with a minimum number of literals. An
optimal (shortest-length) factorized solution for an arbitrary
Boolean function is a problem which cannot be solved in
polynomial time; in many situations (NP-hard), and so all
practical algorithms for factoring are heuristic and provide a
correct, logically equivalent formula, but not necessarily a
minimal length solution in each case. This type of optimization
step will yield a minimum area for the physical realization of
this function. Algebraic algorithms for factorization have been
developed previously [10] [11] and are widely used in
commercial environments due to their speed. On the other
hand, Boolean factoring [12] [13] is not widely used because
of its computational complexity even though it gives better
results in many cases. The main difficulty in the latter being
the difficulty to easily figure out good candidate divisors for a
function, which is not usually straight-forward.

Factoring is the translation of a function in the sum-of-
products form (also called disjunctive form) to a form with
parentheses and having a minimum number of literals [10]. For
e.g. a, ab'c', a(b+c+d)+e, are all factored forms. Thus it is
equivalent to a parenthesized algebraic expression and is most
appropriate one for use in multilevel logic synthesis. A
factored form is isomorphic to a tree structure, where each
internal node is an AND or OR operator and each leaf is a
literal. There are mainly two methods to obtain the factored
form of a two-level representation of the function: Algebraic
division, also known as weak division which is quite fast and
Boolean division, also known as strong division which is

slower but capable of giving better results in many cases. In
general, the algebraic methods are fast because the logic
function is treated as a polynomial, and hence fast methods of
manipulation are available. Boolean factoring is generally non-
polynomial, and there is not much information about the
implementation of such algorithmic procedures.

Let us assume two Boolean expressions, f and g. If there is
an operation which generates expressions h and r such that f
= gh + r, where gh is an algebraic product (i.e. g and h have
no common variable), then this operation is called an algebraic
division. For example, if f = abd + bcd + a’c + b’d’ and
g = a + c, the algebraic (polynomial) division will yield

f = gh + r = bd (a + c) + a’c + b’d’ (4)

Another form of division used in factoring logic expressions
uses the identities of Boolean algebra (for e.g. yy’ = 0, yy =
y, and y + y’ = 1 for a variable y). Thus, for an expression, f =
pq + t, pq is a Boolean product [i.e. p and q have one or more
common variable(s)], then the division of f by p is called a
Boolean division. Hence Boolean division for the original
expression of f will result in the following factored form.

f = pq + t = (bd + a’) (a + c) + b’d’ (5)

IV. SET THEORY BASED ALGEBRAIC FACTORING TECHNIQUE

Some of the widely used algebraic factorization methods are
usually found embedded in open-source multi-level logic
synthesis systems such as MIS [15], SIS [14] or in commercial
environments. This necessitates the need for a stand-alone
factorizer which could then be modified to suit different
requirements at a later stage. Before proceeding with the
listing of the proposed factoring heuristic, let us familiarize
ourselves with the terminology defined for a Boolean cube, c:
the description set of a cube, D(c). D(c) specifies the set of all
literals in their actual form, which a particular Boolean cube c
is dependent upon for its evaluation to a logic value of ‘1’. For
e.g. if F = a’bd + b’cd’, where cubes, C1 = a’bd and C2 =
b’cd’, then D(C1) = {a’,b,d} and D(C2) = {b',c,d'} and so the
set intersection of the two cubes, D(C1) D(C2) = , with its
cardinality given by | D(C1) D(C2) | = 0.

The set theory based factorizing technique, which also treats
a logic expression as a polynomial is described through steps 1
to 11 of the proposed algorithm listed below.

A. Algorithm
Given a logic function F:

1) Minimize F into two-level logic to obtain F* (where F and
F* are logically equivalent)
2) For each cube, c in F*, define its D(c)
3) Perform set intersection of D(c) with the description set of
each and every cube in F* independently
4) Enumerate the cardinality of all the set intersection
operations
5) Choose those intersection operations which yield the highest
cardinality

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

644

6) Extract the shared literal(s) from the cube(s) which
correspond to highest cardinality
7) The shared literal(s) now correspond to the co-kernel
8) Remaining literals in each of those cubes (logically OR-ed)
form the kernel
9) Check the cubes grouped in F*
10) For the remaining unchecked cubes in F*, repeat steps 2 to
8 (even with existing co-kernel(s)) till all cubes are checked
11) The resulting solution is identified as G, factored form of
F*
12) (Extract and Group operations) – Parse G to find whether
similar kernels exist independently; otherwise go to step 15
13) If so, the kernel is extracted once and its respective co-
kernels are logically OR-ed
14) Recursively execute steps 12 and 13 till no more similar,
but independent kernels are found
15) The final algebraically factorized solution for the given
Boolean function is obtained

In short, the above algorithm is described as follows.
Largest single cube common divisors are first extracted from a
Boolean function specified in minimized disjunctive form,
based on the cardinality of the intersection operation between
the description sets of two distinct cubes considered at a time.
This procedure is then iterated until no more single cube
divisors can be isolated in the function. This completes the
algebraic factoring step. The resulting kernels, if exist
independently, and are also found to be shared between
different co-kernels are then extracted and grouped according
to the distributive axiom. The final solution is not only
factored but also does not contain any logic duplication.

