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A Self Supervised Bi-directional Neural Network
(BDSONN) Architecture for Object Extraction

Guided by Beta Activation Function and Adaptive
Fuzzy Context Sensitive Thresholding

Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik and Prashanta Kumar Nandi

Abstract— A multilayer self organizing neural neural network
(MLSONN) architecture for binary object extraction, guided by a beta
activation function and characterized by backpropagation of errors
estimated from the linear indices of fuzziness of the network output
states, is discussed. Since the MLSONN architecture is designed to
operate in a single point fixed/uniform thresholding scenario, it does
not take into cognizance the heterogeneity of image information in
the extraction process. The performance of the MLSONN architecture
with representative values of the threshold parameters of the beta
activation function employed is also studied. A three layer bi-
directional self organizing neural network (BDSONN) architecture
comprising fully connected neurons, for the extraction of objects from
a noisy background and capable of incorporating the underlying im-
age context heterogeneity through variable and adaptive thresholding,
is proposed in this article. The input layer of the network architecture
represents the fuzzy membership information of the image scene to
be extracted. The second layer (the intermediate layer) and the final
layer (the output layer) of the network architecture deal with the self
supervised object extraction task by bi-directional propagation of the
network states. Each layer except the output layer is connected to the
next layer following a neighborhood based topology. The output layer
neurons are in turn, connected to the intermediate layer following
similar topology, thus forming a counter-propagating architecture
with the intermediate layer. The novelty of the proposed architecture
is that the assignment/updating of the inter-layer connection weights
are done using the relative fuzzy membership values at the constituent
neurons in the different network layers. Another interesting feature
of the network lies in the fact that the processing capabilities of
the intermediate and the output layer neurons are guided by a beta
activation function, which uses image context sensitive adaptive
thresholding arising out of the fuzzy cardinality estimates of the
different network neighborhood fuzzy subsets, rather than resorting to
fixed and single point thresholding. An application of the proposed
architecture for object extraction is demonstrated using a synthetic
and a real life image. The extraction efficiency of the proposed
network architecture is evaluated by a proposed system transfer index
characteristic of the network.

Keywords— Beta activation function, fuzzy cardinality, multilayer
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Manuscript received October 28, 2006.
Siddhartha Bhattacharyya is with the Department of Computer Science and

Information Technology, University Institute of Technology, The University
of Burdwan, Burdwan-713 104, India, phone: +91-342-2558776; fax: +91-
342-2558776; email: siddhartha.bhattacharyya@gmail.com.

Paramartha Dutta is with the Department of Computer Science and Engi-
neering, Kalyani Government Engineering College, Kalyani, Nadia-741 235,
India, email: paramartha.dutta@gmail.com.

Ujjwal Maulik is with the Department of Computer Science and Engineer-
ing, Jadavpur University, Kolkata, India, email: drumaulik@cse.jdvu.ac.in.

Prashanta Kumar Nandi is with the Department of Computer Science and
Technology, Bengal Engineering & Science University, Shibpore, Howrah,
India, email: nandipkn@rediffmail.com.

I. INTRODUCTION

Several image processing applications rely on the extraction
and localization of useful object features from the feature
space. Removal of noises from image scenes and detection
of object regions are no exceptions. A number of attempts
in this direction based on classical fi ltering techniques fi gure
in the literature [1][2][3][4]. Neural networks, assisted by
fuzzy logic and optimization tools, often stand useful in
these types of applications owing to the inherent capability
of handling nonlinear situations [5]. A wide variety of neural
networks differing in network architecture have been used by
researchers to deal with these types of image preprocessing
tasks [6][7][8][9][10][11][12][13]. However, most of these
network models rely on external supervision with a set of
labeled/classifi ed input data. This mode of supervised oper-
ation, which is characteristic of these network models, poses
a serious hindrance to the application of these networks in real
time situations.
Continuous lookout for network architectures, which can be
put to use in real time, has led researchers to evolve newer
network architectures, which operate in an unsupervised fash-
ion. These networks self-organize the input information and
extract relevant decisions out of the input data. Kohonen’s self-
organizing feature map [14][15], Hopfi eld’s network [16], the
bi-directional associative memory (BAM) [17][18], the cellular
neural network [19][20][21] etc. are typical examples of this
type of networks. Carpenter et al. [22] applied self organizing
neural networks for recognition of patterns from images.
The multilayer self-organizing neural network architecture
(MLSONN) [23], which is a two-dimensional extension of
the multilayer perceptron (MLP) [24][25], uses indices of
fuzziness of the image information and self-organizes the input
information into outputs.
The adjustment of the network interconnection weights in
most of these network architectures, is done by the standard
backpropagation algorithm at the expense of a greater compu-
tational burden. This problem can be alleviated by resorting to
such network structures, which do not use the backpropagation
based weight adjustment procedure.
Moreover, these networks assume homogeneity in the image
information content and hence do not take into account the
heterogeneity in the input image information during the appli-
cation of the characteristic activation. This limitation is sup-
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plemented by the fact that the neurons or the processing units
of most of these neural network architectures are activated
by the standard bilevel sigmoidal activation function [6][23].
The standard sigmoidal activation function is asymptotic in
nature and resorts to single uniform thresholding parameters. A
bilevel beta activation function, besides being bounded in the
interval [0, 1], is also continuously differentiable. The function
exhibits sharp and distinct responses to its input variables.
In addition, tuning of the function parameters results in
generating different thresholding values which is necessary in
reflecting the heterogeneity of the image information content.
In this article, a fully connected bidirectional three layer self
organizing neural network architecture, devoid of backprop-
agation based weight adjustment and guided by an adaptive
thresholded beta activation function, for object extraction from
a noisy background, is presented. The architecture comprises
an input layer, an intermediate layer and an output layer
of neurons. Each layer is interconnected to the next layer
following a neighborhood based topology. The output layer is
connected to the intermediate layer so as to counter-propagate
the network states for the purpose of self supervision. The
neurons in each of the three layers are connected to each
other within the same layer. Interconnections between the
corresponding neurons are present between different layers as
well, for the propagation of the fuzzy cardinality estimates,
which are indicative of the neighborhood context sensitive in-
formation to the other layer neurons. These estimates are used
to determine the threshold values of the characteristic beta ac-
tivation function used for processing. The assignment/updating
of the inter-layer connection weights are decided by the
relative fuzzy memberships of the constituent inputs to the
neurons. The network self-organizes the input information by
means of counter-propagation of the network states between
the intermediate and output layers. The convergence of the
network operation is ensured by the stability achieved in the
inter-layer interconnection weights, which are updated at each
stage of processing. The network has been applied for the
extraction of objects from several noisy versions of a synthetic
image and a real life spanner image. The quality of the
extracted images are determined from a systematic point of
view by a proposed system transfer index evaluated from the
variation in the fuzzy hostility indices in the original, noisy
and extracted images, which provides a quantitative measure
of the noise immunity factor of the proposed architecture and
hence serves as a fi gure of merit for the network in respect of
noise removal.
The paper is organized as follows. Section II presents relevant
fuzzy set theoretic concepts and defi nitions. Fuzzy hostility
index for estimation of the network object extraction effi -
ciency, is also introduced in this section. The architecture
and operation of the multilayer self organizing neural net-
work (MLSONN) architecture is presented in Section III.
The network limitation as regards to incorporation of image
content heterogeneity is also demonstrated in this section. The
proposed self supervised bi-directional self organizing neural
network (BDSONN) architecture characterized by an adaptive
image context sensitive thresholding guided beta activation
function, is presented in Section IV. The results of application

