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A Semi-Implicit Phase Field Model for Droplet
Evolution
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Abstract—A semi-implicit phase field method for droplet
evolution is proposed. Using the phase field Cahn-Hilliard equation,
we are able to track the interface in multiphase flow. The idea of a
semi-implicit finite difference scheme is reviewed and employed to
solve two nonlinear equations, including the Navier-Stokes and the
Cahn-Hilliard equations. The use of a semi-implicit method allows us
to have larger time steps compared to explicit schemes. The
governing equations are coupled and then solved by a GMRES solver
(generalized minimal residual method) using modified Gram-Schmidt
orthogonalization. To show the validity of the method, we apply the
method to the simulation of a rising droplet, a leaky dielectric drop
and the coalescence of drops. The numerical solutions to the phase
field model match well with existing solutions over a defined range
of variables.

Keywords—Coalescence, leaky dielectric, numerical method,
phase field, rising droplet, semi-implicit method.
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Pe Free charge density
o Electrical conductivity
¢ Chemical potential

[. INTRODUCTION

HE numerical tracking of an interface is an important part

of many physical processes simulations. There are
different techniques for interface tracking, including marker
particle, level set, and phase field methods. The phase field [1]
is a mathematical method in which we introduce a smooth
phase field function to label the two sides of an interface. In
this work, the phase field is based on a solution of the Cahn-
Hilliard equation, which is a result of the minimization of the
free energy and is employed to describe the evolution of the
phase field parameter. The phase field has mainly been
applied to solidification dynamics, but it has been applied to
other situations such as liquid crystal evolution, the modeling
of phase transitions, polarization and electro-hydrodynamics
[2], [3]. Among them, there is growing interest in the dynamic
of drops in many areas such as biology, mixing, and demixing,
drug delivery, separation process and atomization [4].

The semi-implicit time difference method is a method that
can be used in numerical simulation model to increase the
overall numerical stability. The idea is to approximate some
terms implicitly and other explicitly. The goal is to allow the
use of larger time steps than would be possible using an
explicit scheme. Because of this reason, the semi-implicit
method has been used extensively in various numerical
models. Yang et al. [5] presented a robust phase field scheme
to describe the pinch-off behavior of a liquid filament as well
as the deformation of the consequent satellite droplet. Liu et
al. [6] analyzed the mixture of fluids with a semi-discrete
Fourier spectral method and exhibited various physical
mechanism of model and demonstrated its robustness and
versatility. Hu et al. [7] proposed the study of the coherent
microstructure evolution in an elastically anisotropic system
with a semi-implicit Fourier-spectral method. They illustrated
that the method correctly simulates the driving force. Salac et
al. [8] used a semi-implicit level set method to accurately
capture the complicated behavior such as interface separation
and coalescence. They showed that the proposed scheme is
stable and efficient to be employed in 2D and 3D problems.

In our study, we develop a semi-implicit phase field method
to simulate generic droplets. Instead of explicitly tracking the
interface, we intend to implicitly capture the interface. Such a
numerical model helps to provide fundamental understanding
of the fluid field and the droplet deformation in developing
practical applications. The method is validated with three
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example droplets: a rising drop, leaky dielectrics droplets, and
coalesce of droplets in an electric field. In the first problem,
the drop is driven by the buoyancy force and tension force.
The second and third examples are based on leaky dielectric
theory [9] and the drop is deformed by the surface tension and
electric forces. In this study, the phase field is discretized by a
semi-implicit method and is coupled with Navier-Stokes
equation to simulate the fluid field.

II. THEORY AND FORMULATION

A.The Semi-Implicit Phase Field Model

The phase field model is a diffuse-interface model and is
employed to study the moving interface. In this study, the
domain is completely filled with two immiscible fluids and is
separated by a moving interface. The domain includes the
droplet and the medium fluid. The parameter C is introduced
as phase field parameter to show the concentration of droplet
fluid in the domain. The isocontour C=0.5 represents the
interface while C=0 or C=1 indicates the medium fluid or
droplet, respectively. The phase field model is based on Cahn-
Hilliard equation [1] and describes the process of phase
separation. This equation can be described as:

%MVC:V(MW}), ()

where U is the fluid velocity, M is the phase field mobility,
and ¢ is the chemical potential. The chemical potential is the
rate of total free energy with respect to C which is ¢=6f /6C
as

f(C):%cfya‘VCHg”‘ya%Cz(l—C)z, )

where « is constant and equal to 672 , ¥ is the surface

tension, and ¢ presents the interface thickness. Let the
characteristic length, R, be the radius of a spherical droplet
with the same enclosed volume. Given the characteristic time
t,, the characteristic velocity is expressed by U =R/t . The
notation * denotes a non-dimensional variable (i.e. U"=u/U
and t'=t/t). The Cahn-Hilliard
dimensionalized based on the velocity u=Uu" and t=t'R/U,

equation is non-

chemical potential ¢=¢ S in which B=¢"'ya. By scaling
the equation, we reach to the following,

Cvve=2v.Lac-sc+c)-cnvee). 3)
ot Pe 2

Based on the non-dimensionalization process, the following
parameters are produced,

_RU¢

and cp-&
My f

Pe

In the right hand side of (3), the first term forces the system
to phase segregate and the second term tries to minimize the
gradient energy of the interface. In a fully implicit scheme,
such as the implicit Euler scheme (backward Euler), we would
be required to solve a system of nonlinear equation at every
time step, which would be computationally expensive. In this
study, a semi-implicit time scheme is presented to solve the
phase field equation. It can be shown that the semi-implicit
discretization gives us a robustness in time. In this method, we
defined the linear contribution implicitly and the non-linear
contributions explicitly. Solving the equation by applying the
semi-implicit method and first order time integration, we
obtain the following discrete form

Cn+| _Cn
At

+U".VC" =P1vz -(%(zcl ~3C?+C) -Cn’V’C™).(4)
e

The subscript n refers to the solution at the previous time
step. Given the u"and C", the objective is to solve for C™

and use that result in order to obtain the u™ by solving the
flow fluid equations. Equation (4) can be expressed as

4 OB cpviem -
Pe (5)
C - i -ver+ Py <(2C*=3C*+C)'.
2Pe

The spatial derivatives are discretized with a second order
accurate central difference scheme and coupled with the fluid
flow equation to get the velocity and solved to obtain the next
phase field parameter in time and the new location of
interface.

After discretization, the whole equation can be written in
the form of Ax=Db, where A is the coefficient matrix, X the
unknown phase field parameter, and b the right hand side
vector in (5). This linear system can be solved with a matrix-
free iterative linear system solution method, and in this, the
GMRES solver (Generalized minimal residual method) using
modified Gram-Schmidt orthogonalization is utilized.

B. The Fluid Motion Equation and Projection Method

We now present the governing equations for the
incompressible fluid. Based on the physics of problem, the
momentum equation is used with a phase-field dependent
surface force. In addition, we employ the buoyancy force in
the first example and the electric force in second and third
example to validate the methods. The Navier-Stokes and mass
conservative equations take the form of

p(C)(gt—u+u-Vu):V~ P+V-(uC)(Vu+Vu )+ f + 1 +f, (6)

V-u=0. @)

Since the density p(C) and viscosity (C)change across
the interface, they depend on the phase parameter C and they
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are as
p(C)=pC+p (1-C)and u(C)=pC+pu (1-C). ®)

The notation 1 and 2 stands for the fluid property of droplet
and medium fluid, respectively. In (6), p is the pressure, f,

is the electric force, fy =-CV¢ is the surface tension force
and f =(p—p,)g stands for the buoyancy force. In addition,

the superscript T stands for the transpose operator. In the
present study, the leaky dielectric model presented by Saville
[9] is used to obtain the electric force. The leaky dielectric
fluid can be expressed by

V.(o(C)E)=0. ©)

The electric field in (9) is E=-VV where V is the
electrical potential, and o(C) is the electrical conductivity,
which changes based on the property of fluid and depends on
parameter C. The Poisson equation, (9), is solved to obtain
the electrical potential. As mentioned, the electric field is
assumed to be irrotational, therefore, the electric force acting
on the interface of droplet can be expressed as [9]

f= j(pEE—%EZVg(C))dx-*, (10)

where g(C) stands for the permittivity of two phases and is
determined by using a similar expression to the fluid
conductivity, and p; is the free charge density. Gauss’s Law
gives the free charge density as:

p=V.(&C)E). (11)

By having the electrical field from (9), the electrical force
can be obtained.

We now describe the discretization of the fluid equation and
we used the notation * for nondimensional variables (i.e.