V. HARDWARE REALIZATION ISSUES AND CHOICE OF BASE-
FUNCTION SET

In this section, information about the issues involved in the
physical implementation of the logic expressions is discussed.
This is important in this context that the minimized two-level
solutions output by standard tools such as Espresso [4] cannot
be implemented as it is (cannot be synthesized) due to the fan-
in restrictions imposed on the gates available in a physical
standard cell library. So it is clear that there is a need for
technology binding here. Technology binding is the process of
mapping (implementing) a technology independent description
in a particular technology [16]. The role of technology
mapping, as seen here, is not to change the structure of the
circuit (as this will amount to modifying the actual synthesis
solution), for e.g. by finding common sub-expressions between
two or more parts of the global function; but to finish the
synthesis of the circuit by performing the final gate selection
from a particular library. The actual role played by technology
mapping here is the choice of gate primitives belonging to the
cell library in order to implement the logic equations. When
implementing large logic function terms, there arises a need to
partition the input field by decomposing, so that it can be
implemented as a combination of sub-function terms. It is not
always obvious how best to achieve this. So the problem
involves selecting the most judicious input variable sub-sets so

that the overall term may be implemented by a suitable
combination of sub-terms. We consider this issue here mainly
from a low power point of view. We do this so as to
specifically study the gain secured by factorization when
combined along with technology mapping in comparison with
pure technology mapping. So for the present, we do not
introduce other logic transformations for optimization, since,
we are more interested in the issue of technology binding after
local optimization.

The choice of a base-function set is at the heart of any
technology mapping algorithm. Also, the choice of a set of
base-functions could be arbitrary as long as it is functionally
complete [16]. The goal here is to find that base-function set
which would provide the highest level of optimization (mainly
power optimization) with a small set of patterns. According to
[16], the granularity of a base-function set affects the
optimization potential. With this approach, the logic function,
Y = (efgh + ijkl + mnop + qrst) requires only one pattern for
realization in NAND-NAND logic style – a tree of five four-
input NAND gates; with a base-function set comprising two-
input, three-input and four-input NAND gates and inverting
buffers. Representing all patterns for this same function using
two-input NAND gates and inverters would require eighteen
patterns. So a finer resolution base-function set would allow
for more covers, and hence better quality solutions. In our
case, we consider all individual gate primitives of a standard
cell library to constitute the base-function set. The above
discussion is further clarified with the following examples for
AND-OR-Invert (AOI) logic format realization.

For a cube, a'b'c'd'e'f', let us consider its implementation
via, three different tree structures by means of technology
mapping: using only 2-input AND-gates and inverters (imp1),
using 2-input, 3-input AND gates and inverters (imp2) and by
a maximum fan-in based mapping using 3-input, 4-input AND
gates and inverters (imp3); represented by figures 1, 2 and 3.

Fig. 1 Technology mapping using 2-input cells and inverters (imp1)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

645

Fig. 2 Technology binding with 2, 3-input cells and inverters (imp 2)

Fig. 3 Technology binding based on maximum fan-in based
implementation (imp3)

TABLE I
WORST-CASE AVERAGE DELAY COMPARISON

Implementation style Critical path Worst-case average delay (ns)
imp1 i2-g2-g3-g5 0.17125
imp2 i2-g7-g8 0.132
imp3 i2-g9-g10 0.156

The above table gives the maximum average delay
computed along the respective critical paths of the above three
implementations. The average delay, estimated as the mean of
the low-to-high (rise) and high-to-low (fall) delays
encountered by the signal while traversing through logic gates,
is accurately determined at the gate level by the timing
analyzer, PrimeTime for a 130nm UMC CMOS process. The
wire loads were back-annotated by the tool automatically
before performing timing analysis.

TABLE II
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS

(FOR TYPICAL CASE: SUPPLY = 1.2V, TEMPERATURE = 25°C)
Power dissipation

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 3.26914 3.23945 29.6877
imp2 2.35462 2.33404 20.5844
imp3 1.87136 1.85511 16.2458

The last implementation style leads to lesser power
consumption than the other two, as can be seen from Table 2,
for a typical case library specification. This is mainly because
of a reduction in the number of cell instances, from a

simulation point of view. However, the reason for this
phenomenon is captured more accurately at the device level in
[17]. To verify this, the simulation has been extended targeting
best case and worst case library specifications as well and they
are found to be in good agreement with the above, as evident
from Tables 3 and 4. The power results were obtained for a
clock frequency of 100MHz. Table 5 further shows that the
technology binding procedure identified as imp3 betters the
other two in terms of the power-delay product (PDP) as well,
for all the three target library scenarios.