of the bidirectional self organizing neural network architecture
on noisy synthetic and real life images are listed in Section
V. Section VI concludes the paper with future directions of
research.

II. MATHEMATICAL PRELIMINARIES

A brief overview of fuzzy set theoretic concepts relevant
to the present article and a proposed fuzzy hostility index is
presented in this section.

A. Fuzzy set concepts

A fuzzy set [42][43] contains elements, characterized
by a membership function, , where refers to the
th element in the set. This membership function associates

with every element in the fuzzy set a membership value,
which is indicative of the amount of ambiguity in the fuzzy
set. The membership value of an element in a fuzzy set
lies in [0, 1]. A higher membership value indicates strict
containment of the element within the set, while a lower value
indicates weak containment. The support of a fuzzy set of

elements, is defi ned as the collection of elements having
nonzero membership values. Mathematically,

and (1)

B. Fuzzy set theoretic operations

The following set theoretic operations of union, intersection
and complement are defi ned on two fuzzy sets , for an
element in the universe of discourse .

Union max (2)

Intersection min (3)

Complement (4)

C. Fuzzy cardinality

The scalar cardinality of a fuzzy set is the sum of the
membership values of all the elements in the set. Mathemat-
ically, for a fuzzy set , with a support of elements, the
scalar cardinality, is defi ned as [43]

(5)

For a fi nite number of elements, this cardinality is referred
to as the fuzzy cardinality. It is evident from this defi nition
that higher is the degree of containment of the elements in
the fuzzy set, the higher is the fuzzy cardinality. Similarly, a
lower fuzzy cardinality results when the elements are weakly
contained in the fuzzy set. Thus, the fuzzy cardinality value
of a fuzzy set indicates the overall degree of containment
of the constituent elements in the fuzzy set and provides an
estimate of the average amount of ambiguity in a fuzzy set.
This tantamount to reflecting the variation in the memberships
of the constituent elements in the set.
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D. Fuzzy entropy measure

The entropy of a fuzzy set , characterized by member-
ship function is a measure of the degree of fuzziness
in the fuzzy set. For a fuzzy set comprising elements, it is
given by [44]

(6)

where . The fuzzy entropy measure reflects the
amount of ambiguity and corresponds to the randomness/
disorder in an observation.

E. Fuzzy hostility index

In an image, the pixels are surrounded by a number of
neighboring pixels in a neighborhood based topology. Depend-
ing on the number of neighbors several orders of neighborhood
are possible. An image can be viewed as a fuzzy set of pixel
intensities, comprising several neighborhood fuzzy subsets of
brightness/darkness. The membership values of the elements
of such a fuzzy set are proportional to the pixel intensities.
Each candidate pixel in a particular neighborhood fuzzy subset
is under the influence of its neighbors. The distribution of
gray levels of the pixels/intensity membership values in the
neighborhood fuzzy subsets, reflects the degree of homogene-
ity/heterogeneity in that neighborhood subset. The closer are
the membership values of a pixel and its neighbors, the higher
is the homogeneity in the neighborhood and lesser is the pixel
hostile to its neighbors. Sharp deviations in the membership
values of the neighborhood pixels lead to a heterogeneous
neighborhood in which the candidate pixel is more hostile to
its neighbors. This neighborhood homogeneity/heterogeneity
in a second order neighborhood can be accounted for by a
fuzzy hostility index defi ned as,

(7)

where, is the membership of the candidate pixel and are
those of its neighbors in a second order neighborhood. lies
in [0, 1]. A higher value of implies lower neighborhood ho-
mogeneity and a lower value of implies higher neighborhood
homogeneity. The extrema are obtained with the following
representative neighborhood pixel fuzzy memberships.

