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 
Abstract—Over the past decade, there have been promising 

developments in Natural Language Processing (NLP) with several 
investigations of approaches focusing on Recognizing Textual 
Entailment (RTE). These models include models based on lexical 
similarities, models based on formal reasoning, and most recently 
deep neural models. In this paper, we present a sentence encoding 
model that exploits the sentence-to-sentence relation information for 
RTE. In terms of sentence modeling, Convolutional neural network 
(CNN) and recurrent neural networks (RNNs) adopt different 
approaches. RNNs are known to be well suited for sequence 
modeling, whilst CNN is suited for the extraction of n-gram features 
through the filters and can learn ranges of relations via the pooling 
mechanism. We combine the strength of RNN and CNN as stated 
above to present a unified model for the RTE task. Our model 
basically combines relation vectors computed from the phrasal 
representation of each sentence and final encoded sentence 
representations. Firstly, we pass each sentence through a 
convolutional layer to extract a sequence of higher-level phrase 
representation for each sentence from which the first relation vector 
is computed. Secondly, the phrasal representation of each sentence 
from the convolutional layer is fed into a Bidirectional Long Short 
Term Memory (Bi-LSTM) to obtain the final sentence 
representations from which a second relation vector is computed. The 
relations vectors are combined and then used in then used in the same 
fashion as attention mechanism over the Bi-LSTM outputs to yield 
the final sentence representations for the classification. Experiment 
on the Stanford Natural Language Inference (SNLI) corpus suggests 
that this is a promising technique for RTE. 
 

Keywords—Deep neural models, natural language inference, 
recognizing textual entailment, sentence-to-sentence relation. 

I. INTRODUCTION 

NDERSTANDING the semantic relationship between 
two sentences is a key for improving performance in 

several in NLP tasks such as Automatic Text Summarization, 
Question and Answering, Machine Translation etc. Given a 
premise P and a hypothesis H, RTE is the task of determining 
whether the meaning of H can be inferred from the meaning of 
the P (i.e. P entails H), or if they contradict each other, or no 
relation exists between them. 

Over the past decade, approaches to RTE range from 
approaches based on lexical similarities and models based on 
formal reasoning to advanced methods that consider also the 
syntax information [1]. Also [2] performed explicit sentence 
alignment on the premise and the hypothesis. The lexical 
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based models utilize machine learning techniques but require 
extensive human engineering to represent the lexical and 
syntactic information in the pairs. Under the formal reasoning 
paradigm, the sentences are converted into their formal logical 
representations which are then analyzed by interpreters for a 
proof [3]. 

Recently, deep neural models have been showed to yield 
better results in NLP applications such as sentence/ sequence 
modeling [4] and matching models [5]. The core of the deep 
neural models applied in RTE is a sentence encoding module 
which generates the semantic representation of both the 
premise and the hypothesis. Several forms of matching layers 
have also been used on top of the sentence encoder to capture 
the interaction of the two sentence representations.  

The sentence encoders employed include LSTM/GRUs- 
based models [8]-[10], SPINN [6], TBCNN [7]. From [8]-
[10], Bidirectional LSTMs/GRUs were showed to be powerful 
in capturing the contextual information of the input sentences. 
[8] achieved an accuracy of 77.6% on the SNLI corpus when 
LSTM was used to obtain the semantic sentence 
representations. Another work [9] showed that, with the 
addition of neural attention mechanism, the model 
performance of NLI systems can be improved. The base of 
their model was still a LSTM but they added an attention layer 
which considered the alignment between the premise and the 
hypothesis.  

As a contribution to the task of RTE, we propose a model 
that draws its motivation from earlier works such as [9]-[10] 
but also utilizes a sentence-to-sentence relation metric 
computed in between layers in the network to capture how 
sentence relate with each other. The base of our model is a 
convolutional phrase extraction network and a Bi-LSTM 
sentence encoder. We then extend the base model with the 
relations information to generate the final representations for 
both the premise and the hypothesis. This approach seeks to 
generate a more accurate sentence representations at the same 
time capturing their relations for the classification task.  