TABLE III
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS

(FOR BEST CASE: SUPPLY = 1.32V, TEMPERATURE = 0°C)
Power dissipation

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 4.25175 4.16056 91.1835
imp2 3.04785 2.98433 63.5213
imp3 2.40974 2.35994 49.8044

TABLE IV
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS

(FOR WORST CASE: SUPPLY = 1.08V, TEMPERATURE = 125°C)
Power dissipation

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 2.63746 2.56383 73.6291
imp2 1.91433 1.86302 51.3116
imp3 1.52619 1.48606 40.1256

TABLE V
PDP EVALUATION FOR DIFFERENT IMPLEMENTATIONS

Implementation
style

Typical case
(fJ)

Best case
(fJ)

Worst case
(fJ)

imp1 0.5598 0.7281 0.4517
imp2 0.3108 0.4023 0.2527
imp3 0.2919 0.3759 0.2381

To confirm the veracity of the above argument, a benchmark
sub-function of eight input variables, exps_f12 [7] was
considered. Its reduced two-level equation is given as,

exps_f12 = a'b'c'd'efg'h' + a'bcd'e'f'gh' + a'c'defgh +
 a'b'c'de'f'gh + a'cd'e'f'g'h + a'bcd'f'g'h (6)

TABLE VI
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS

(FOR TYPICAL CASE: SUPPLY = 1.2V, TEMPERATURE = 25°C)
Power dissipation

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 21.6456 21.3671 278.431
imp2 14.6222 14.434 188.172
imp3 10.9636 10.8101 153.499

As is usual practice to estimate the speed performance of a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

646

gate based on its fan-out, a similar approach was used while
assigning the drive strengths for the inverters, to be associated
with the primary circuit inputs. The technology-mapped
realizations correspond to a sort of leaf-DAG logic structure
here, where DAG-ness is exhibited only in the primary circuit
inputs. A similar structural representation was used for all
subsequent case studies.

TABLE VII
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS

(FOR BEST CASE: SUPPLY = 1.32V, TEMPERATURE = 0°C)
Power dissipation

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 28.0776 27.2295 848.132
imp2 18.9056 18.3342 571.447
imp3 14.1289 13.6645 464.402

TABLE VIII
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS

(FOR WORST CASE: SUPPLY = 1.08V, TEMPERATURE = 125°C)
Power dissipation

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 17.5306 16.8477 682.884
imp2 11.8997 11.4401 459.591
imp3 8.96343 8.58947 373.961

The power consumption components for the three different
mapped structures, corresponding to three different library
cases (typical case, best case and worst case) for a 130nm
UMC CMOS library are indicated in Tables 6, 7 and 8
respectively. The results mentioned in these tabular columns
correlate quite well and add value to the above reasoning that a
maximum fan-in based technology binding mechanism could
potentially reduce power dissipation. However, this may be at
the expense of an increase in delay; provided timing closure
does not become a serious issue to reckon with.

VI. COMPARISON WITH OTHER FACTORING METHODS

Many of the cases referred to in this section are based on the
examples cited in [9] [10] [11] [15] [21] [22]. Let us consider
an example to illustrate the significance of the set theory based
factoring scheme over a generic factoring scheme [11] in
obtaining a multilevel solution.

Let Z be a Boolean function whose support set is dependent
on four inputs and is given by,

Z = abc' + a'bc + abd + a'c'd + bcd (7)

The different factored equations that could be obtained for Z
based on an arbitrary choice of literals in succession are given
by the following equations. The sequence of literals chosen has
been mentioned alongside Z in parenthesis for each expression.

1st sample – Z(a',b,d) = a'(c'd + bc) + b(d(a + c) + ac') (8)

2nd sample – Z(c,d,b) = c(bd + a'b) + d(ab + a'c') + abc' (9)

3rd sample – Z(d,b) = d(a'c' + b(a + c)) + b(a'c + ac') (10)

The set theory based factorization method yields the
following factored expression after three iterations of the
above-mentioned algorithm.

Z = b(a(c' + d) + c(a' + d)) + a'c'd (11)

The different power dissipation components of the above
realizations (implemented using the high-density standard cells
of a 130nm UMC CMOS process) for a typical case with a
frequency of 100MHz and a supply voltage of 1.2V with
automatic wire load selection is listed below.