If =0 and , then =0 implies the highest
neighborhood homogeneity.
If =1 and , then =0 implies the highest
neighborhood homogeneity.
If =0 and , then =1 implies the lowest
neighborhood homogeneity.
If =1 and , then =1 implies the lowest
neighborhood homogeneity.

III. MULTILAYER SELF ORGANIZING NEURAL NETWORK

The multilayer self organizing neural network (MLSONN)
architecture [23] is a feedforward type of network comprising
an input layer, any number of hidden layers and an output

layer. The number of neurons at the different layers of the
network correspond to the number of pixels in the input image
scene to be processed. The neurons in a particular layer of the
network is connected to the neighbors of the corresponding
neurons in the previous layer of the network following a
neighborhood based topology. The output layer neurons are
in turn connected to the input layer neurons on an one-to-one
basis for feedback of outputs. A schematic of the MLSONN
architecture is shown in Fig. 1.

A. Operation of the MLSONN architecture

The MLSONN [23] architecture is effi cient in extracting
binary objects from a noisy image scene through the process
of self organization of inputs. The input layer of the network
architecture accepts the fuzzy membership information of the
input information to be processed. These inputs are propagated
to the succeeding layers of the network for further processing.
If are the inputs to the neuron in the layer of the
network, then the inputs, to the neuron in the

layer of the network is given by

(8)

where are the interconnection weights between the
neuron in the layer and the neighbors of the

neuron in the layer of the network. is the standard
sigmoidal activation function given by

(9)

where is a single point uniform threshold parameter and
controls the steepness of the function.
In this way, the inputs are processed and propagated from one
layer to the next until the output layer is reached. Since the
MLSONN architecture operates in a self supervised fashion,
the network system errors are determined by means of the lin-
ear indices of fuzziness in the output layer outputs considering
them as a fuzzy set of brightness. The derived system errors
are then used to adjust the interconnection weights between
the different layers of the network architecture by means of
the standard backpropagation algorithm. The outputs are then
fed back to the input layer for the next stage of processing
with the new set of adjusted weights. This process of self
supervision is continued until the network system errors are
reduced to some tolerable limit. At this point, the input noisy
image information gets segregated into object and background
regions thereby leading to extracted object centric features
from the input noisy image scene.

B. Limitations of MLSONN architecture

The MLSONN architecture uses a sigmoidal function based
activation with single point fi xed and uniform thresholding.
Therefore, it assumes homogeneity of the input image infor-
mation. However, in real world situations, images exhibit a
fair amount of heterogeneity in its information content which
encompasses over the entire image pixel neighborhoods. This
limitation of the MLSONN architecture is evident from the
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Fig. 1. Schematic of a three layer MLSONN architecture employing second order neighborhood topology based interconnections

fact that the network structure employed does not include any
provision for accommodating the image context information
for determining the activation function thresholds. This prob-
lem of fi xed and uniform thresholding can be better enunciated
if a standard beta activation function is used as an activation
function for the network operation.
The standard beta function with single and fi xed point thresh-
olding is given by

(10)

where, represents the class widths and is a normalizing
constant such that,

(11)

The and parameters control the shape and slope of the
beta function respectively. The operating point of the beta
function is determined by the threshold value of the function.
The threshold value of the beta function is given as

(12)

From the expression of the threshold parameter ( ), it is
evident that both the and parameters play a vital role in
determining the transfer characteristics of the beta activation
function. The performance of the activation function i.e. the
performance of the MLSONN architecture largely depends on
the choice of the and parameters. This can be substantiated
by observing the MLSONN performance using different sets
of the and parameters.

C. Binary object extraction by MLSONN architecture using
different and parameters

A study of the performance or extraction capabilities of
a MLSONN architecture using the standard beta activation
function has been carried out with different sets of and

parameters. Experiments have been conducted on noisy
versions of an image affected with different Gaussian noise
levels of zero mean and standard deviation of =8, 10, 12, 14

and 16, using three representative values of the parameter
viz. =0.25, 0.5, 0.75 . The corresponding sets of the
parameters chosen are given in Table I.

TABLE I

SELECTED VALUES FOR DIFFERENT

0.25 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
0.5 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6
0.75 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

1) Extraction efficiency of MLSONN architecture: As a
measure of the extraction effi ciency of the MLSONN archi-
tecture, Ghosh et al. [23] proposed a percentage of correct
classifi cation of pixels ( ) which is defi ned as

(13)

where is the total number of pixels correctly classifi ed
into object/background pixels and is the total number of
pixels in the image scene.
The values obtained for the aforementioned different sets
of parameters for = 0.25, 0.5, 0.75 and =8, 10, 12, 14,
and 16 are listed in Tables II, III and IV respectively. Variations
of the values with the parameter for = 0.25, 0.5, 0.75
are shown in Fig. 2, 3 and 4 respectively.