Section II introduces our network that models the two 
sentences in parallel whilst computing their relations at the 
various stages. Section III evaluates our model on the SNLI 
task, and finally the conclusion is drawn in Section IV. 
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Fig. 1 Illustration of our model 
 

II. APPROACH 

In this section, we describe our architecture shown in Fig. 1. 
Basically, it is made up of the sentence encoder, a Sentence 
Interaction/Relation module. The sentence encoder 
connections are done in a Siamese Network manner where two 
identical networks share the same weights during training. 
Following [8]-[10], we also consider the RTE task as a three-
way classification problem.  

A. Background  

1. LSTM  

RNNs with LSTM [11] since its inception have been 
successfully applied to NLP tasks such as Automatic Text 
Summarization [12], Machine Translation [4]. LSTMs consist 
of memory cells for information storage at each time step t as 
well as gates (input gates i, the forget gates f, and the output 
gate o) to control the flow of information within the memory 
cells. LSTM can be formalized as: 

 
 ݅௧ 	ൌ ሺߪ ௜ܹݔ௧ ൅ ௜ܷ݄ሺݐ െ 1ሻ ൅ ܾ௜ሻ                      (1) 

 

௧݂ 		ൌ ൫ߪ	 ௙ܹݔ௧ ൅ ௙ܷ݄ሺݐ െ 1ሻ ൅ ௙ܾ൯                    (2) 
 

∗ܥ 	ൌ ሺ	݄݊ܽݐ	 ௖ܹݔ௧ ൅ ௖ܷ݄ሺݐ െ 1ሻ ൅ ܾ௖ሻ	                (3) 
 

௧ܥ ൌ 	 ௧݂⨀ܿ௧ିଵ ൅ ݅௧	⨀(4)                            ∗ܥ 
 

௧݋ ൌ ሺߪ	 ௢ܹݔ௧ ൅ ܷ௢݄ሺݐ െ 1ሻ ൅ ܾ௢ሻ                    (5) 
 

݄௧ ൌ                                (6)	௧ሻܥሺ݄݊ܽݐ⨀௧݋	
 

where ⨀ is the element-wise multiplication, σ denotes the 
element-wise application of the sigmoid function. ft is the 
forget gate, it is the input gate and ot the output gate. Ct is the 
memory cell state, C* is the candidate information to be added 
to the memory cell state Ct. Also, the representation at time t 

with context information is the ht. W୧,W୤, U୧, U୤,Wୡ, Uୡ 	 ∈
Rଶ୩ൈ୩ are the trained matrices, and b୧, b୤, b୧, b୤, bୡ, bୡ 	∈ R୩ 
are the trained biases for the parameterizations and the 
transformations of the input.  

2. Convolutional Neural Network (CNN) 

The convolutional network employed in this work simply 
computes a 1-D convolution between its input and output. 
This involves sliding a filter vector over the input sequence 
and detecting the phrase features at different positions. 
Therefore, given an input Zp, the output of the convolution 
with filter of size f is computed as:  

   
Z∗ ൌ WୡZ୮ ൅ bୡ                                (7) 

 
where Wୡ, bୡ are the parameters to be learned. The output of 
the convolution Z* contains features extracted in a context 
window around the individual columns in Zp. The number of 
convolutional filters and the filter sizes are considered hyper-
parameters which can be optimized during training. Different 
forms of pooling are often applied to the output of the 
convolution to enhance the generated feature maps. But, in 
this work, because the output of the CNN is feed into to the 
Bi-LSTM layer, no pooling is applied. This is because 
applying pooling such max-pooling breaks the sequence 
organization which affects the performance of any sequence-
based encoder such as Bi-LSTM.  