TABLE IX
POWER CONSUMPTION OF DIFFERENT FACTORED EXPRESSIONS

Power consumption parameters
Factored

form
Total
Power
(μW)

Dynamic
Power
(μW)

Leakage
power
(nW)

1st sample 6.38032 6.32669 53.6337
2nd sample 6.25973 6.20598 53.743
3rd sample 6.66331 6.60807 55.2453
Proposed 5.50443 5.4587 45.7286

Firstly, it is worth mentioning that the generic factoring
scheme could enable a similar power optimal realization as
that of the proposed one for the literal sequence (a,b,c).
However, it is clear from the above, that a literal factorization
scheme suffers from the disadvantage that it could lead to
many different solutions based on the choice of order of
literals, though it is considered to be a faster scheme. As a
result, the power quality of the realization may not necessarily
be optimal for a random choice and so the selection of an
appropriate literal sequence from a power perspective, for this
method, would in turn introduce complexity as it could not be
easily predicted at the technology-independent stage. On the
other hand, the proposed set theory based factoring scheme
leads to a single parenthesized expression in most cases and
might be economical in terms of power dissipation. This is
substantiated by the values listed in Table 9. There is a savings
in total power by 12.06%, dynamic power by 12.04% and
leakage power by 14.91% for the proposed method over the
best of other realizations listed in the above table,
corresponding to random ordering based on the generic
factoring method.

Now, we take a function to examine the power quality of
the factored forms obtained by X-factor (XF) [14] [15], Quick-
factor (QF) [14] [15] and proposed methods.

Y = ac + ad + bc + bd + ce + cf + ae + ag + be + df + dg +
 bf (12)

The factored expressions generated by XF, QF and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

647

proposed algorithms are given by (13), (14) and (15)
respectively. Their corresponding power values (obtained
under a similar simulation environment) are listed in Table 10.

YXF = (c + d + e) (a + b) + (b + c + d)f + (a + d)g + ce (13)

YQF = g(a + d) + (c + d + e) (a + b) + c(f + e) + f(b + d) (14)

YProposed = b(c + d + e + f) + a(c + d + e + g) + c (f + e) +
 d(g + f) (15)

TABLE X
POWER CONSUMPTION OF DIFFERENT FACTORED SOLUTIONS

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
XF 4.48729 4.44613 41.1619
QF 5.21768 5.17031 47.3676

Proposed 4.30493 4.26404 40.8979

The proposed factoring procedure took eight iterations to
obtain (15). From the above table, it can be seen that it results
in savings in power consumption in comparison with the other
schemes. For this particular example, the literal factoring
scheme would have been able to obtain a similar solution as
that of (15) for any ordering of single literal divisors.

Let us consider another example to highlight the
usefulness of the proposed heuristic by considering a function
X with a support set of nine variables.

X = abfg + aceg' + abeg' + abe'g + ace'g + acfg + dfg + deg'
 + de'g + bi + ch + ci + bh (16)

XXF = (a(b + c) + d) (eg' + g(f + e')) + (b + c) (h + i) (17)

XQF = (a(g(e' + f) + eg') + i + h) (b + c) + d(g(e' + f) + eg')
 (18)

XLF = a(b(eg' + g(e' + f)) + c(eg' + g(e' + f)) + b(h + i) + c(h
 + i) + d(eg' + g(f+e')) (19)

XProposed = (g'e + g(e' + f)) (a(b + c) + d) + (b + c) (h + i)(20)

The factorized expression (19) was obtained for a random
literal ordering (a,d,b,c,g). The power consumption (under a
similar simulation environment) of the above equations is
listed in Table 11.

TABLE XI
POWER CONSUMPTION OF VARIOUS FACTORED FORMS

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
XF 7.53665 7.47397 62.687
QF 9.07217 8.99763 74.542
LF 14.4695 14.3473 122.233

Proposed 7.50666 7.44387 62.79

In this case, (20) was obtained in the eleventh iteration of
the proposed heuristic. The QF heuristic is quicker and more
preferred than the XF algorithm. However, for this case, it can
be observed from Table 11, that the power quality of the XF
algorithm is comparable with that of the proposed one and
enables reduction in leakage power alone by 0.16%; while in
terms of total power and dynamic power, it exhibits a slight
increase by 0.39% and 0.4% respectively.

We now compare the results of the realizations based on
Good-factor (GF) [9] [15], QF and proposed technique for a
Boolean function of seven variables, given as follows.

W = pr + sp + rq + qs + tq + pt + pv + qu + tr + ru + vs (21)

The respective factored forms, obtained on the basis of the
above mentioned algorithms are given by the following
equations in order.

