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Abstract— Factoring Boolean functions is one of the basic 
operations in algorithmic logic synthesis. A novel algebraic 
factorization heuristic for single-output combinatorial logic functions 
is presented in this paper and is developed based on the set theory 
paradigm. The impact of factoring is analyzed mainly from a low 
power design perspective for standard cell based digital designs in 
this paper. The physical implementation of a number of 
MCNC/IWLS combinational benchmark functions and sub-functions 
are compared before and after factoring, based on a simple 
technology mapping procedure utilizing only standard gate primitives 
(readily available as standard cells in a technology library) and not 
cells corresponding to optimized complex logic. The power results 
were obtained at the gate-level by means of an industry-standard 
power analysis tool from Synopsys, targeting a 130nm (0.13μm) 
UMC CMOS library, for the typical case. The wire-loads were 
inserted automatically and the simulations were performed with 
maximum input activity. The gate-level simulations demonstrate the 
advantage of the proposed factoring technique in comparison with
other existing methods from a low power perspective, for arbitrary 
examples. Though the benchmarks experimentation reports mixed 
results, the mean savings in total power and dynamic power for the 
factored solution over a non-factored solution were 6.11% and 5.85% 
respectively. In terms of leakage power, the average savings for the 
factored forms was significant to the tune of 23.48%. The factored 
solution is expected to better its non-factored counterpart in terms of 
the power-delay product as it is well-known that factoring, in general, 
yields a delay-efficient multi-level solution. 

Keywords—Factorization, Set theory, Logic function, Standard 
cell based design, Low power.

I. INTRODUCTION

WO-LEVEL circuits are widely used to implement Boolean 
functions through conventional programmable logic 

devices such as PLA or PAL. However, in modern VLSI 
design, they are economically implemented by multilevel 
circuits. Factorization techniques are key tools in facilitating 
multilevel synthesis. Finding a minimum factored expression 
can be a cumbersome task. So we are compelled to resort to 
heuristic algorithms in order to find a 'good', if not best 
solution in reasonable time. The general strategy employed by 
such algorithms is as follows. A divisor of a Boolean function 
F to be factored is singled out. Then F is divided by this 
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divisor. Such a procedure is recursively applied to the quotient 
and the remainder of the division. Computing time and 
factorization quality depend on the way in which a divisor is 
chosen and the type of division performed i.e., algebraic or 
Boolean. In this paper, a novel heuristic developed on the 
basis of set theory for algebraic factorization of single-output 
Boolean functions is presented. The algorithm has been 
implemented as a stand-alone factorization tool in a high-level 
language, Java in MS-Windows OS, and takes as input the 
reduced logic expressions resulting from a standard two-level 
logic minimizer such as Espresso and outputs the factorized
solution in the same algebraic expression format after 
compilation. Simultaneous factorization of any number of 
different single output Boolean functions is made possible. 
Rather than comparing the time taken for factorization with 
other existing techniques, we instead focus on the power 
quality of the resulting solution after implementation using 
standard cells corresponding to a 130nm UMC CMOS library. 

The proliferation of portable hand-held electronics 
combined with increasing packaging costs is forcing circuit 
designers to adopt low power design methodologies. Power 
wall is a clear roadblock in the semiconductor industry [4]. 
Low power design of ASICs result in increased battery life and 
enhances reliability. Infact, the Semiconductor Industry 
Association technology roadmap [5] has underlined low power 
design techniques as a critical need. Hence, it is indispensable 
for circuit designers to acknowledge the importance of limiting 
power consumption and subsequently improve energy 
efficiency, possibly at all levels of the design hierarchy, 
starting from even the lower levels of design abstraction. Gate-
level optimization achieves power savings; in some specific 
cases more than 50% reduction in power, without loss of 
performance, may be achieved [2]; though in general the 
reduction is around 5%-15% [3]. The other advantage being 
that logic-level optimization is relatively low cost in terms of 
design effort in comparison with strategies employed at other 
levels. We analyze the effect of factoring of logic functions 
from a low power point of view and make an effort to address 
the burning issue of power dissipation at the gate-level mainly 
with respect to the above operation. 

The remaining part of this paper is organized as follows. In 
section 2, the different components of power consumption in 
digital CMOS circuits are discussed. In the next section, basic 
and background information pertaining to logic functions has 
been first presented. Then the issue of factorization, which is 
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basically a logic optimization (restructuring step), performed 
with the intention of reducing the literal costs at the technology 
independent stage is briefly dealt with. Algebraic and Boolean 
division operations are concisely explained with simple
Boolean functions. In section 4, the proposed factorization 
technique based on the notion of set theory is then presented 
with an illustration, followed by a generalized algorithm. 
Section 5 elucidates the hardware implementation issues 
involved and about the choice of the base-function set for 
technology binding. In the subsequent section, a variety of 
examples follow; to illustrate the significance of the proposed 
factorization technique in comparison with other schemes, 
from a low power perspective. In section 7, the power 
estimation methodology is highlighted. Then the impact of the
factoring operation on logic functions is then analyzed 
extensively from a power dissipation perspective for many
MCNC/IWLS combinational benchmark functions and sub-
functions [7] [8]. The power results were obtained using an 
industry-standard power analysis tool, Synopsys PrimePower, 
and correspond to a 130nm (0.13μm) UMC CMOS library, 
comprising high density standard cells, for the typical case. 
The wire loads were automatically selected for simulation 
purpose, based on the cells used and their assigned drive 
strengths. Section 8 presents a concise summary and also the 
conclusion borne out of this research, followed by the 
bibliography.