B.  Sentence Encoder (SE)  

The sentence encoder consists of a convolutional neural 
CNN layer and a Bi-LSTM layer. The CNN layer performs 
sentence phrasal (N-gram) feature extraction via convolutions. 
To generate multiple feature maps, we use multiple filters of 
different length.  

As shown in studies [8]-[10], Bi-LSTMs/GRUs are 
powerful in capturing the semantic meaning of text. We 
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adopted a Siamese Bi-LSTMs for the sentence encoding to 
reduce the number of model parameters. The input to this 
layer is the output of the CNN. 

Given a premise representation Pv and a hypothesis 
representation Hv from the CNN layer, the Bi-LSTMs encode 
the Pv into its semantic contextual representation P and the Hv 
into H. Adding an average/mean pooling layer over the 
outputs the Bi-LSTM further enriches the semantic 
representation of sentences.  

Bi-LSTM is preferred to single directional LSTM as 
LSTMs suffer a weakness of not utilizing the contextual 
information from future tokens. Bi-LSTM utilizes both the 
previous and the future tokens/contexts by processing the 
sequences in two directions, generating a new sequence for the 
forward direction and another for the reversed/backward 
direction. These are then concatenated to produce the 
distributed representation of the input sequence. 

C.  Sentence Interaction/Relation Module  

This module consists of Relation Boxes (R-Boxes) for 
relation vector computation, a fully connected layer called the 
Relation Aggregator, another fully connected layer known as 
AT-BOX which conditions the outputs of the Bi-LSTM on the 
output of Relation Aggregator. The R-Boxes take as input the 
output of the CNN layer ሺPv	and	Hvሻ and Bi-LSTM layer 
output ሺP	and	Hሻ to computed the relation vectors rc and rb 
respectively. The relation between the premise and the 
hypothesis during the encoding stages is computed using:  
a. Concatenation of the representation of the premise and the 

hypothesis 
b. Element-wise product (PV⨀HV) or (P⨀H) 
c. Element-wise difference ሺPv	 െ Hvሻ or ሺP	 െ Hሻ 

 

܋ܚ ൌ ተ

௩ܲ

௩ܲ⨀ܪ௩
௩ܪ

௩ܲ െ ௩ܪ

ተ	                                      (8) 

 

܊ܚ ൌ ተ

ܲ
ܪ⨀ܲ
ܪ

ܲ െܪ

ተ                                        (9) 

 
The computation of rc and rb was suggested by [13]. But, 

instead of using the outputs of the final stage of the sentence 
encoders, we used the sentence representations PV and HV 
obtained from CNN layer and the P and H from the Bi-LSTM 
layer of the encoder. 

The Relation Aggregator layer yields the matching vector 
Mv which is the weighted sum of the outputs of the R-Boxes 
output vectors rc and rb. Mv is computed as: 

 
௩ܯ ൌ ሺܹ௕ݎ௕ ൅ܹ௖௩ݎ௖ሻ		                         (10) 

 

where Wୠ, 	Wୡ୴		ϵ	Rୢ∗ୢ	are the trained parameters in the 
Relation Aggregator layer. Therefore, given the output of the 
sentence encoder S∗ ∈ ሾP, Hሿ and the Relation Aggregator 

matching output	Mv, we generated the conditional sentence 
representation from the AT-Boxes as: 
 

	݄஺ ൌ ∗ሺܹ௦݄ܵ݊ܽݐ ൅ܹ௠ݒܯሻ	                   (11) 
 

ߙ ൌ                                 (12)		ሺ்ܹ݄஺ሻݔܽ݉ݐ݂݋ݏ
 

		 ௦ܱ ൌ  (13)                                      			ܶߙ∗ܵ

 
where Oୱ	ϵ	ሾO୔, O୦ሿ is the final sentence representation of the 
premise and the hypothesis. Also, Wୱ,W୫		ϵ	R୩∗ୢ	are the 
trained projection matrices, Wϵ	R୩	is a trained parameter, and 
W୘ is its transpose. The generated conditional representations 
Op, Oh and their element-wise product (Op ⨀ Oh) are then 
concatenated and fed into the classifier which consists of an n-
layers of 600D ReLU layers and then finally a Softmax layer 
which produces a distribution over the class labels. The 
number of ReLU layers are chosen as hyper-parameter and 
tuned during training. We use batch normalization [14] to 
improve the training speed of the network as it reduces the 
covariate shift. Additionally, for model regularization, we use 
L2 regularization and dropout [15].  

