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A Schur Method for Solving Projected
Continuous-Time Sylvester Equations
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Abstract—In this paper, we propose a direct method based on the
real Schur factorization for solving the projected Sylvester equation
with relatively small size. The algebraic formula of the solution of
the projected continuous-time Sylvester equation is presented. The
computational cost of the direct method is estimated. Numerical
experiments show that this direct method has high accuracy.
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Spectral projection, Direct method.

I. INTRODUCTION

IN this paper we study the numerical solution of the
projected continuous-time Sylvester equation of the form{

AX +XB + PrC = 0,
X = PrX,

(1)

where A ∈ R
n×n, B ∈ R

m×m and C ∈ R
n×m are given

matrices, and X ∈ R
n×m is the solution matrix sought. Here,

A is a singular matrix and Pr is the spectral projector onto
the right invariant subspace corresponding to the non-zero
eigenvalues of the matrix A.

It is well known that the projected generalized continuous-
time Lyapunov equations play an important role in stability
analysis and control design problems for descriptor systems
including the characterization of controllability and observ-
ability properties, balanced truncation model order reduction,
determining the minimal and balanced realizations as well as
computing H2 and Hankel norms; see [1], [14], [22], [24],
[29], [32] and the references therein. Recently, a new iterative
method for solving the projected generalized continuous-time
Lyapunov equations has been proposed in [3]. At each iterative
step of this method, one needs to solve (1), see [3] for details.

During the past four decades, a number of numerical
solution methods have been proposed for standard Lyapunov
or Sylvester equations with Pr = I . Three classical di-
rect methods are the Bartels-Stewart method [4], [28], the
Hessenberg-Schur method [9], and the Hammarling method
[13], [19]. These methods need to compute the real Schur
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forms of the coefficient matrices by means of the QR algo-
rithm [10], and require O(n3) operations and O(n2) memory.
Besides direct methods, we mention, among several iterative
methods, the Smith method [27], the alternating direction
implicit iteration (ADI) method [33], [21], the Smith(l) method
[23], the modified low-rank Smith method [12], the Cholesky
factor-alternating direction implicit (CF-ADI) method [20],
and the matrix sign function method [5], [6], [7]. The matrix
sign function method are appropriate for problems with the
coefficient matrices dense and stable. There are also several
other approaches to solve large-scale Lyapunov and Sylvester
equations using Krylov subspace methods, see, for example,
[2], [11], [15], [16], [17], [18], [25]. The ADI methods and
Krylov subspace based methods are much suited for large-
scale Lyapunov and Sylvester equations with sparse coefficient
matrices.

In this paper, firstly, we make a detailed deduction for the al-
gebraic expression of the solution of the projected continuous-
time Sylvester equation (1) by exploiting the real Schur
decomposition. Then, we propose a direct method for solving
the projected equation. Since the real Schur decomposition is
needed in the proposed method, it makes the direct method
only applicable to problems with medium or relatively small
size. We remark that to our knowledge, the method proposed
in this paper is the unique direct solver for this projected
equation.

Throughout this paper, we adopt the following notations.
I denotes the identity matrix, 0 denotes the zero vector or
zero matrix. The dimensions of these vectors and matrices are
conformed with dimensions used in the context. The space
of m× n real matrices are denoted by R

m×n. The Frobenius
matrix norm is denoted by ‖·‖F . The superscript “·T ” denotes
the transposition of a vector or a matrix and A−1 is the inverse
of nonsingular matrix A. The spectrum of A is denoted by
σ(A). We shall also adopt MATLAB-like convention to access
the entries of vectors and matrices. The set of integers from i to
j inclusive is denoted by i : j. X’s submatrices X(k : l, i : j),
X(k : l, :) and X(:, i : j) consist of intersections of row k to
row l and column i to column j, row k to row l, and column
i to column j , respectively.

The remainder of the paper is organized as follows. In
Section 2, we first present the algebraic formula of the solution
of the projected continuous-time Sylvester equation. Then,
a direct method based on the real Schur factorization is
proposed. The details of implementation are also included.
Section 3 is devoted to some numerical tests. Some concluding
remarks are given in the last section.
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II. THE SCHUR METHOD

Let the real Schur decompositions [10] of A and B be

A = U

[
JA GA

0 NA

]
UT , B = V

[
JB GB

0 NB

]
V T , (2)

where U ∈ R
n×n and V ∈ R

m×m are orthogonal matrices.
JA ∈ R

n1×n1 and JB ∈ R
m1×m1 are upper quasi-triangular

matrices and correspond to the non-zero eigenvalues of A
and B, respectively, while NA and NB being upper triangular
correspond to the zero eigenvalues of A and B, respectively.
We shall always assume that σ(JA) ∩ σ(−JB) = ∅.