II. POWER CONSUMPTION IN DIGITAL CMOS CIRCUITS

CMOS has long been considered the technology of choice 
for low power applications. The continuous shrinking of 
feature sizes has made it possible to achieve even greater 
integration of complex functions on a single chip. However, 
the higher chip densities have resulted in one to two orders of 
magnitude increase in the power consumption of many higher-
end processors. The point is being rapidly reached when 
reduction of power dissipation becomes a most important 
hurdle that designers and manufacturers need to tackle.

Power consumption in CMOS circuits falls into two broad 
categories: dynamic power (Pdynamic) and static power (Pstatic).
Dynamic power is the power dissipated when the circuit is 
active. It is composed of two kinds of power viz. switching 
power (Pswitching) and internal power (Pinternal). Pswitching is due to 
the charging and discharging of load capacitance at the output 
of the cell as it makes transitions between '0' and '1'. The total 
load capacitance at the output of a driving cell is modeled as 
the sum of interconnect and gate capacitances on the driving 
output. It is typically expressed as CLVdd

2E(t), where CL is the 
load capacitance, Vdd is the supply voltage and E(t) is the 
expected number of times that the gate switches, also called 
transition activity. The quadratic dependence of Pswitching on Vdd

indicates that scaling down the supply voltage will have the 
greatest impact on reducing Pswitching. This also avoids hot-
carrier effects in short-channel devices. However, the 
threshold voltage Vt also has to be scaled down because 
otherwise it has a much greater detrimental impact on the 

delay when small geometry devices are used [18]. Thus scaling 
Vt by the same factor as Vdd is needed so as not to adversely 
impact delay. However, reducing Vt in small geometry 
MOSFETs results in an exponential increase in the standby 
current [19]. Pinternal is any power dissipated within the 
boundary of a cell. During switching, a circuit dissipates 
internal power by the charging or discharging of any existing 
capacitances that are internal to the cell (also called intrinsic 
capacitances). Pinternal also includes power dissipated during a 
momentary short circuit between the pull-up and pull-down 
networks of a standard cell, called as short-circuit power, Psc.
Static power consumption (Pstatic) is the power dissipated by a 
gate when it is not switching, i.e., when it is inactive. The main 
component of static power results from source-to-drain 
subthreshold leakage, which is caused by reduced threshold 
voltages that prevent the gate from completely turning off. In 
other words, it is mainly due to the leakage current caused by 
the reverse-biased junction leakage and sub-threshold leakage 
(devices that conduct while in the OFF-state – subthreshold 
conduction). Since power is dissipated when current leaks 
between the diffusion layers and the substrate, static power is 
also referred to as leakage power. Simulation results given in 
[20] show that the power dissipation due to the standby current 
dominates the switching power at low threshold voltages. 
Predictions on future technologies project that the leakage 
power will be so high that it will become substantial even 
when the chip is in active mode. 

III. FACTORIZATION OF LOGIC FUNCTIONS

A. Preliminaries
In this section, some background information about 

Boolean function, network and the terminologies related with 
logical division are first stated. 

1) Definition 1: Boolean function
A single output Boolean function is a mapping from n-

dimensional (n -dimensional one: 
{0,1}n {0,1,d}, where 'd' denotes a don't care condition. If 
this condition does not exist, then the function is a completely 
specified function (CSF). Each of the 2n nodes in the Boolean 
space corresponds to a minterm. If a minterm is mapped to 
output 1 (0 or d), then it is called an ON-set (OFF-set or DC-
set) minterm.

2) Definition 2: Boolean network
A Boolean network is usually modeled as a directed acyclic 

graph (DAG) with nodes represented by Boolean functions. A 
DAG is distinguished from a tree structure in that its nodes can 
have unlimited fan-in and unlimited fan-out. The sources of 
the graph are the primary inputs of the network; the sinks are 
the primary outputs. The inputs of a node are called its fan-
in's. The output of a node may be an input to other nodes 
called its fan-out's. An edge connects two nodes that are in the 
fan-in/fan-out relationship.

3) Definition 3: Kernel and Co-Kernel
The quotient resulting from the algebraic division of an 

expression, F, by a cube c (i.e., F/c) is the kernel k of F, if 
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there are at least two cubes in the quotient and the cubes do 
not have any common literal. The cube divisor c used to obtain 
the kernel is called its co-kernel. Different co-kernels may 
produce the same kernel: hence, the co-kernel of a kernel is 
not unique. If a kernel has no kernels except itself, it is said to 
be a level-0 kernel. A kernel is said to be of level n if it has at 
least one level-(n-1) kernel but no kernel, except itself, of level 
n or greater. 

Let us consider the following Boolean expression, given by,

Z(a,b,c,d,e,f,g) = abc + ac'g + b'df + b'cde                          (1)

The quotient of Z and the cube a is then,

Z/a = bc + c'g                                                                        (2)

Similarly the quotient of Z and the cube b’ is

Z/b' = df + cde                                                                       (3)

Z/a is a kernel of Z, since it has two cubes and no common 
literal. The co-kernel is a. However, Z/b' is not a kernel of Z,
since literal d is common to both cubes of Z/b'.

B. Factorization – Algebraic and Boolean division
Factoring Boolean functions is one of the basic operations 

in algorithmic logic synthesis. The objective of factorization is 
to represent a Boolean function in a logically equivalent 
factored form but with a minimum number of literals. An 
optimal (shortest-length) factorized solution for an arbitrary 
Boolean function is a problem which cannot be solved in 
polynomial time; in many situations (NP-hard), and so all 
practical algorithms for factoring are heuristic and provide a 
correct, logically equivalent formula, but not necessarily a 
minimal length solution in each case. This type of optimization 
step will yield a minimum area for the physical realization of 
this function. Algebraic algorithms for factorization have been 
developed previously [10] [11] and are widely used in 
commercial environments due to their speed. On the other 
hand, Boolean factoring [12] [13] is not widely used because 
of its computational complexity even though it gives better 
results in many cases. The main difficulty in the latter being 
the difficulty to easily figure out good candidate divisors for a 
function, which is not usually straight-forward.