4 =p/u and p'=p/p,). The normalized equation is based
on the density p=p'p,, viscosity =g u,, and pressure
p=p p,U’. In the leaky dielectric problem, the electric field
at the boundaries is imposed as E=E'E,=E'V, /L where E’
is the normalized strength of the applied electric field and E,
is the strength of electric field, given by 6V, which is the drop
of electrical potential between two electrodes separated by a
length of 6L . The electric permittivity is defined as £=¢&'g,¢,
in which & is normalized permittivity and &,&, is dielectric
permeability of the outer fluid [9], and the -electric
conductivity is expressed as o=o'c, in which o is

normalized conductivity. We express the non-dimensionalized
fluid flow equation as follows

P U V) =P+ V(4 (C)(VU + VUT))
ot Re (12)
1 Cvg + Ca. R
ReCaCn ReCa L

. 1 . <
fo"+—(p =14
- Y Ep (P =Dg

The dimensionless parameters Reynolds number Re,
Capillary number Ca, Electric Capillary number Ca,, and
Froude number Fr are as,

PR ca#Y p _feER and g U

Re
H, y y JRg

For the leaky dielectric fluid, the electric force is
normalized as,

f: :v.(g‘(C)E‘)E‘—%E'ZW(C) (13)

We used a projection method to solve the Navier-Stokes
equation. The first step is to use a semi-implicit scheme in
time in order to obtain an intermediate velocity field (. Thus,
the equation can be expressed as:

€YY V) =V + LV (u(C (Vi + TUT)

At Re (14)
S P L L)
ReCaCn ~ ReCal Fr* °

The superscript n refers to the solution at the previous time
step. In order to obtain the intermediate velocity, the following
equation is solved.

(p(cw—ﬁ—sz(cwv»a: RH.S. (15)

which is a linear equation of U, and the right hand side of the
equation is expressed as

p(C”)u"+At(fu-Vusp”+LV-(ﬂ(C")Vu”)

Re (16)
Ly G R 1y
ReCaCn ~ ReCal Fre ¢

It is worth pointing out that the convective term in the fluid
flow equation is discretized by a first order upwinding scheme
and the viscous term is discretized with a second order
accurate central finite difference scheme. After discretization,
the whole equation can be written in the form of Ax=bh,
where A coefficient matrix, X the unknown intermediate
velocity field vector and vector b is equal to (16). As before,
the GMRES solver (Generalized minimal residual method) is
employed to solve the linear system.

In the second half of the algorithm, the projection step, we
use the intermediate velocity to obtain the delta pressure
which is used to correct the pressure of the system.
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The final velocity u™ is divergence free so V-u™ =0 and
the following equation is derived,

[y

1 V.
v. vpy=24. (18)
CRIAT

The density p(C) depends on the phase parameter C and
it can be discretized with the help of harmonic interpolation,
which gives a good approximation over the interface when the
density difference is high. The harmonic interpolation of
density is expressed as

LI R S (19)

Pun 2P P

After discretization of (18), it can be written in the form of
Ax=b, where A coefficient matrix, X the unknown P’
vector, and bis right hand side in the equation. By solving the
linear system using the generalized minimal residual method
for p’, the final corrected velocity and pressure get the form,

At
U'=-—=—-Vp', (20)
p(C)
um — U" +u! and pn+| — pn + p/' (21)

C.Algorithm of Computation
The summarization of the computation is as follows

Step 1:Use (5), to compute c
Step 2:Use (9), to compute V, if needed.

Step 3:Use (14), to calculate u

Step 4:Using (18) to (21), to compute P™" and u™

Step 5:Advance one time step and return to step 1 until the
error condition for velocity is satisfied in the whole
domain.

III. NUMERICAL SIMULATION

In this section, we present numerical simulations using our
semi-implicit phase field method. We simulate three
examples: a rising droplet, a leaky dielectric droplet, and the
coalescence of droplets in an electric field. The driving forces
are gravity and surface tension in the rising droplet simulation
and the electric force and surface tension in the leaky
dielectric droplet and coalescence of multi drops. As shown in
Fig. 1, we describe an oblate shape as when the major axis of
the droplet is parallel to the X axis, while a prolate shape is the
case where the major axis is in the y direction.

In the following numerical simulations, the density,
viscosity, electrical permittivity, and conductivity ratio of the
two fluids are presented as A =p/p,, A, =u/p,,

A=¢l¢,, and A =o0,/0,, respectively. We will examine
the method and validate our result with the existing solutions
solved by other methods. The equations are discretized on a
Cartesian mesh. Two choices exist in Cartesian meshes:
Collocated mesh and Staggered mesh. A collocated mesh is
employed to simulate droplets as it allows us to have all
variables at the same point in space.