WGF = (r + s + t) (p + q) + u(q + r + s) + v(p + s) + rt (22)

WQF = (p + s)v + (p + q) (s + t + r) + r(t + u) + u(q + s) (23)

WProposed = q(r + s + t + u) + p(r + s + t + v) + r(u + t) + sv
 (24)

The corresponding power components of the above
realizations for a 0.13μm process under similar conditions are
indicated in Table 12. From Table 12, we find that the GF
heuristic has resulted in a power optimal solution in
comparison with the QF algorithm. However, the set theory
based factorization procedure enables savings in total, active
and static power components by 17.29%, 17.33% and 13.58%
in comparison with that of the GF algorithm.

TABLE XII
POWER CONSUMPTION OF THE DIFFERENT FACTORED FORMS

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
GF 4.47287 4.43163 41.2378
QF 5.21768 5.17031 47.3676

Proposed 3.69913 3.66349 35.6357

Based on experiments on a large set of functions [15], it has
been observed that GF algorithm is almost three times slower
than QF due to the additional run-time spent in computing all
of the kernels of the function before choosing a divisor.
Though Boolean factoring enables good results, it is almost
four times slower than GF algorithm owing to the extra time
spent performing a strong Boolean division as opposed to a
weak algebraic division.

Though the lesser-known factorization heuristic, FACT of
[22] is found to be faster than the QF-algorithm based on
experiments with arbitrarily generated functions, it deals with a
different procedure for kernel-extraction based on the common
rectangle-covering and intersection schemes. Heuristics are
used in the three procedures of which this method is made up

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

648

in order to obtain a good factorized solution. The method is
based on the generation of some products covering a set of
true cubes suitably chosen. This choice may pose time
complexity for large functions. The products forming a near-
optimal factored expression are locally chosen from the ones
covering each of those cubes.

Let us consider a sizeable logic function description, R of
12 inputs, given by (25) as,

R = y2y3y4y7 + y2y3y11 + y3y5y6y7 + y3y5y6y11 + y3y6y9
 + y3y4y7y12 + y2y5y6y8y12 + y2y10 + y4y6 + y4y8 +
 y4y10 + y5y6y8y10 + y6y10y11 + y8y12 + y9y12 + y1 +
 y7y11y12 + y7y8 (25)

RQF = y3(y2(y4y7 + y11) + y6(y5(y7 + y11) + y9) + y4y7y12)
 + y2(y5y6y8y12 + y10) + y4(y8 + y6 + y10) + y1 +
 y10(y6(y5y8 + y11) + y12(y8 + y9) + y7y11) + y7y8

 (26)

RFACT = x1 + x8(x4 + x7 + x2x5x6x12) + x10(x2 + x4 + x6x4
 + x6(x11 + x5x8) + x11x7 + x12(x9 + x8)) +
 x3(x2(x4x7 + x11) + x6(x9 + x5(x7 + x11)) +x7x4x12)

 (27)

RProposed = y6(y3(y5(y7 + y11) + y9) + y5y8(y2y12 + y10)) +
 y4(y3y7(y2 + y12) + y6 + y8 + y10) + y1 + y7y8 +
 y11(y2y3 + y6y10 + y7y12) + y2y10 (28)

TABLE XIII
POWER DISSIPATION OF VARIOUS FACTORIZED EXPRESSIONS

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
QF 14.4082 14.2876 120.534

FACT 12.9385 12.821 117.562
Proposed 11.7189 11.6162 102.763

The factorized expressions obtained on the basis of the
proposed technique betters the solutions rendered by other
algebraic factoring methods in terms of power dissipation as
can be seen from Table 13.

Finally, we consider an arbitrary function with a support set
comprising 9 inputs, given by (29). Here, we compare the
solutions obtained by the multi-level logic synthesis method
outlined in [21] with that of our proposed method. The
respective Boolean equations are given below.

S = abce + abde + ace'i + ade'i + a'fgh (29)

TABLE XIV
POWER DISSIPATION OF THE FACTORIZED EXPRESSIONS

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
Approach of

[21]
4.94834 4.9024 45.942

Proposed 4.50532 4.46411 41.2071

SConventional = a'fgh + (ac + ad) (be + e'i) (30)

SProposed = a((be + e'i) (c + d)) + a'fgh (31)

A wide variety of non-regenerative Boolean functions
mentioned in previous literatures were considered in order to
evaluate the significance of the proposed factoring scheme
based on the set theory paradigm. The power consumption
results obtained underline its usefulness.