Factoring is the translation of a function in the sum-of-
products form (also called disjunctive form) to a form with 
parentheses and having a minimum number of literals [10]. For 
e.g. a, ab'c', a(b+c+d)+e, are all factored forms. Thus it is 
equivalent to a parenthesized algebraic expression and is most 
appropriate one for use in multilevel logic synthesis. A 
factored form is isomorphic to a tree structure, where each 
internal node is an AND or OR operator and each leaf is a 
literal. There are mainly two methods to obtain the factored 
form of a two-level representation of the function: Algebraic 
division, also known as weak division which is quite fast and 
Boolean division, also known as strong division which is 

slower but capable of giving better results in many cases. In 
general, the algebraic methods are fast because the logic 
function is treated as a polynomial, and hence fast methods of 
manipulation are available. Boolean factoring is generally non-
polynomial, and there is not much information about the 
implementation of such algorithmic procedures.

Let us assume two Boolean expressions, f and g. If there is 
an operation which generates expressions h and r such that f
= gh + r, where gh is an algebraic product (i.e. g and h have 
no common variable), then this operation is called an algebraic 
division. For example, if f = abd + bcd + a’c + b’d’ and         
g = a + c, the algebraic (polynomial) division will yield

f = gh + r = bd (a + c) + a’c + b’d’                                (4)

Another form of division used in factoring logic expressions 
uses the identities of Boolean algebra (for e.g. yy’ = 0, yy = 
y, and y + y’ = 1 for a variable y). Thus, for an expression, f = 
pq + t, pq is a Boolean product [i.e. p and q have one or more 
common variable(s)], then the division of f by p is called a 
Boolean division. Hence Boolean division for the original 
expression of f will result in the following factored form.

f = pq + t = (bd + a’) (a + c) + b’d’                            (5)

IV. SET THEORY BASED ALGEBRAIC FACTORING TECHNIQUE

Some of the widely used algebraic factorization methods are 
usually found embedded in open-source multi-level logic 
synthesis systems such as MIS [15], SIS [14] or in commercial 
environments. This necessitates the need for a stand-alone 
factorizer which could then be modified to suit different 
requirements at a later stage. Before proceeding with the 
listing of the proposed factoring heuristic, let us familiarize 
ourselves with the terminology defined for a Boolean cube, c:
the description set of a cube, D(c). D(c) specifies the set of all 
literals in their actual form, which a particular Boolean cube c
is dependent upon for its evaluation to a logic value of ‘1’. For 
e.g. if F = a’bd + b’cd’, where cubes, C1 = a’bd and C2 = 
b’cd’, then D(C1) = {a’,b,d} and D(C2) = {b',c,d'} and so the 
set intersection of the two cubes, D(C1) D(C2) = , with its 
cardinality given by | D(C1) D(C2) | = 0.

The set theory based factorizing technique, which also treats 
a logic expression as a polynomial is described through steps 1 
to 11 of the proposed algorithm listed below.

A. Algorithm
Given a logic function F:

1) Minimize F into two-level logic to obtain F* (where F and 
F* are logically equivalent)
2) For each cube, c in F*, define its D(c)
3) Perform set intersection of D(c) with the description set of 
each and every cube in F* independently
4) Enumerate the cardinality of all the set intersection 
operations
5) Choose those intersection operations which yield the highest 
cardinality
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6) Extract the shared literal(s) from the cube(s) which 
correspond to highest cardinality
7) The shared literal(s) now correspond to the co-kernel
8) Remaining literals in each of those cubes (logically OR-ed) 
form the kernel
9) Check the cubes grouped in F*
10) For the remaining unchecked cubes in F*, repeat steps 2 to 
8 (even with existing co-kernel(s)) till all cubes are checked
11) The resulting solution is identified as G, factored form of 
F*
12) (Extract and Group operations) – Parse G to find whether 
similar kernels exist independently; otherwise go to step 15
13) If so, the kernel is extracted once and its respective co-
kernels are logically OR-ed
14) Recursively execute steps 12 and 13 till no more similar, 
but independent kernels are found
15) The final algebraically factorized solution for the given 
Boolean function is obtained

In short, the above algorithm is described as follows. 
Largest single cube common divisors are first extracted from a 
Boolean function specified in minimized disjunctive form, 
based on the cardinality of the intersection operation between 
the description sets of two distinct cubes considered at a time. 
This procedure is then iterated until no more single cube 
divisors can be isolated in the function. This completes the 
algebraic factoring step. The resulting kernels, if exist 
independently, and are also found to be shared between 
different co-kernels are then extracted and grouped according 
to the distributive axiom. The final solution is not only 
factored but also does not contain any logic duplication. 