D

Oblate

Prolate

Fig. 1 The prolate and oblate droplet and their orientations with
regard to the direction of the field

A.Rising Droplet

In this numerical solution, we consider the movement of a
rising droplet with different radius in a domain with a size of
[6Rx6R]. In this case, we have periodic boundary conditions
for both directions. Periodic boundary conditions are often
chosen for approximating a large system by using a small part
called unit cell. The schematic figure of unit cell is shown in
Fig. 2.

The droplet is labeled as liquid 1 and the exterior fluid is
labeled as liquid 2. We applied the parameter of liquid 2 for
the dimensionless parameter and radius of droplet R for the
characteristic parameter. As expressed, the phase field
parameter is C =1 for the droplet and C =0 for the rest of the
domain. For the selected domain the non-dimensional
parameters are chosen as Re=1, Ca=0.2, Pe=1800,
Cn=0.025, Fr=1, Ca_=0, A,=0.5,and A, =0.5. The
mesh size for this simulation is set to 256x256.

kS

L3
e

[l

AN

Fig. 2 Schematic illustration of the periodic unit cell for a rising
droplet

For validation of our phase field, the effect of surface
tension alone on droplet is done, while the buoyancy force is
ignored. A detailed interface study is presented in Fig. 3 for an
initially prolate shape with a semi-axis length of R, =Rin the
x direction and R, =1.5R in the y direction. It is expected that
final shape equilibrium shape is circular.

1171



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:10, No:6, 2016

Fig. 3 Droplet deformation under the effect of surface tension force
alone. The initial shape is a prolate and the equilibrium shape is

circular. Shown for t =1, 2,5 and 10

Fig. 4 shows the droplet deformation over time under the
combined effects of surface tension and the buoyancy force.
The initial droplet radius is 0.5R. As shown in the figure, the
droplet starts to rise at a small velocity. But, when time goes
by, we can see the increase in the rise velocity. Since we have
a small radius, the interface is largely unaffected due to the
strong surface tension effects.

t'=02 t'=0.5

Fig. 4 Droplet deformation under the effect of surface tension and
gravity, the initial shape is circular with a radius of 0.5r. Shown at

t°=10.1,02,05,1,2,3,4and 5

t'=0.2 t'=0.5 t'=1

Fig. 5 Droplet deformation under the effect of surface tension and

gravity, the initial shape is circular with a radius of R. Shown at t" =
0.1,0.2,0.5,1,2,3,4 and 5

Droplet deformation over time for an initial radius of R is
shown in Fig. 5. As shown, we have slight deformation of the
interface. The larger radius causes lower tension forces, which
allows for more interface deformation. The droplet tends to be
disk-like when it moves upward and it agrees well with the

work by Inamuro et al. [10] and Liu et al. [6]. As before, the
droplet starts to rise at a small velocity, but as time goes by,
we can see the increase in the rise velocity.

B. Leaky Dielectric

In this numerical solution, we consider the combined effect
of surface tension and electrical forces while the buoyancy
force is ignored. The initial shape of the droplet in each
simulation is circular. The domain size is [6Rx6R] while R is
the radius of the droplet. The top and bottom of the domain are
infinite walls with no slip boundary conditions for velocity
and Neumann for the pressure. A Neumann boundary
condition is used on top and down for the phase field
parameter C . The non-dimensional electric potential is set to
be V =6V, on the top and V =0 at the bottom of the domain.

Periodic boundary conditions are used at the left and right
boundaries. A schematic figure of the domain is shown in Fig.
6. The mesh size is chosen to be 257x257.

1 |

| - - |

| N N |
| \ [ \ 0

bos_v o/

|

1 |

Fig. 6 Schematic illustration of the periodic unit cell for a droplet in
an electric field

For validation, we compared the small droplet deformation
with an analytical predication by Taylor [11]. The label of the
fluid is similar to the rising droplet. In the following study, the
droplet and medium fluid has the same viscosity and density,
A,=1and 2 =1, but there is a conductivity and emissivity

difference between them. The non-dimensional parameters are
Re=1, Ca=0.2, Pe=1800, Cn=0.025, and Ca_=0.2
while the buoyancy force is ignored. Let L and B be the
parallel and perpendicular axis length of the ellipsoid with
respect to the applied electric field. Using the Taylor theory
[11], the final shape of droplet can be predicted by

D L-B 9Ca, f(o,/0,.5/6,u /yz)'

= (22)
L+B 16 (2+0,/0,)

The function,

discriminating function,

fd[fﬂﬁﬂjz(mj +1_2€+3(¢_%]2+3M/#z, 23)

o, & 1) \o g 5S\o, &) 1+ulp,

2 2

f,(o,/0,¢6/&,1 /1), represents the

where the droplet takes a shape of spheroid for f,=0, a
prolate shape for f, <0 and an oblate shape for f, >O.