Fig. 2. Variation of with at =0.25
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TABLE II

VALUES FOR =0.25 AND DIFFERENT NOISE LEVELS

0.05 0.1 0.15 0.2 0.25 0.3
8 97.48 96.53 97.83 96.15 95.91 94.03
10 96.12 94.78 96.90 94.23 89.68 79.69
12 94.93 93.11 92.42 89.07 67.31 58.48
14 94.55 91.66 88.42 72.12 57.52 57.37
16 93.90 88.47 71.38 59.98 57.32 57.37

TABLE III

VALUES FOR =0.5 AND DIFFERENT NOISE LEVELS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
8 96.56 96.69 96.86 96.84 99.07 99.66 99.11 98.24 97.95 97.89 97.94 96.21
10 95.07 96.23 96.69 96.77 96.45 98.24 98.50 97.79 97.61 97.12 96.34 95.08
12 91.29 94.96 96.01 96.17 95.51 94.89 96.58 95.77 94.86 92.14 91.25 84.74
14 83.59 90.75 94.31 95.53 95.37 94.250 94.82 93.378 91.81 84.99 75.88 68.41
16 63.01 80.77 90.64 94.48 94.77 92.63 92.41 86.03 80.82 68.93 65.38 62.15

TABLE IV

VALUES FOR =0.75 AND DIFFERENT NOISE LEVELS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
8 94.97 96.46 96.86 97.26 99.75 98.85 97.96 97.94
10 90.62 94.99 96.55 96.90 98.69 97.88 97.797 95.89
12 84.55 91.27 95.96 96.22 96.39 97.15 94.77 92.31
14 69.12 86.29 93.58 95.67 95.22 94.51 91.46 83.80
16 47.35 71.16 88.59 94.94 94.15 92.64 81.55 66.35

Fig. 3. Variation of with at =0.5

From Fig. 2, it is seen that the maximum values are
obtained with =0.05 irrespective of the noise levels, whereas
it is seen from Fig. 3 and 4 that the maximum values
of 94.77 and 94.94 for the highest noise level of =16 are
obtained with =0.25 and 0.4 respectively. Thus the best
possible combinations of , parameters for the selected

parameters, which would result in the best qualities of the
extracted images within the selected range of values, are

0.25, 0.05 , 0.5, 0.25 and 0.75, 0.4 .
Extraction of binary objects has been carried out on a synthetic
image and a real life spanner image (shown in Fig. 5)
employing these selected parameters. The noisy versions of the

Fig. 4. Variation of with at =0.75

images used are shown in Fig. 6. The corresponding extracted
images pertaining to , =[ 0.25, 0.05 , 0.5, 0.25 , 0.75,
0.4 ] for =8, 10, 12, 14 and 16 are shown in Fig. 7 and 8
respectively.

2) Time efficiency of MLSONN architecture: The ML-
SONN architecture resorts to backpropagation based weight
adjustment techniques, which involve time complex compu-
tational overhead. The operational times of the MLSONN
architecture for the extraction of the noisy synthetic and real
life spanner image for the different , parameters as
reported in Table I, are shown in Tables V, VI and VII.

From the results of object extraction obtained using a
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Fig. 6. Noisy images (a)(b)(c)(d)(e) synthetic images (a )(b )(c )(d )(e ) spanner images at =8, 10, 12, 14 and 16
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Fig. 7. Extracted synthetic images for =8, 10, 12, 14 and 16 (a)(b)(c)(d)(e) at , = 0.25, 0.05 (a )(b )(c )(d )(e ) at , = 0.5, 0.25
(a )(b )(c )(d )(e ) at , = 0.75, 0.4
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Fig. 8. Extracted spanner images for =8, 10, 12, 14 and 16 (a)(b)(c)(d)(e) at , = 0.25, 0.05 (a )(b )(c )(d )(e ) at , = 0.5, 0.25
(a )(b )(c )(d )(e ) at , = 0.75, 0.4
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TABLE V

EXTRACTION TIME IN SECONDS FOR =0.25 AND DIFFERENT NOISE LEVELS

0.05 0.1 0.15 0.2 0.25 0.3
8 156 233 232 311 313 740
10 236 313 314 473 801 753
12 272 474 719 656 905 816
14 471 638 984 781 1020 1246
16 625 968 1130 820 1040 –

TABLE VI

EXTRACTION TIME IN SECONDS FOR =0.5 AND DIFFERENT NOISE LEVELS

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
8 152 230 152 154 153 154 206 231 231 153 153 230
10 229 231 228 154 230 154 273 253 273 232 232 312
12 252 307 302 232 308 310 311 333 394 414 322 412
14 566 447 373 307 383 389 471 556 403 477 422 453
16 570 701 508 452 457 698 556 576 418 526 440 448

TABLE VII

EXTRACTION TIME IN SECONDS FOR =0.75 AND DIFFERENT NOISE LEVELS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
8 150 150 150 150 151 151 151 151
10 296 223 225 151 152 217 219 246
12 400 368 225 228 219 305 465 468
14 431 396 368 301 304 616 571 485
16 448 426 427 445 533 627 640 606