V. HARDWARE REALIZATION ISSUES AND CHOICE OF BASE-
FUNCTION SET

In this section, information about the issues involved in the 
physical implementation of the logic expressions is discussed. 
This is important in this context that the minimized two-level 
solutions output by standard tools such as Espresso [4] cannot 
be implemented as it is (cannot be synthesized) due to the fan-
in restrictions imposed on the gates available in a physical 
standard cell library. So it is clear that there is a need for 
technology binding here. Technology binding is the process of 
mapping (implementing) a technology independent description 
in a particular technology [16]. The role of technology 
mapping, as seen here, is not to change the structure of the 
circuit (as this will amount to modifying the actual synthesis 
solution), for e.g. by finding common sub-expressions between 
two or more parts of the global function; but to finish the 
synthesis of the circuit by performing the final gate selection 
from a particular library. The actual role played by technology 
mapping here is the choice of gate primitives belonging to the 
cell library in order to implement the logic equations. When 
implementing large logic function terms, there arises a need to 
partition the input field by decomposing, so that it can be 
implemented as a combination of sub-function terms. It is not 
always obvious how best to achieve this. So the problem 
involves selecting the most judicious input variable sub-sets so 

that the overall term may be implemented by a suitable 
combination of sub-terms. We consider this issue here mainly 
from a low power point of view. We do this so as to 
specifically study the gain secured by factorization when 
combined along with technology mapping in comparison with 
pure technology mapping. So for the present, we do not 
introduce other logic transformations for optimization, since, 
we are more interested in the issue of technology binding after 
local optimization. 

The choice of a base-function set is at the heart of any 
technology mapping algorithm. Also, the choice of a set of 
base-functions could be arbitrary as long as it is functionally 
complete [16]. The goal here is to find that base-function set 
which would provide the highest level of optimization (mainly 
power optimization) with a small set of patterns. According to 
[16], the granularity of a base-function set affects the 
optimization potential. With this approach, the logic function, 
Y = (efgh + ijkl + mnop + qrst) requires only one pattern for 
realization in NAND-NAND logic style – a tree of five four-
input NAND gates; with a base-function set comprising two-
input, three-input and four-input NAND gates and inverting 
buffers. Representing all patterns for this same function using 
two-input NAND gates and inverters would require eighteen 
patterns. So a finer resolution base-function set would allow 
for more covers, and hence better quality solutions. In our 
case, we consider all individual gate primitives of a standard 
cell library to constitute the base-function set. The above 
discussion is further clarified with the following examples for 
AND-OR-Invert (AOI) logic format realization. 

For a cube, a'b'c'd'e'f', let us consider its implementation 
via, three different tree structures by means of technology 
mapping: using only 2-input AND-gates and inverters (imp1),
using 2-input, 3-input AND gates and inverters (imp2) and by 
a maximum fan-in based mapping using 3-input, 4-input AND 
gates and inverters (imp3); represented by figures 1, 2 and 3. 

Fig. 1 Technology mapping using 2-input cells and inverters (imp1)
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Fig. 2 Technology binding with 2, 3-input cells and inverters (imp 2)

Fig. 3 Technology binding based on maximum fan-in based 
implementation (imp3)

TABLE I
WORST-CASE AVERAGE DELAY COMPARISON

Implementation style Critical path Worst-case average delay (ns)
imp1 i2-g2-g3-g5 0.17125
imp2 i2-g7-g8 0.132
imp3 i2-g9-g10 0.156

The above table gives the maximum average delay 
computed along the respective critical paths of the above three 
implementations. The average delay, estimated as the mean of 
the low-to-high (rise) and high-to-low (fall) delays
encountered by the signal while traversing through logic gates, 
is accurately determined at the gate level by the timing 
analyzer, PrimeTime for a 130nm UMC CMOS process. The 
wire loads were back-annotated by the tool automatically 
before performing timing analysis. 

TABLE II
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS                                                     

(FOR TYPICAL CASE: SUPPLY = 1.2V, TEMPERATURE = 25°C)
Power dissipation

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 3.26914 3.23945 29.6877
imp2 2.35462 2.33404 20.5844
imp3 1.87136 1.85511 16.2458

The last implementation style leads to lesser power 
consumption than the other two, as can be seen from Table 2, 
for a typical case library specification. This is mainly because 
of a reduction in the number of cell instances, from a 

simulation point of view. However, the reason for this 
phenomenon is captured more accurately at the device level in 
[17]. To verify this, the simulation has been extended targeting 
best case and worst case library specifications as well and they 
are found to be in good agreement with the above, as evident 
from Tables 3 and 4. The power results were obtained for a 
clock frequency of 100MHz. Table 5 further shows that the 
technology binding procedure identified as imp3 betters the 
other two in terms of the power-delay product (PDP) as well, 
for all the three target library scenarios.

TABLE III
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS                                                    

(FOR BEST CASE: SUPPLY = 1.32V, TEMPERATURE = 0°C)
Power dissipation

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 4.25175 4.16056 91.1835
imp2 3.04785 2.98433 63.5213
imp3 2.40974 2.35994 49.8044

TABLE IV
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS                                                    

(FOR WORST CASE: SUPPLY = 1.08V, TEMPERATURE = 125°C)
Power dissipation 

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 2.63746 2.56383 73.6291
imp2 1.91433 1.86302 51.3116
imp3 1.52619 1.48606 40.1256

TABLE V
PDP EVALUATION FOR DIFFERENT IMPLEMENTATIONS

Implementation
style

Typical case
(fJ)

Best case
(fJ)

Worst case
(fJ)

imp1 0.5598 0.7281 0.4517
imp2 0.3108 0.4023 0.2527
imp3 0.2919 0.3759 0.2381

                                                     

To confirm the veracity of the above argument, a benchmark 
sub-function of eight input variables, exps_f12 [7] was 
considered. Its reduced two-level equation is given as, 

exps_f12 = a'b'c'd'efg'h' + a'bcd'e'f'gh' + a'c'defgh +     
                   a'b'c'de'f'gh + a'cd'e'f'g'h + a'bcd'f'g'h              (6)

TABLE VI
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS                                                    

(FOR TYPICAL CASE: SUPPLY = 1.2V, TEMPERATURE = 25°C)
Power dissipation 

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 21.6456 21.3671 278.431
imp2 14.6222 14.434 188.172
imp3 10.9636 10.8101 153.499

As is usual practice to estimate the speed performance of a 
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gate based on its fan-out, a similar approach was used while 
assigning the drive strengths for the inverters, to be associated 
with the primary circuit inputs. The technology-mapped 
realizations correspond to a sort of leaf-DAG logic structure 
here, where DAG-ness is exhibited only in the primary circuit 
inputs. A similar structural representation was used for all 
subsequent case studies.