Fig. 7 shows the comparison of deformation between our
numerical simulation and Taylor’s theory for small
deformation. All simulations are performed until a time

t" =20 to reach the steady state. The conductivity ratio, 4, is
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varied while the emissivity ratio is fixed at A, =2. The results
show good agreement with Taylor’s Theory and it can be
concluded that our numerical simulation predicts the electrical
forces well in a leaky dielectric droplet.

— Taylor's Theory
0ot ¢ Numerical Simulation

0.1}

01

021

03 : :
107 10° 10°
7, /62

Fig. 7 Comparison of deformation between numerical results and
Taylor’s theory for /15 =2

In the next study, the single deformation of a leaky
dielectric droplet is investigated. Fig. 8 shows the equilibrium
deformation of droplets with at the same conductivity ratio
and two emissivity ratios. As shown in Fig. 8, when A =5

and A =0.5, the spherical droplet starts to deform, and at

t'=20 it relaxes to the prolate shape, and thus D>0. In
addition, when A =5 and A =50, the final deformation

relaxes to oblate shape after t" =20, and thus D<0. Our
simulation showed a good agreement with Taylor’s theory. In
each shape, there are four vortices inside and four vortices
outside which are opposite to each other in oblate and prolate
shape, and have been observed previously [12].

A, =5AND 4, =50

A,=5AND 4,=0.5

Fig. 8 A leaky droplet in a DC electric field

C.Leaky Dielectric

The phenomenon of a dielectric droplet or particle moving
in a non-uniform electric field is referred to as
dielectrophoresis [13]. The combination of four droplets is
selected to demonstrate the applicability of the semi-implicit
phase field method.

Fig. 9 shows the coalescence of four droplets in an electric
field at t" = 0, 5, 20, 30, 40, 100, 200, 205, 210, 215, 220, and
240. The initial distances between spherical droplets are Rin

the vertical direction and 0.5R in horizontal direction. The
electric field is applied vertically, while the parameters are the
same as those in the single droplet example, shown previously.

As shown in Fig. 9, the coalescence starts in the direction
normal to the electric field. As the droplets evolve into an
oblate shape, they collide and merge. After coalescence, the
remaining two droplets begin to attract each other. Thus,
because of electric force and circulatory motion, the final
coalescence happens. This example agrees well with the work
by Yang et al. [14].

t' =100

t' =200 t' =205 t'=210

t'=215 t' =220 t' =240

Fig. 9 Coalescence of four leaky droplets in electric field at times
t' =0.5, 20, 30, 40, 100, 200, 205, 210, 215,220 and, 240 where
A, =025and 4, =2

IV. CoONCLUSION

A semi-implicit phase field method has been developed for
the numerical solution of droplets. The method can simulate
two-phase flow by combining the Cahn-Hilliard phase field
equation with the Navier-Stokes equations. We have shown
that our semi-implicit phase field method can be applied to a
wide range of examples and driving forces including
buoyancy, surface tension, and electric forces. In this study,
the Navier-Stokes equation and phase field methods are
coupled numerically and solved by a GMRES solver. Special
advantages of this method are that it can be used with larger
time steps than explicit schemes and it relatively easy to
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implement. To validate the method, we implement three two-
phase field examples including a rising droplet, a leaky
dielectric droplet, and the coalescence of multiple drops. In the
simulation of rising droplet, the results show that the
deformation of interface tends to be disk-like when it moves
upward which shows a good match with previous reported
results. In the leaky dielectric example, a comparison of
results for small deformation with the Taylor’s theory shows
the method has good accuracy when predicting the electric
force. Employing the method for coalescence of four drops,
they deformed into an oblate shape. The droplets then collide
and merge together in x direction. Due to the electric force and
circulatory motion, the two big drops gradually moved
together in y direction to coalescence to a single drop.
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