Fig. 5. Original images (a) synthetic image (b) spanner image

MLSONN architecture guided by a beta activation function,
it is clear that several choices of the parameter are possible
for a given which would produce better quality extracted
images. This is due to the inherent heterogeneity of image
information content, which remains unattended by the ML-
SONN architecture. Moreover, the time complexity of the
object extraction approach with the MLSONN architecture is
also evident from Tables V, VI and VII. These values are partly
due to the time complex backpropagation algorithm employed
in the interconnection weight adjustment procedure. Moreover,
it is found that the entire image region gets wiped out for

and = 0.25, 0.3 after a certain number of
iterations. This is indicated by the corresponding entry in Table
V.
It may however, be noted that the MLSONN architecture

has been effi ciently applied for several image processing
and segmentation applications including tracking of multiple
moving targets from a video scene [26]. The MLSONN
architecture has been modifi ed to a layered version for the
purpose of multiscale object extraction [27]. However, the
introduction of different layers to the architectural model
increases network complexity as well. Bhattacharyya et al.
applied a fuzzy cardinality estimate based approximation of
input multiscale image scenes for extracting multiscale objects
by the original MLSONN architecture. Multiscaling has also
been induced in the MLSONN architecture by resorting to
a functional modifi cation of the architecture keeping the
architectural structure unchanged [29][30][31][32][33][34].
On similar lines, an extended parallel version (PSONN) of
three different MLSONN architectures has been effi ciently
employed for the extraction of pure and true color objects
from a color image scene [35][36][37][38][39]. Each of these
approaches suffers from the computational overhead imposed
by the underlying backpropagation based weight adjustment
procedure. Bhattacharyya et al. [40][41] devised a pruning
algorithm for evolving a refi ned MLSONN architecture with
reduced number of interconnections between the different lay-
ers of the network architecture to enhance the time effi ciency
of the extraction procedure.

IV. SELF SUPERVISED BI-DIRECTIONAL NEURAL

NETWORK (BDSONN) ARCHITECTURE

It is already stated that the MLSONN architecture suffers
from some serious limitations in that it lacks the power of
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Fig. 9. Schematic layout of the Bi-directional self-organizing neural network (BDSONN) architecture using a second order neighborhood based forward
and backward path inter-layer interconnections for the propagation of network states [bold lines indicate path for propagation of fuzzy context sensitive
thresholding information, not all intra-layer interconnections are shown for the sake of clarity]

adaptation to the image context as well as the use of the
standard backpropagation algorithm impedes its use in real
time applications. In this section, a new bi-directional self
organizing neural network architecture is presented which
attempts to solve the problems encountered by the original
MLSONN architecture.
The proposed self supervised bi-directional three layer neural
network (BDSONN) architecture is a fully connected neural
network architecture. It comprises an input layer, an inter-
mediate layer and an output layer of neurons. The number
of neurons in each of the network layers corresponds to
the number of pixels in the input image scene. The fuzzy
membership values of the input image scene are fed as input
to the input layer. The neurons in each layer of the network
are connected to each other within the same layer with full
and fi xed intra-layer interconnection strengths. Each neuron
in a particular layer of the network is connected to the second
order neighbors of the corresponding neuron in the previous
layer following a second order neighborhood-based topology.
A schematic layout of the network architecture is shown in
Fig. 9. The inter-layer connection strengths are decided by
the relative fuzzy membership values of the neighbors and
the candidate neuron and are thereby influenced by the local
heterogeneity within the neighborhood fuzzy subsets in the
image scene. If is the membership value at the th

candidate neuron in the th layer and is the membership
value at its th second order neighbor in the same layer,
then the inter-layer connection strength, , between the
corresponding candidate neuron of the next th layer and the
th second order neighbors of the th layer is given by

(14)

The output layer neurons are similarly connected to the
intermediate layer neurons in the backward direction. In ad-
dition, there is also fi xed and full connectivity between the
corresponding neurons of the different layers of the network.
If are the fuzzy membership values at th neighbors of
the th layer neurons, then the input at the th neuron of the
next th layer, which enjoys connectivity with this th layer

neighborhood, is given as

(15)

where, are the inter-layer interconnection weights. The
output, , produced by this neuron is given by

(16)

where, is the beta activation function with context sensitive
thresholding and is given as

(17)

where, and have their usual signifi cances. The
parameter is the fuzzy cardinality estimate ( ) of the image
neighborhood fuzzy subsets.
The resultant context sensitive threshold parameter, ( ), which
takes into account the image neighborhood intensity distribu-
tion through the fuzzy cardinality estimates of the neighbor-
hood fuzzy subsets in the form of the parameter is given
by

(18)

The choice of the thresholding parameter for the activation
function helps in incorporating the image heterogeneity in-
formation in the operational characteristics of the network
architecture, which otherwise, would be lacking if a single
point fi xed thresholding parameter is chosen. As a result,
noise immunity and generalization capability are induced in
the network architecture. The different values of the threshold
parameter corresponding to the different neighborhood fuzzy
subsets in the image information are propagated to the suc-
ceeding layers of the network using the fi xed and full inter-
layer interconnections between the corresponding neurons of
the different layers of the network.
In this way, the network input states are propagated from
the input layer to the output layer of the network. The
backward path inter-layer connection strengths from the output
layer to the intermediate layer are again evaluated from the
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relative measures of the fuzzy membership values at the
output layer neurons. The output layer network states and the
corresponding output layer neighborhood context information
are propagated to the intermediate layer through the backward
path inter-layer connections for further processing. This to
and fro propagation of the network states between the two
inner layers of the network architecture is continued until the
inter-layer connection strengths from the intermediate layer to
the output layer and back stabilize. At this point, the fuzzy
hostility indices, which are reflective of the heterogeneity of
the image information content are reduced to minimum and
the original input image information is self supervised into
homogeneous object and background regions at the network
output layer.