TABLE VII
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS                                                     

(FOR BEST CASE: SUPPLY = 1.32V, TEMPERATURE = 0°C)
Power dissipation 

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 28.0776 27.2295 848.132
imp2 18.9056 18.3342 571.447
imp3 14.1289 13.6645 464.402

TABLE VIII
POWER DISSIPATION OF DIFFERENT IMPLEMENTATIONS                                                     

(FOR WORST CASE: SUPPLY = 1.08V, TEMPERATURE = 125°C)
Power dissipation 

componentsImplementation
style Total Dynamic Leakage

power (nW)
imp1 17.5306 16.8477 682.884
imp2 11.8997 11.4401 459.591
imp3 8.96343 8.58947 373.961

The power consumption components for the three different 
mapped structures, corresponding to three different library 
cases (typical case, best case and worst case) for a 130nm 
UMC CMOS library are indicated in Tables 6, 7 and 8
respectively. The results mentioned in these tabular columns 
correlate quite well and add value to the above reasoning that a 
maximum fan-in based technology binding mechanism could 
potentially reduce power dissipation. However, this may be at 
the expense of an increase in delay; provided timing closure 
does not become a serious issue to reckon with. 

VI. COMPARISON WITH OTHER FACTORING METHODS

Many of the cases referred to in this section are based on the 
examples cited in [9] [10] [11] [15] [21] [22]. Let us consider 
an example to illustrate the significance of the set theory based 
factoring scheme over a generic factoring scheme [11] in 
obtaining a multilevel solution. 

Let Z be a Boolean function whose support set is dependent 
on four inputs and is given by,

Z = abc' + a'bc + abd + a'c'd + bcd                                (7)

The different factored equations that could be obtained for Z
based on an arbitrary choice of literals in succession are given 
by the following equations. The sequence of literals chosen has 
been mentioned alongside Z in parenthesis for each expression.

1st sample – Z(a',b,d) = a'(c'd + bc) + b(d(a + c) + ac')    (8) 

2nd sample – Z(c,d,b) = c(bd + a'b) + d(ab + a'c') + abc'    (9)

3rd sample – Z(d,b) = d(a'c' + b(a + c)) + b(a'c + ac') (10)

The set theory based factorization method yields the 
following factored expression after three iterations of the 
above-mentioned algorithm.

Z = b(a(c' + d) + c(a' + d)) + a'c'd                          (11)

The different power dissipation components of the above 
realizations (implemented using the high-density standard cells 
of a 130nm UMC CMOS process) for a typical case with a 
frequency of 100MHz and a supply voltage of 1.2V with 
automatic wire load selection is listed below.

TABLE IX
POWER CONSUMPTION OF DIFFERENT FACTORED EXPRESSIONS 

Power consumption parameters
Factored

form
Total
Power
(μW)

Dynamic
Power
(μW)

Leakage
power 
(nW)

1st sample 6.38032 6.32669 53.6337
2nd sample 6.25973 6.20598 53.743
3rd sample 6.66331 6.60807 55.2453
Proposed 5.50443 5.4587 45.7286

Firstly, it is worth mentioning that the generic factoring 
scheme could enable a similar power optimal realization as 
that of the proposed one for the literal sequence (a,b,c).
However, it is clear from the above, that a literal factorization 
scheme suffers from the disadvantage that it could lead to 
many different solutions based on the choice of order of 
literals, though it is considered to be a faster scheme. As a 
result, the power quality of the realization may not necessarily 
be optimal for a random choice and so the selection of an 
appropriate literal sequence from a power perspective, for this 
method, would in turn introduce complexity as it could not be 
easily predicted at the technology-independent stage. On the 
other hand, the proposed set theory based factoring scheme 
leads to a single parenthesized expression in most cases and 
might be economical in terms of power dissipation. This is 
substantiated by the values listed in Table 9. There is a savings 
in total power by 12.06%, dynamic power by 12.04% and 
leakage power by 14.91% for the proposed method over the 
best of other realizations listed in the above table, 
corresponding to random ordering based on the generic 
factoring method. 

Now, we take a function to examine the power quality of 
the factored forms obtained by X-factor (XF) [14] [15], Quick-
factor (QF) [14] [15] and proposed methods. 

Y = ac + ad + bc + bd + ce + cf + ae + ag + be + df + dg + 
       bf                                                                              (12)

The factored expressions generated by XF, QF and 
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proposed algorithms are given by (13), (14) and (15) 
respectively. Their corresponding power values (obtained 
under a similar simulation environment) are listed in Table 10.

YXF = (c + d + e) (a + b) + (b + c + d)f + (a + d)g + ce (13)

YQF = g(a + d) + (c + d + e) (a + b) + c(f + e) + f(b + d) (14)

YProposed = b(c + d + e + f) + a(c + d + e + g) + c (f + e) + 
                 d(g + f)                                                            (15)

TABLE X
POWER CONSUMPTION OF DIFFERENT FACTORED SOLUTIONS

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
XF 4.48729 4.44613 41.1619
QF 5.21768 5.17031 47.3676

Proposed 4.30493 4.26404 40.8979
                                                    

The proposed factoring procedure took eight iterations to 
obtain (15). From the above table, it can be seen that it results 
in savings in power consumption in comparison with the other 
schemes. For this particular example, the literal factoring 
scheme would have been able to obtain a similar solution as 
that of (15) for any ordering of single literal divisors. 