To utilize the real Schur decomposition (2) to solve the
projected Sylvester equation (1), it is necessary to block
diagonalize the matrix A. It can be implemented by solving
the following Sylvester equation

JAY − Y NA −GA = 0. (3)

Note that JA corresponds to the non-zero eigenvalues of A
while NA corresponds to the zero eigenvalues of A, the
Sylvester equation (3) always has a unique solution Y for
every GA, see [8] for more theoretical results.

It follows from (2) that A can be written in factored form
as follows:

A = U

[
I −Y
0 I

] [
JA 0
0 NA

] [
I Y
0 I

]
UT

= T

[
JA 0
0 NA

]
T−1,

where the nonsingular matrix T is defined by

T = U

[
I −Y
0 I

]
.

Then the spectral projector onto the right invariant subspace
corresponding to the non-zero eigenvalues of A can be ex-
pressed by

Pr = T

[
I 0
0 0

]
T−1 = U

[
I Y
0 0

]
UT . (4)

By making use of the decompositions (2) and (4), we can
reformulate AX +XB + PrC as

AX +XB + PrC = U

[
JA GA

0 NA

]
UTX

+XV
[
JB GB

0 NB

]
V T

+U
[
I Y
0 0

]
UTC. (5)

Define X̂ = UTXV and Ĉ = UTCV , and partition X̂ and
Ĉ appropriately as

X̂ =

[
X̂11 X̂12

X̂21 X̂22

]
, Ĉ =

[
Ĉ11 Ĉ12

Ĉ21 Ĉ22

]
.

By (5), the first equation of (1) is equivalent to[
JA GA

0 NA

] [
X̂11 X̂12

X̂21 X̂22

]

+

[
X̂11 X̂12

X̂21 X̂22

] [
JB GB

0 NB

]

+
[
I Y
0 0

][
Ĉ11 Ĉ12

Ĉ21 Ĉ22

]
= 0.

Then a simple calculation gives that[
JAX̂11 +GAX̂21 JAX̂12 +GAX̂22

NAX̂21 NAX̂22

]

+

[
X̂11JB X̂11GB + X̂12NB

X̂21JB X̂21GB + X̂22NB

]

+
[
Ĉ11 + Y Ĉ21 Ĉ12 + Y Ĉ22

0 0

]
= 0,

which is equivalent to the following four equations:

JAX̂11 +GAX̂21 + X̂11JB + Ĉ11 + Y Ĉ21 = 0, (6)

JAX̂12+GAX̂22+X̂11GB +X̂12NB +Ĉ12+Y Ĉ22 = 0, (7)

NAX̂21 + X̂21JB = 0, (8)

NAX̂22 + X̂21GB + X̂22NB = 0. (9)

Equation (8) is a standard continuous-time Sylvester equa-
tion. Since the spectrum of NA and −JB are disjoint, (8) has
a unique solution X̂21 = 0, see [8].

By X̂21 = 0, (6), (7) and (9) are simplified as

JAX̂11 + X̂11JB + Ĉ11 + Y Ĉ21 = 0, (10)

JAX̂12+GAX̂22+X̂11GB+X̂12NB+Ĉ12+Y Ĉ22 = 0, (11)

NAX̂22 + X̂22NB = 0. (12)

Equation (10) is also a standard continuous-time Sylvester
equation and, has a unique solution X̂11 since σ(JA) ∩
σ(−JB) = ∅. Clearly, Equation (12) have many solutions
including X̂22 = 0.

By utilizing the expression of Pr defined by (4), the second
equation of (1) can be rewritten as

X = PrX = U

[
I Y
0 0

]
UTX. (13)

Multiply (13) from the left by UT and multiply it from the
right by V to obtain[

X̂11 X̂12

X̂21 X̂22

]
=

[
I Y
0 0

][
X̂11 X̂12

X̂21 X̂22

]

=
[
X̂11 + Y X̂21 X̂12 + Y X̂22

0 0

]
,

which shows that

X̂21 = 0 and X̂22 = 0.

By X̂22 = 0, Equation (11) is simplified as

JAX̂12 + X̂12NB + (Ĉ12 + Y Ĉ22 + X̂11GB) = 0, (14)
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Equation (14) is also a standard continuous-time Sylvester
equation, and has a unique solution X̂12 since σ(JA) ∩
σ(−NB) = ∅.