A. Network self-organization algorithm

The self-supervised operation of the proposed bi-directional
self-organizing neural network (BDSONN) architecture com-
prises four phases viz. (i) network initialization phase, where
the intra-layer interconnections within the different network
layers are initialized to 1, (ii) an input phase, where external
world input noisy image scenes are fed at the input layer
of the network, (ii) forward propagation phase, where the
processed outputs of the network input layer are propagated
to the following network intermediate layer and the processed
outputs of the network intermediate layer are propagated to the
following network output layer, and (iii) backward propagation
phase, where network output layer outputs are propagated to
the network intermediate layer. Each of the propagation phases
are preceded by the determination of the fuzzy cardinality
estimates of the neighborhood fuzzy subsets for computing the
fuzzy context sensitive thresholding information required for
the processing operation of the succeeding network layer. The
entire network operation can be summarized by the following
algorithm.

1 Begin

Initialization phase

2 Initialize intra_conn[l], l=1, 2, 3

Remark: intra conn[l] are the intra-layer interconnection ma-
trices for the three l network layers. All intra-layer intercon-
nections are set to unity.
Input phase

3 Read pix[l][m][n]

Remark: p[l][m][n] are the fuzzifi ed image pixel information
at row m and column n at the network layer, i.e. the
fuzzy membership values of the pixel intensities in the image
scene. p[1][m][n] are the fuzzy membership information of the
input image scene and are fed as inputs to the input layer of
the network. p[2][m][n] and p[3][m][n] are the corresponding
information at the intermediate and output layers.
Forward propagation phase

4 tauC[l+1][m][n]=f(card[l][m][n])
5 p[l+1][m][n]=fbeta(p[l][m][n] x

wt[t][l][l+1])

Remark: tauC[l+1][m][n] are the adaptive fuzzy context sen-
sitive thresholding information for the network layer
neurons. It is a function of card[l][m][n], the corresponding
fuzzy cardinality estimates. fbeta is the standard beta activation
function and wt[t][l][l+1] are the inter-layer interconnection
weights between the and network layers at a
particular epoch (t), determined from the relative pix[l][m][n]
values. The fuzzy context sensitive threshold values and the
processed image information are propagated to the following
layer (until the output layer is reached) using the inter-layer
interconnections.

Do
6 Repeat steps 4 and 5 with intermediate
layer outputs

Backward propagation phase

7 tauC[l-1][m][n]=f(card[l][m][n])
8 p[l-1][m][n]=fbeta(p[l][m][n] x

wt[l][l-1])

Remark: Propagation of the adaptive context sensitive thresh-
old values and the processed information in the reverse direc-
tion from the network output layer to the network intermediate
layer.

Loop
Until((wt[t][l][l-1]-wt[t-1][l][l-1])<eps)

Remark: eps is the tolerable error.

End

B. Stabilization of the network

The principle of the object extraction process is the local-
ization of object centric features from a noisy background.
The fuzziness in a noisy image scene comprising object
information and background information is due to the induced
noise therein. The presence of noise results in a fair amount of
heterogeneity (as regards to the intensity levels) between the
individual image pixels in the different neighborhood fuzzy
subsets in the image scene. This heterogeneity manifested in
the neighborhood fuzzy hostilities is an indirect measure of
the degree of noise in the image scene. The network system
error ( ) is thus a function of the neighborhood fuzzy hostility
index ( ) and can be represented as

(19)

Recalling equation 14, is thus a function of , the inter-
layer interconnection weights between the and the
layer neurons. Thus, assumes minimum value when is
minimum, i.e. when =0. This implies a fuzzy hostility
index value of =0. Thus, it can be inferred that the system
attains stabilization, when the heterogeneity of the system is
at a minimum.
In addition, the fuzzy entropy measures of these fuzzy hos-
tilities also reflect of the average amount of ambiguity in the
image scene. The task of object extraction is tantamount to the
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reduction in the fuzzy hostilities in the image neighborhood
regions or localizing homogeneous object and background re-
gions out of the heterogeneous noisy regions, thereby reducing
the average fuzzy entropy measures of the fuzzy neighborhood
hostilities. This implies that in an extracted image scene com-
prising of homogeneous object and background regions, the
fuzzy entropy measures of the fuzzy neighborhood hostilities
are minimum and have attained stabilization. Therefore, the
convergence of the network operation is determined by the
stability achieved in the fuzzy entropy measures. Thus the
stabilization of the object extraction process by the network is
decided by the stabilization of the fuzzy entropy measures.

V. RESULTS OF OBJECT EXTRACTION

The proposed BDSONN architecture has been applied for
the extraction of binary objects from a noisy background.
One synthetic image and one real life spanner image (Fig.
5), corrupted with Gaussian noise of zero mean and standard
deviation =8, 10, 12, 14 and 16 (Fig. 6) are used as the input
images to the network architecture for extraction of object
centric regions from the noisy backgrounds. Experiments have
been conducted with = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1.0 . The adaptive parameters for the beta activation
function employed in the extraction process, are determined
dynamically from the image context through the estimation of
the fuzzy cardinality estimates of the different neighborhood
fuzzy subsets of the input noisy image scenes. The extracted
versions of the synthetic and spanner images for different noise
levels and with the different parameters are shown in Fig.
10, 11, 12 and 13.