Let us consider another example to highlight the 
usefulness of the proposed heuristic by considering a function 
X with a support set of nine variables.

X = abfg + aceg' + abeg' + abe'g + ace'g + acfg + dfg + deg' 
       + de'g + bi + ch + ci + bh      (16)

XXF = (a(b + c) + d) (eg' + g(f + e')) + (b + c) (h + i)      (17)

XQF = (a(g(e' + f) + eg') + i + h) (b + c) + d(g(e' + f) + eg')
                                                                                             (18)

XLF = a(b(eg' + g(e' + f)) + c(eg' + g(e' + f)) + b(h + i) + c(h
         + i) + d(eg' +  g(f+e'))                                             (19)

XProposed = (g'e + g(e' + f)) (a(b + c) + d) + (b + c) (h + i)(20)

The factorized expression (19) was obtained for a random 
literal ordering (a,d,b,c,g). The power consumption (under a 
similar simulation environment) of the above equations is
listed in Table 11. 

TABLE XI
POWER CONSUMPTION OF VARIOUS FACTORED FORMS 

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
XF 7.53665 7.47397 62.687
QF 9.07217 8.99763 74.542
LF 14.4695 14.3473 122.233

Proposed 7.50666 7.44387 62.79

In this case, (20) was obtained in the eleventh iteration of 
the proposed heuristic. The QF heuristic is quicker and more 
preferred than the XF algorithm. However, for this case, it can 
be observed from Table 11, that the power quality of the XF 
algorithm is comparable with that of the proposed one and 
enables reduction in leakage power alone by 0.16%; while in 
terms of total power and dynamic power, it exhibits a slight 
increase by 0.39% and 0.4% respectively.

We now compare the results of the realizations based on 
Good-factor (GF) [9] [15], QF and proposed technique for a 
Boolean function of seven variables, given as follows.

W = pr + sp + rq + qs + tq + pt + pv + qu + tr + ru + vs (21)

The respective factored forms, obtained on the basis of the 
above mentioned algorithms are given by the following 
equations in order.

WGF = (r + s + t) (p + q) + u(q + r + s) + v(p + s) + rt     (22)

WQF = (p + s)v + (p + q) (s + t + r) + r(t + u) + u(q + s)  (23)

WProposed = q(r + s + t + u) + p(r + s + t + v) + r(u + t) + sv
                                                                                       (24)

The corresponding power components of the above 
realizations for a 0.13μm process under similar conditions are
indicated in Table 12. From Table 12, we find that the GF 
heuristic has resulted in a power optimal solution in 
comparison with the QF algorithm. However, the set theory 
based factorization procedure enables savings in total, active 
and static power components by 17.29%, 17.33% and 13.58% 
in comparison with that of the GF algorithm. 

TABLE XII
POWER CONSUMPTION OF THE DIFFERENT FACTORED FORMS 

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
GF 4.47287 4.43163 41.2378
QF 5.21768 5.17031 47.3676

Proposed 3.69913 3.66349 35.6357

Based on experiments on a large set of functions [15], it has 
been observed that GF algorithm is almost three times slower 
than QF due to the additional run-time spent in computing all 
of the kernels of the function before choosing a divisor. 
Though Boolean factoring enables good results, it is almost 
four times slower than GF algorithm owing to the extra time 
spent performing a strong Boolean division as opposed to a 
weak algebraic division.

Though the lesser-known factorization heuristic, FACT of 
[22] is found to be faster than the QF-algorithm based on 
experiments with arbitrarily generated functions, it deals with a 
different procedure for kernel-extraction based on the common 
rectangle-covering and intersection schemes. Heuristics are 
used in the three procedures of which this method is made up 
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in order to obtain a good factorized solution. The method is
based on the generation of some products covering a set of 
true cubes suitably chosen. This choice may pose time 
complexity for large functions. The products forming a near-
optimal factored expression are locally chosen from the ones 
covering each of those cubes. 

Let us consider a sizeable logic function description, R of 
12 inputs, given by (25) as,

R = y2y3y4y7 + y2y3y11 + y3y5y6y7 + y3y5y6y11 + y3y6y9
     + y3y4y7y12 + y2y5y6y8y12 + y2y10 + y4y6 + y4y8 + 
      y4y10 + y5y6y8y10 + y6y10y11 + y8y12 + y9y12 + y1 +
     y7y11y12 + y7y8                                                         (25)

RQF = y3(y2(y4y7 + y11) + y6(y5(y7 + y11) + y9) + y4y7y12)
         + y2(y5y6y8y12 + y10) + y4(y8 + y6 + y10) + y1 +
          y10(y6(y5y8 + y11) + y12(y8 + y9) + y7y11) + y7y8

                                                                                 (26)

RFACT = x1 + x8(x4 + x7 + x2x5x6x12) + x10(x2 + x4 + x6x4 
             + x6(x11 + x5x8) + x11x7 + x12(x9 + x8)) + 
            x3(x2(x4x7 + x11) + x6(x9 + x5(x7 + x11)) +x7x4x12)

                                                                                 (27)

RProposed = y6(y3(y5(y7 + y11) + y9) + y5y8(y2y12 + y10)) + 
                y4(y3y7(y2 + y12) + y6 + y8 + y10) + y1 + y7y8 +
                y11(y2y3 + y6y10 + y7y12) + y2y10 (28)

TABLE XIII
POWER DISSIPATION OF VARIOUS FACTORIZED EXPRESSIONS  

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
QF 14.4082 14.2876 120.534

FACT 12.9385 12.821 117.562
Proposed 11.7189 11.6162 102.763

The factorized expressions obtained on the basis of the 
proposed technique betters the solutions rendered by other 
algebraic factoring methods in terms of power dissipation as 
can be seen from Table 13.