VII. POWER ESTIMATION METHODOLOGY AND POWER
DISSIPATION RESULTS OF COMBINATIONAL BENCHMARKS

Minimized two-level logic expressions for many
MCNC/IWLS combinational benchmark functions [7] [8] and
sub-functions were first obtained using Espresso tool [1].
Since the focus here is exclusively on analyzing the effect of
factorization, the different functions/sub-functions were
reduced depending on whether the normal output phase or the
complementary output phase resulted in less number of
essential prime implicants for each individual function output.
This subsequently translates into less number of instances
(library cells) for each function/sub-function output. The
minimized equations resulting from Espresso are then given as
the input expressions for the set-theory based factorizer tool,
implemented using Java, and can be run on any platform. The
outputs are the factorized Boolean equations, obtained after
compilation. After a simple technology mapping of the non-
factored and factored expressions, based on the methodology
(maximum fan-in dependent library cell binding) discussed in
section 5, power analysis was carried out using Synopsys
PrimePower with a 130nm UMC CMOS technology library as
the target for the typical case at an ambient temperature of
25°C; the recommended supply voltage for the typical case
being 1.2V. The input clock frequency was set to 100MHz and
the wire loads were selected automatically by the tool. The
power dissipation results (total, dynamic and leakage) obtained
for the benchmark functions are mentioned in Table 15, while
those corresponding to the sub-functions are highlighted in
Table 16 (both given in appendices).

Table 15 basically reports mixed results in terms of power
consumption. This is because, in many cases, factorization
tends to increase the number of cells needed for custom
implementation while compared to a simple maximum fan-in
based mapping for original reduced two-level logic. However,
as the description set of each cube grows in size and when the
function tends to comprise more cubes, the balance is tilted in
favour of factorization. But it is clear that a factored solution
would tend to exhibit a lower critical path delay in comparison
with a non-factored solution comprising probably maximum
fan-in cells in its longest path. Overall, we find that there is
some appreciable reduction in leakage power by 13.48% over
a pure technology mapped implementation; mean savings in
total power and dynamic power being 2.91% and 2.79%. An
important observation to be recorded here is that logic
functionalities with embedded EXOR logic tend to benefit the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

649

most from factorization operation. This is strongly justified by
the power results of benchmarks newtpla, newtpla2 and to
some extent in the case of newtpla1. This is also visible in the
case of sub-functions (refer Table 16) such as 5xp1_f1, br1_f3,
br2_f8 and sao2_f1, which are EXOR intensive. It has been
inferred that factorization does reduce leakage power
considerably in cases where there is good sharing of literals
among the essential prime implicants. This is evident from the
results corresponding to newtpla1 and newtag apart from
newtpla and newtpla2. This is obviously good news for
technology nodes pertaining to 90nm and below, where
leakage power forms a significant proportion of the total
power dissipation. Surprisingly, there are cases where leakage
power is alone reduced even though an increase in dynamic
and total power consumption are noticed for e.g. newill and
dekoder, while the contrary is observed for dc1.

On an overall basis, the simulation results detailed in Table
16 report mean savings in total power, dynamic power and
static power by 9.84%, 9.41% and 33.15% respectively.
Considering sub-functions (individual outputs of benchmarks),
significant reduction in all the three power components is
noticeable for many functions, which have more non-
redundant cubes and also exhibit good sharing of literals. To
identify some, this is evident from the results corresponding to
br1_f3, br2_f8, m1_f9, m2_f11, root_f2, sao2_f1 and x1dn_f5.
There are also cases where reduction in static power alone can
be observed for some sub-functions after factorization, even
though an increase in total power and dynamic power is found.
Samples for this include amd_f22, newcpla_f4, dc2_f2,
soar_f82, newcpla2_f3, misex1_f6 and vtx1_f4.

VIII. SUMMARY AND CONCLUSION

This paper highlights the importance of factorization as a
basic and important step for multilevel logic realization of a
combinatorial function and also various existing algebraic
factoring techniques. The proposed factoring technique based
on a set theory paradigm has been presented. The advantage of
the proposed technique in obtaining an efficient factored
solution for a given function and its power optimality was also
demonstrated through experimental results. It is to be noted
that though this method generates a unique solution, the
possibility of obtaining multiple solutions is not ruled out.
However, such expressions would all be not only logically
equivalent but algebraically as well. The base-function set
considered for simple technology mapping of a traditional
logic realization, in accordance with the actual individual gate
primitives available in a physical standard cell library is then
discussed. This is followed by an analysis of the effect of
factorization for many benchmark functionality
implementations, for a typical case library specification.

The simulation results obtained for combinational
benchmark functions and sub-functions indicate moderate
average savings in total and dynamic power consumption
parameters by 6.11% and 5.85% for the factored solutions
over the non-factored ones. In terms of the leakage power

component, considerable mean savings of 23.48% was
reported. The novel factoring technique presented in this paper
is expected to be a precursor for further research in
combinational logic optimization, especially from a low power
perspective.

REFERENCES

[1] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-
Vincentelli, Logic minimization algorithms for VLSI synthesis, Kluwer
Academic publishers, Boston, 1984.

[2] Sasan Iman, and Massoud Pedram, Logic synthesis for low power VLSI
designs, New York, Springer Publishing, 1998.