A. Performance of the proposed architecture

Considering the proposed network architecture to be a noise
immune system, where noisy inputs are converted into non-
noisy versions, the performance of the system can be evaluated
by a system transfer index ( ), which reflects the noise
immunity of the system. It can be mathematically expressed
as

(20)

where, refers to the ratio of the coeffi cients of
variation of the neighborhood fuzzy subset hostility indices
in the original and the noisy images and refers to
the ratio of the coeffi cients of variation of the neighborhood
fuzzy subset hostility indices in the noisy and the extracted
counterparts. From the defi nition of the system transfer index,
it is clear that closer the value of the index is to unity, the
better extraction it reveals. Table VIII show the noise immunity
factor ( ) for the two images for different levels of noises
and = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0 .

From the table it is evident that the network architecture is
effi cient in retrieving object regions from different degrees of
noisy environment. Moreover, the values show that the
performance of the network as regards to object extraction
degrades at higher noise levels, which is obvious from the
fact that higher noise levels means greater probability of

TABLE VIII

NOISE IMMUNITY FACTORS ( ) FOR = 0.125, 0.25, 0.375, 0.5,

0.625, 0.75, 0.875, 1.0 AT DIFFERENT NOISE LEVELS

Synthetic image Spanner image

0.125

8 1.4339 1.2083
10 1.5721 1.2601
12 1.6095 1.2855
14 1.6532 1.2870
16 1.6704 1.3069

0.25

8 1.2392 1.0663
10 1.4026 1.1471
12 1.4468 1.1910
14 1.5413 1.2352
16 1.6040 1.2478

0.375

8 1.0211 0.9818
10 1.2503 1.0489
12 1.3982 1.1624
14 1.49375 1.2064
16 1.55849 1.2409

0.5

8 1.0055 0.9624
10 1.1392 0.9950
12 1.3401 1.0892
14 1.4684 1.1615
16 1.5118 1.2344

0.625

8 1.0035 0.9717
10 1.0976 0.9941
12 1.2727 1.0492
14 1.4249 1.1434
16 1.5440 1.2303

0.75

8 1.0012 0.9721
10 1.06810 0.9909
12 1.2244 1.0315
14 1.4157 1.1188
16 1.5329 1.2164

0.875

8 1.0008 0.9753
10 1.0605 0.9898
12 1.1818 1.0267
14 1.3808 1.0951
16 1.5477 1.2036

1.0

8 1.0008 0.9765
10 1.0407 0.9887
12 1.1594 1.0236
14 1.3571 1.0874
16 1.5184 1.1877

an object pixel being surrounded by noise pixels and hence
greater chances of misclassifi cation of an image pixel into a
background pixel than an object pixel. This is also represented
in Fig. 14 and 15, which show the variation of the noise
immunity factors ( ) of the proposed BDSONN architecture
with the parameter at different noise levels for the two test
images.

In addition to the proposed system transfer index which is
a measure of the noise immunity factor ( ) of the proposed
BDSONN architecture, the [23] values for the extracted
images with = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875,
1.0 are also computed using equation 12. The computed
values, which reflect the quality of the extracted images for

=8, 10, 12, 14 and 16 are shown in Table IX. Fig. 16 and
17 show the variation of the computed values for the two
images with different values of the parameter at different
noise levels respectively.

Fig. 16 and 17 show that the values exhibit an increasing
trend as increases until the maximum values are obtained
at =1.0.
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Fig. 10. Extracted images for =8, 10, 12, 14 and 16 (a)(b)(c)(d)(e) synthetic images at =0.125 (a )(b )(c )(d )(e ) spanner images at =0.125 (f)(g)(h)(i)(j)
synthetic images at =0.25 (f )(g )(h )(i )(j ) spanner images at =0.25
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Fig. 11. Extracted images for =8, 10, 12, 14 and 16 (a)(b)(c)(d)(e) synthetic images at =0.375 (a )(b )(c )(d )(e ) spanner images at =0.375 (f)(g)(h)(i)(j)
synthetic images at =0.5 (f )(g )(h )(i )(j ) spanner images at =0.5
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Fig. 12. Extracted images for =8, 10, 12, 14 and 16 (a)(b)(c)(d)(e) synthetic images at =0.625 (a )(b )(c )(d )(e ) spanner images at =0.625 (f)(g)(h)(i)(j)
synthetic images at =0.75 (f )(g )(h )(i )(j ) spanner images at =0.75
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Fig. 13. Extracted images for =8, 10, 12, 14 and 16 (a)(b)(c)(d)(e) synthetic images at =0.875 (a )(b )(c )(d )(e ) spanner images at =0.875 (f)(g)(h)(i)(j)
synthetic images at =1.0 (f )(g )(h )(i )(j ) spanner images at =1.0
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Fig. 14. Variation of with for =8, 10, 12, 14 and 16 during the
extraction of the synthetic image

Fig. 15. Variation of with for =8, 10, 12, 14 and 16 during the
extraction of the spanner image

1) Time efficiency of the proposed BDSONN architecture:
The BDSONN architecture carries out the act of self supervi-
sion by means of bi-directional propagation of network states
between the network intermediate and output layers. This
implies that the network intermediate and output layers act as
competitive layers for retrieving the object centric regions out
of the noisy environment. Moreover, the proposed architecture
does not resort to the time complex backpropagation based
weight adjustment procedure. Instead, the adjustment and
reassignment of the adjusted weights are carried out in a
deterministic fashion through the relative strengths of the
fuzzy membership values at the participating neurons of the
different layers of the network, thereby reducing the computa-
tional burden, which would otherwise be imposed upon if the
standard backpropagation algorithm is used in the adjustment
process. The extraction time required by the proposed network
architecture for the extraction of the two images from different
noisy environments with the chosen values of the parameter
are shown in Tables X and XI respectively. From the tables it is
evident that the proposed BDSONN network operates much
faster compared to the MLSONN architecture as regards to
extraction of objects from a noisy background.