Finally, we consider an arbitrary function with a support set 
comprising 9 inputs, given by (29). Here, we compare the 
solutions obtained by the multi-level logic synthesis method 
outlined in [21] with that of our proposed method. The 
respective Boolean equations are given below. 

S = abce + abde + ace'i + ade'i + a'fgh                          (29)

TABLE XIV
POWER DISSIPATION OF THE FACTORIZED EXPRESSIONS  

Power consumption parameters
Factored

form
Total

power (μW)
Dynamic

power (μW)
Leakage

power (nW)
Approach of 

[21]
4.94834 4.9024 45.942

Proposed 4.50532 4.46411 41.2071

SConventional = a'fgh + (ac + ad) (be + e'i)                          (30)

SProposed = a((be + e'i) (c + d)) + a'fgh                          (31)

A wide variety of non-regenerative Boolean functions
mentioned in previous literatures were considered in order to 
evaluate the significance of the proposed factoring scheme 
based on the set theory paradigm. The power consumption 
results obtained underline its usefulness.

VII. POWER ESTIMATION METHODOLOGY AND POWER 
DISSIPATION RESULTS OF COMBINATIONAL BENCHMARKS

Minimized two-level logic expressions for many
MCNC/IWLS combinational benchmark functions [7] [8] and 
sub-functions were first obtained using Espresso tool [1]. 
Since the focus here is exclusively on analyzing the effect of 
factorization, the different functions/sub-functions were 
reduced depending on whether the normal output phase or the 
complementary output phase resulted in less number of 
essential prime implicants for each individual function output. 
This subsequently translates into less number of instances 
(library cells) for each function/sub-function output. The 
minimized equations resulting from Espresso are then given as 
the input expressions for the set-theory based factorizer tool,
implemented using Java, and can be run on any platform. The 
outputs are the factorized Boolean equations, obtained after 
compilation. After a simple technology mapping of the non-
factored and factored expressions, based on the methodology 
(maximum fan-in dependent library cell binding) discussed in 
section 5, power analysis was carried out using Synopsys 
PrimePower with a 130nm UMC CMOS technology library as 
the target for the typical case at an ambient temperature of 
25°C; the recommended supply voltage for the typical case 
being 1.2V. The input clock frequency was set to 100MHz and 
the wire loads were selected automatically by the tool. The 
power dissipation results (total, dynamic and leakage) obtained 
for the benchmark functions are mentioned in Table 15, while 
those corresponding to the sub-functions are highlighted in 
Table 16 (both given in appendices). 

Table 15 basically reports mixed results in terms of power 
consumption. This is because, in many cases, factorization 
tends to increase the number of cells needed for custom
implementation while compared to a simple maximum fan-in 
based mapping for original reduced two-level logic. However, 
as the description set of each cube grows in size and when the 
function tends to comprise more cubes, the balance is tilted in 
favour of factorization. But it is clear that a factored solution 
would tend to exhibit a lower critical path delay in comparison 
with a non-factored solution comprising probably maximum 
fan-in cells in its longest path. Overall, we find that there is 
some appreciable reduction in leakage power by 13.48% over 
a pure technology mapped implementation; mean savings in 
total power and dynamic power being 2.91% and 2.79%. An 
important observation to be recorded here is that logic 
functionalities with embedded EXOR logic tend to benefit the 
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most from factorization operation. This is strongly justified by 
the power results of benchmarks newtpla, newtpla2 and to 
some extent in the case of newtpla1. This is also visible in the 
case of sub-functions (refer Table 16) such as 5xp1_f1, br1_f3, 
br2_f8 and sao2_f1, which are EXOR intensive. It has been 
inferred that factorization does reduce leakage power 
considerably in cases where there is good sharing of literals 
among the essential prime implicants. This is evident from the 
results corresponding to newtpla1 and newtag apart from 
newtpla and newtpla2. This is obviously good news for 
technology nodes pertaining to 90nm and below, where 
leakage power forms a significant proportion of the total 
power dissipation. Surprisingly, there are cases where leakage 
power is alone reduced even though an increase in dynamic 
and total power consumption are noticed for e.g. newill and 
dekoder, while the contrary is observed for dc1.

On an overall basis, the simulation results detailed in Table 
16 report mean savings in total power, dynamic power and 
static power by 9.84%, 9.41% and 33.15% respectively. 
Considering sub-functions (individual outputs of benchmarks), 
significant reduction in all the three power components is 
noticeable for many functions, which have more non-
redundant cubes and also exhibit good sharing of literals. To 
identify some, this is evident from the results corresponding to 
br1_f3, br2_f8, m1_f9, m2_f11, root_f2, sao2_f1 and x1dn_f5.
There are also cases where reduction in static power alone can 
be observed for some sub-functions after factorization, even 
though an increase in total power and dynamic power is found. 
Samples for this include amd_f22, newcpla_f4, dc2_f2,
soar_f82, newcpla2_f3, misex1_f6 and vtx1_f4.

VIII. SUMMARY AND CONCLUSION

This paper highlights the importance of factorization as a 
basic and important step for multilevel logic realization of a 
combinatorial function and also various existing algebraic 
factoring techniques. The proposed factoring technique based 
on a set theory paradigm has been presented. The advantage of 
the proposed technique in obtaining an efficient factored 
solution for a given function and its power optimality was also 
demonstrated through experimental results. It is to be noted 
that though this method generates a unique solution, the 
possibility of obtaining multiple solutions is not ruled out. 
However, such expressions would all be not only logically 
equivalent but algebraically as well. The base-function set 
considered for simple technology mapping of a traditional 
logic realization, in accordance with the actual individual gate 
primitives available in a physical standard cell library is then 
discussed. This is followed by an analysis of the effect of 
factorization for many benchmark functionality
implementations, for a typical case library specification. 