[3] Farzad Nekoogar, and Faranak Nekoogar, From ASICs to SOCs: A
Practical Approach, Prentice-Hall, 2003.

[4] T. Kuroda, “Low power high speed CMOS VLSI design,” Proc. IEEE
International Conf. on Computer Design, pp. 310-315, 2002.

[5] Semiconductor Industry Association's International Technology
Roadmap on Semiconductors, Available: http://www.sia-
online.org/backgrounders_itrs.cfm

[6] A.P. Chandrakasan, S. Sheng, and R.W. Broderson, “Low power CMOS
digital design,” IEEE Journal of Solid State Circuits, vol. 27(4), pp.
473-484, April 1992.

[7] K. McElvain, “IWLS '93 Benchmark Set: Version 4.0,” distributed as
part of the MCNC International Workshop on Logic Synthesis,
Benchmark distribution, May 1993.

[8] S. Yang, “Logic synthesis and optimization benchmarks User Guide
version 3.0,” MCNC Research Triangle Park, NC, January 1991.

[9] R.K. Brayton, G.D. Hachtel, and A.L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78(2), pp.
264-300, February 1990.

[10] R.K. Brayton, and C. McMullen, “The decomposition and factorization
of Boolean expressions,” Proc. IEEE International Symposium on
Circuits and Systems, pp. 49-54, 1982.

[11] R.K. Brayton, “Factoring logic functions,” IBM Journal of Research
and Development, vol. 31(2), pp. 187-198, March 1987.

[12] T. Stanion, and C. Sechen, “Boolean division and factorization using
binary decision diagrams,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 13(9), pp. 1179-1184, September 1994.

[13] S.C. Chang, and D.I. Cheng, “Efficient Boolean division and
substitution using redundancy addition and removing,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 18(8), pp. 1096-1106,
August 1999.

[14] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” Electronics
Research Laboratory Memorandum No. UCB/ERL/ M92/41, University
of California, Berkeley, May 1992.

[15] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R. Wang,
“MIS: A Multiple-level logic optimization system,” IEEE Trans. on
CAD, vol. 6(6), pp. 1062-1081, November 1987.

[16] K. Keutzer, “DAGON: Technology binding and local optimization by
DAG matching,” Proc. 24th ACM/IEEE Design Automation
Conference, pp. 341-347, 1987.

[17] G. Merrett, and B. Al-Hashimi, “Leakage power analysis and
comparison of deep submicron logic gates,” Proc. PATMOS, Lecture
Notes in Computer Science, Springer, vol. 3254, pp. 198-207, 2004.

[18] T. Sakurai, and A.R. Newton, “A simple MOSFET model for circuit
analysis,” IEEE Trans. on Electron Devices, vol. 38(4), pp.887-893,
April 1991.

[19] B. Sheu, D.L. Scharfetter, P.K. Ko, and M.C. Jeng, “BSIM: Berkeley
Short-Channel IGFET Model for MOS transistors,” IEEE Journal of
Solid State Circuits, vol. 22(4), pp. 558-566, Aug. 1987.

[20] R.X. Gu, and M.I. Elmasry, “Power dissipation analysis and
optimization of deep submicron CMOS digital circuits,” IEEE Journal
of Solid State Circuits, vol. 31(5), pp. 707-713, May 1996.

[21] R. Rudell, “Logic synthesis for VLSI design,” PhD thesis, University of
California, Berkeley, 1989.

[22] G. Caruso, “Near optimal factorization of Boolean functions,” IEEE
Trans. on CAD, vol. 10(8), pp. 1072-1078, August 1991.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

650

Padmanabhan Balasubramanian completed his B.E degree in Electronics
and Communication Engineering from University of Madras, TN, India in
1998 and his M.Tech in VLSI System from National Institute of Technology,
Tiruchirappalli, TN, India in 2005. He was earlier Lecturer in the School of
Electrical Sciences at Vellore Institute of Technology (University and IET,
UK Accredited), Vellore, TN, India. He is pursuing his research in the School
of Computer Science at The University of Manchester, UK. His research
interests are in combinational logic synthesis and optimization for low power
and/or high-performance, and CMOS based digital IC design. He is a student
member of IET, UK and IEEE, USA.

Ryuta Arisaka completed his B.Sc in Computer Science from The University
of Manchester, UK in 2006. Subsequently, he received scholarship from the
School of Computer Science of the same University to pursue his M.Phil (by
Research) in the area of exact real arithmetic. His areas of interest include
software programming, digital logic and numerical computation.