Fig. 18 to 23 show the variation of the coeffi cient of
variation of the fuzzy hostility indices (FHI) of the noisy
synthetic and spanner images respectively along with the BD-
SONN extracted images during the object extraction process
with respect to the number of iterations required during the

TABLE IX

VALUES FOR = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0 AT

DIFFERENT NOISE LEVELS

Synthetic image Spanner image

0.125

8 96.149 93.14
10 94.80 92.77
12 93.54 91.18
14 90.53 88.68
16 86.17 82.95

0.25

8 98.91 97.90
10 97.69 96.46
12 96.72 95.29
14 95.65 94.39
16 94.04 93.40

0.375

8 99.87 99.03
10 98.52 97.66
12 97.07 95.60
14 96.06 95.05
16 95.28 93.65

0.5

8 99.93 99.27
10 98.80 97.94
12 96.93 96.26
14 95.74 95.48
16 95.42 93.96

0.625

8 99.94 100.00
10 99.07 98.47
12 97.41 97.01
14 96.17 96.16
16 95.62 94.46

0.75

8 99.94 99.94
10 99.05 98.56
12 97.61 97.14
14 96.78 92.79
16 95.68 94.63

0.875

8 99.94 99.89
10 99.05 98.54
12 97.61 97.21
14 96.34 96.44
16 95.68 94.82

1.0

8 99.94 99.86
10 99.14 98.53
12 97.85 97.29
14 96.66 96.57
16 95.73 94.94

Fig. 16. Variation of with at =8, 10, 12, 14 and 16 for the synthetic
image
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TABLE X

EXTRACTION TIME IN SECONDS FOR SYNTHETIC IMAGE FOR = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0 AT DIFFERENT NOISE LEVELS

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0
8 144 109 108 109 72 72 72 71
10 210 178 174 185 142 179 106 216
12 236 236 202 251 211 206 205 243
14 292 245 203 281 235 212 236 249
16 373 261 268 420 242 273 248 321

TABLE XI

EXTRACTION TIME IN SECONDS FOR SPANNER IMAGE FOR = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0 AT DIFFERENT NOISE LEVELS

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0
8 294 129 170 131 86 86 145 85
10 324 213 249 216 170 171 171 172
12 331 280 285 289 200 245 254 255
14 346 293 297 300 254 254 279 289
16 442 310 362 324 288 280 289 367

Fig. 17. Variation of with at =8, 10, 12, 14 and 16 for the spanner
image

extraction process for = 0.25, 0.5, 0.75 .
Fig. 24 to 29 indicate the corresponding variations in the

fuzzy entropy measures of the fuzzy hostility indices during
the extraction process for the two images with the selected
parameter values.

VI. CONCLUSIONS

The multilayer self organizing neural network (MLSONN)
architecture is described. The limitations of the network ar-
chitecture in terms of the thresholding methodology and the
error adjustment methodology are discussed and addressed.
A bi-directional self organizing neural network (BDSONN) ar-
chitecture with self supervising features, suitable for object ex-
traction from a noisy background and capable of removing the
limitations of the MLSONN architecture, has been proposed.
The architecture comprises three layers of fully connected
neurons. The second and the third layer of neurons counter-
propagate the network states and in the process achieve a
self supervised organization of the network inputs fed at
the input layer. The network uses a beta activation function
aided by an adaptive image context sensitive threshold values
which are determined from the fuzzy cardinality estimates

Fig. 18. Variation of neighborhood fuzzy hostility indices of synthetic image
with time at =0.25

of the pixel neighborhood fuzzy subsets of the image scene.
The choice of the adaptive image context sensitive threshold
values for the functional operation of the network enhances
the generalization capabilities of the network architecture as
the network takes into cognizance the inherent heterogeneity
in the input image scene. The assignment and updating of
interconnection weights are carried out by evaluating the
relative measures of the fuzzy membership values of the
neuron states, thereby reducing the time complexity of the
object extraction procedure.
Results of application of the proposed architecture are demon-
strated with two images affected with various degrees of
Gaussian noise. The extraction effi ciency of the proposed
architecture is also determined by a proposed noise immunity
factor. Extraction times reported indicate faster convergence of
the network parameters during the object extraction procedure
as compared to the MLSONN architecture for the same de-
grees of noise. It is also observed that the proposed architecture
maintains the shapes and boundaries of the images after ex-
traction. However, it remains to investigate the performance of
the architecture in the extraction of multiscale gray and color
images. The authors are currently engaged in this direction.
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Fig. 19. Variation of neighborhood fuzzy hostility indices of synthetic image
with time at =0.5

Fig. 20. Variation of neighborhood fuzzy hostility indices of synthetic image
with time at =0.75

Fig. 21. Variation of neighborhood fuzzy hostility indices of spanner image
with time at =0.25

Fig. 22. Variation of neighborhood fuzzy hostility indices of spanner image
with time at =0.5

Fig. 23. Variation of neighborhood fuzzy hostility indices of spanner image
with time at =0.75

Fig. 24. Variation of fuzzy entropy measures of neighborhood fuzzy hostility
indices of synthetic image with time at =0.25
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