The simulation results obtained for combinational 
benchmark functions and sub-functions indicate moderate 
average savings in total and dynamic power consumption 
parameters by 6.11% and 5.85% for the factored solutions 
over the non-factored ones. In terms of the leakage power 

component, considerable mean savings of 23.48% was 
reported. The novel factoring technique presented in this paper 
is expected to be a precursor for further research in
combinational logic optimization, especially from a low power 
perspective.
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APPENDIX I

TABLE XV
POWER DISSIPATION RESULTS FOR COMBINATIONAL BENCHMARK FUNCTIONS

Technology mapped solution
before algebraic factoring

Technology mapped solution
after proposed algebraic factoring

Benchmark
function

and
specification

Total
power (μW)

Dynamic
power (μW)

Leakage
power (nW)

Total
power (μW)

Dynamic
power (μW)

Leakage
power (nW)

newtpla1
(10 inputs, 2 outputs) 7.08531 6.98426 101.05 5.14433 5.09453 49.8013

con1
(7 inputs, 2 outputs) 6.00884 5.94826 60.5824 10.1577 10.0707 86.9986

clpl
(11 inputs, 5 outputs) 10.1231 10.0131 109.955 17.1432 16.9949 148.267

newtpla2
(10 inputs, 4 outputs) 31.3051 30.9902 314.945 15.766 15.607 158.963

newcwp
(4 inputs, 5 outputs) 14.0829 13.9341 148.795 18.4418 18.2683 173.528

newtag
(8 inputs, 1 output) 4.02158 3.96504 56.5371 2.40032 2.37696 23.3592

dc1
(4 inputs, 7 outputs) 38.5554 38.2694 285.999 38.4361 38.1092 326.887

newill
(8 inputs, 1 output) 9.23922 9.10984 129.388 10.986 10.8783 107.648

newtpla
(15 inputs, 5 outputs) 44.7396 44.2494 490.222 28.7395 28.444 295.509

squar5
(5 inputs, 8 outputs) 25.9126 25.6296 282.992 36.5106 36.1803 330.388

dekoder
(4 inputs, 7 outputs) 18.4578 18.2578 200.02 19.7105 19.5252 185.273

Total

Average 

209.53145

19.04831

207.351

18.85009

2180.4855

198.22595

203.43605

18.49419

201.54939

18.32267

1886.6221

171.5111
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APPENDIX II

TABLE XVI
POWER DISSIPATION RESULTS FOR COMBINATIONAL BENCHMARK SUB-FUNCTIONS

Technology mapped solution

before algebraic factoring

Technology mapped solution

after proposed algebraic factoring

Combinational

benchmark

sub-function

Number of

primary
circuit inputs Total

power (μW)

Dynamic

power (μW)

Leakage

power (nW)

Total

power (μW)

Dynamic

power (μW)

Leakage

power (nW)

5xp1_f1 7 7.36278 7.27808 84.6932 5.86574 5.81771 48.0295

amd_f22 14 11.4133 11.2622 151.164 11.7963 11.694 102.242

br1_f3 12 12.1521 11.9972 154.945 8.41237 8.31804 94.3269

br2_f8 12 7.49298 7.39024 102.735 3.94563 3.907 38.6291

bw_f26 5 5.39977 5.34586 53.9115 7.00439 6.94513 59.2615

m1_f9 6 4.00619 3.84971 156.483 2.75895 2.69453 64.4213

dc2_f2 8 9.58236 9.46676 115.6 10.0709 9.97475 96.1512

dk27_f3 9 3.54558 3.50826 37.312 3.83562 3.80283 32.7991

f51m_f5 8 4.98813 4.94554 42.5922 7.02084 6.96297 57.8722

inc_f2 7 6.48578 6.40998 75.7922 10.6611 10.5664 94.6656

luc_f23 8 6.79952 6.71101 88.5138 6.54115 6.48454 56.6071

m2_f11 8 5.66495 5.59397 70.9773 2.31539 2.2946 20.7905

misex1_f6 8 6.88917 6.80685 82.3142 6.98665 6.92824 58.4088

newcpla1_f4 9 3.29517 3.2459 49.269 3.35201 3.32252 29.4896

newcpla2_f3 7 7.27973 7.19907 80.6594 7.86389 7.79756 66.3265

newxcpla1_f7 9 3.53042 3.48815 42.2714 6.36686 6.31284 54.0174

opa_f60 17 5.36569 5.30566 60.0258 4.52687 4.48789 38.9804

rd53_f1 5 2.27182 2.24103 30.7932 3.92851 3.8898 38.71

risc_f1 8 4.7356 4.41938 54.1792 3.5534 3.51627 37.1295

root_f2 8 8.6056 8.51723 88.3768 5.8709 5.82283 48.068

sao2_f1 10 23.7311 23.46 271.075 15.0063 14.8571 149.225

soar_f82 83 3.25533 3.20841 46.914 3.73103 3.6972 33.8289

vtx1_f4 27 4.37461 4.30185 72.761 5.87272 5.81967 53.0492

wim_f2 4 2.8918 2.86076 31.037 2.41096 2.38795 23.0105

newtpla_f1 15 5.83013 5.76116 68.9673 5.18956 5.13955 50.0066

x1dn_f5 27 13.027 12.8837 143.374 7.37297 7.31047 62.4921

Total

Average

341 179.97661

6.92218

177.45796

6.82531

2256.7365

86.79756

162.26101

6.24081

160.75239

6.18278

1508.5385

58.02071