III. EXPERIMENTS 

A. Dataset and Parameters 

We evaluated our model using the SNLI corpus [8] which 
has attracted a lot of attention as it makes it possible to apply 
deep learning methods to solve RTE problems. The SNLI is a 
corpus of 570k human labeled pairs of sentences as either 
Entailment, Contradiction or Neutral or –, where – indicates a 
lack of consensus from human annotators (unlabeled 
examples).  

Following [8], we use the standard train, validation, and test 
splits, discarding the unlabeled sentence pairs. In the end, we 
have 549,367 pairs for training, 9,842 pairs for development 
and 9,824 pairs for testing. No hand-crafted features are used 
in our model. 

 
TABLE I 

COMPARISON OF OUR MODEL PERFORMANCE TO OTHERS MODELS 

Model Test Accuracy (%) 

Lexicalized Classifier [8] 78.2 

LSTM [8] 77.6 

LSTM shared [9] 81.4 

Word-by-word attention [9] 83.5 

Our Model 81.13 

 
Our model training objective is cross entropy loss, a batch-

size of 512 and Adam optimizer [16] with a learning rate of 
1E-3. Dropouts are applied in between layers with dropout 
rate chosen randomly between the range 0.1 and 0.9. We also 
use pretrained 300D Glove 840B vectors [17] to initialize the 
word embeddings. Following [10], out-of-vocabulary words in 
the training set are randomly initialized by sampling values 
uniformly from -0.05 and 0.05. We do not update the word 
embedding during training. For the CNN layer, multiple filters 
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of length 1, 2, 3, 4 are used. We choose the number of filters 
for each filter length as 150. 

B. Results and Discussion 

We evaluated our proposed model on the SNLI dataset as 
described in Section III A. The results are summarized in the 
Table I. The results are expressed in terms of accuracy. In 
Table I, our model achieved a test accuracy of 81.13%, which 
is less than that of some previous works. But, we still find 
these results promising as we were not able perform 
exhaustive optimization of the hyper-parameters due to 
computational resources. We hope that more parameter 
optimization will lead to higher accuracy.  

Contrary to the previous works that utilized usually the last 
output of the Bi-LSTM/GRUs or RNNs, to compute the 
attention weighted sentence representations, we adopted an 
approach that utilizes a Relation Aggregator layer to aggregate 
the relation vectors computed at different stages during the 
sentence encoding which is then used for the conditioning. 

This approach was adopted to generate the final 
representation of the premise and hypothesis capturing how 
the sentences relates with each other. And also, we seek to 
investigate the possibility of computing attention weighted 
representation of sentences using relation vectors generated 
from another related network. The accuracy achieved was 
surprisingly higher than expected.  

IV. CONCLUSION  

In this paper, we introduce a model that exploits the 
relations between the premise and the hypothesis to solve the 
RTE problem. We compute the relation vector which is then 
combined with the output of the sentence encoder to generate 
the final sentence representations. This method generates 
sentence representation with information from its relations to 
the other sentence under consideration.  

Experiments on the SNLI dataset showed a promising result 
(81.13% test accuracy) which can be improved with 
exhaustive optimization of the hyper-parameters. In the future, 
we hope to: 
1. Experiment with other techniques in the computation of 

sentence relations. 
2. Perform exhaustive parameter optimizations on the model 

to ascertain the best value of hyper-parameters to enhance 
performance. 

3. Employ this architecture on other task such as question 
and answering and other NLI tasks. 
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