APPENDIX I

TABLE XV
POWER DISSIPATION RESULTS FOR COMBINATIONAL BENCHMARK FUNCTIONS

Technology mapped solution
before algebraic factoring

Technology mapped solution
after proposed algebraic factoring

Benchmark
function

and
specification

Total
power (μW)

Dynamic
power (μW)

Leakage
power (nW)

Total
power (μW)

Dynamic
power (μW)

Leakage
power (nW)

newtpla1
(10 inputs, 2 outputs) 7.08531 6.98426 101.05 5.14433 5.09453 49.8013

con1
(7 inputs, 2 outputs) 6.00884 5.94826 60.5824 10.1577 10.0707 86.9986

clpl
(11 inputs, 5 outputs) 10.1231 10.0131 109.955 17.1432 16.9949 148.267

newtpla2
(10 inputs, 4 outputs) 31.3051 30.9902 314.945 15.766 15.607 158.963

newcwp
(4 inputs, 5 outputs) 14.0829 13.9341 148.795 18.4418 18.2683 173.528

newtag
(8 inputs, 1 output) 4.02158 3.96504 56.5371 2.40032 2.37696 23.3592

dc1
(4 inputs, 7 outputs) 38.5554 38.2694 285.999 38.4361 38.1092 326.887

newill
(8 inputs, 1 output) 9.23922 9.10984 129.388 10.986 10.8783 107.648

newtpla
(15 inputs, 5 outputs) 44.7396 44.2494 490.222 28.7395 28.444 295.509

squar5
(5 inputs, 8 outputs) 25.9126 25.6296 282.992 36.5106 36.1803 330.388

dekoder
(4 inputs, 7 outputs) 18.4578 18.2578 200.02 19.7105 19.5252 185.273

Total

Average

209.53145

19.04831

207.351

18.85009

2180.4855

198.22595

203.43605

18.49419

201.54939

18.32267

1886.6221

171.5111

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

651

APPENDIX II

TABLE XVI
POWER DISSIPATION RESULTS FOR COMBINATIONAL BENCHMARK SUB-FUNCTIONS

Technology mapped solution

before algebraic factoring

Technology mapped solution

after proposed algebraic factoring

Combinational

benchmark

sub-function

Number of

primary
circuit inputs Total

power (μW)

Dynamic

power (μW)

Leakage

power (nW)

Total

power (μW)

Dynamic

power (μW)

Leakage

power (nW)

5xp1_f1 7 7.36278 7.27808 84.6932 5.86574 5.81771 48.0295

amd_f22 14 11.4133 11.2622 151.164 11.7963 11.694 102.242

br1_f3 12 12.1521 11.9972 154.945 8.41237 8.31804 94.3269

br2_f8 12 7.49298 7.39024 102.735 3.94563 3.907 38.6291

bw_f26 5 5.39977 5.34586 53.9115 7.00439 6.94513 59.2615

m1_f9 6 4.00619 3.84971 156.483 2.75895 2.69453 64.4213

dc2_f2 8 9.58236 9.46676 115.6 10.0709 9.97475 96.1512

dk27_f3 9 3.54558 3.50826 37.312 3.83562 3.80283 32.7991

f51m_f5 8 4.98813 4.94554 42.5922 7.02084 6.96297 57.8722

inc_f2 7 6.48578 6.40998 75.7922 10.6611 10.5664 94.6656

luc_f23 8 6.79952 6.71101 88.5138 6.54115 6.48454 56.6071

m2_f11 8 5.66495 5.59397 70.9773 2.31539 2.2946 20.7905

misex1_f6 8 6.88917 6.80685 82.3142 6.98665 6.92824 58.4088

newcpla1_f4 9 3.29517 3.2459 49.269 3.35201 3.32252 29.4896

newcpla2_f3 7 7.27973 7.19907 80.6594 7.86389 7.79756 66.3265

newxcpla1_f7 9 3.53042 3.48815 42.2714 6.36686 6.31284 54.0174

opa_f60 17 5.36569 5.30566 60.0258 4.52687 4.48789 38.9804

rd53_f1 5 2.27182 2.24103 30.7932 3.92851 3.8898 38.71

risc_f1 8 4.7356 4.41938 54.1792 3.5534 3.51627 37.1295

root_f2 8 8.6056 8.51723 88.3768 5.8709 5.82283 48.068

sao2_f1 10 23.7311 23.46 271.075 15.0063 14.8571 149.225

soar_f82 83 3.25533 3.20841 46.914 3.73103 3.6972 33.8289

vtx1_f4 27 4.37461 4.30185 72.761 5.87272 5.81967 53.0492

wim_f2 4 2.8918 2.86076 31.037 2.41096 2.38795 23.0105

newtpla_f1 15 5.83013 5.76116 68.9673 5.18956 5.13955 50.0066

x1dn_f5 27 13.027 12.8837 143.374 7.37297 7.31047 62.4921

Total

Average

341 179.97661

6.92218

177.45796

6.82531

2256.7365

86.79756

162.26101

6.24081

160.75239

6.18278

1508.5385

58.02071