We may summarize these results in the following theo-
rem on the unique solution of the projected continuous-time
Sylvester equation (1).

Theorem 2.1: Assume that σ(JA) ∩ σ(−JB) = ∅. Then
the unique solution of the projected continuous-time Sylvester
equation (1) can be formulated as

X = UX̂V T = U

[
X̂11 X̂12

0 0

]
V T ,

where X̂11 and X̂12 are the unique solutions of the Sylvester
equations (10) and (14), respectively.

The previous discussion also provides an approach for
solving the projected continuous-time Sylvester equation (1).
The corresponding algorithm is described as follows.

Algorithm 2.1: The Schur method
Input: A ∈ R

n×n, B ∈ R
m×m and C ∈ R

n×m.
Output: X ∈ R

n×m is the unique solution of (1).
1) Compute the real Schur factorizations (2) of the matrices

A and B, respectively.
2) Solve the Sylvester equation (3) to obtain Y .
3) Compute

Ĉ = UTCV =

[
Ĉ11 Ĉ12

Ĉ21 Ĉ22

]
.

4) Solve the Sylvester equation (10) for X̂11.
5) Solve the Sylvester equation (14) for X̂12.
6) Form the solution

X = U

[
X̂11 X̂12

0 0

]
V T .

About Algorithm 2.1, some remarks of implementation
details are in order:

• At Step 1, we take use of the MATLAB function
“schur.m” to compute the real Schur factorizations and
adopt the MATLAB function “ordschur.m” to reorders
the Schur factorization. It costs about 10n3 and 10m3

flops for computing the real Schur factorizations (2) of
the matrices A and B, respectively.

• At Step 2, the Sylvester equation (3) can be solved by
the direct method, such as the Bartels-Stewart method
[4]. This method is based on the Schur decomposition,
by which the original equation is transformed into a form
that is easy to be solved by a forward substitution. Since
the coefficient matrices in (3) are already in the real Schur
form. It requires only 2.5(n1(n− n1)2 + (n− n1)n2

1) =
2.5n(n− n1)n1 flops to solve (3).

• At Step 3, one need about 2nm(n + m − 1) flops to
compute Ĉ.

• At Step 4, computing Ĉ11+Y Ĉ21 costs about 2n1m1(n−
n1) flops and solving the Sylvester equations (10) by the
Bartels-Stewart method costs about 2.5(n1m

2
1 + m1n

2
1)

flops.

• At Step 5, it costs about 2n1(m−m1)(n+m1−n1) flops
for computing Ĉ12 + Y Ĉ22 + X̂11GB and it costs about
2.5(n1(m −m1)2 + (m −m1)n2

1) flops for solving the
Sylvester equations (14) by the Bartels-Stewart method.

• At Step 6, we only need to compute U(1 : n1, :
)[X̂11 X̂12]V T for forming the solution X . It requires
(2n1 − 1)nm+ (2m− 1)n2 flops.

• When n ≈ m and n1 ≈ m1, the total cost of Algorithm
2.1 for solving the projected continuous-time Sylvester
equation (1) is about 24n3 + 7n1n

2 − 5n2
1(n − n1).

Therefore, Algorithm 2.1 is applicable to problems of
medium or relatively small size.

III. NUMERICAL EXPERIMENTS

In this section, we present two numerical examples to illus-
trate the performance of the Schur method for the projected
Sylvester equation (1). To our knowledge, the Schur method
proposed in this paper is the unique direct solver for this
projected equation. So, we do not compare its performance
with other methods. We only present the accuracy of the Schur
method. The accuracy is depicted by the relative residual

‖AX +XB + PrC‖F

‖PrC‖F
,

where X is the computed solution by the Schur method.
All numerical experiments are performed on a PC with

the usual double precision, where the floating point relative
accuracy is 2.22 × 10−16.

Example 1. For the first experiment, we consider the 2D
instationary Stokes equation that describes the flow of an
incompressible fluid in a domain. The spatial discretization
of this equation by the finite difference method on a uniform
staggered grid leads to the descriptor system

Eẋ(t) = Fx(t) +M1u(t),
y(t) = K1x(t).

(15)

This example for the projected generalized Lyapunov equa-
tions was presented by Stykel, see [30], [31], [32] and the
references therein. The matrix coefficients in (15) are given
by

E =
[
E11 0
0 0

]
∈ R

n×n, F =
[
F11 F12

F21 0

]
∈ R

n×n.

Here, F is nonsingular and the matrix A in (1) is given by A =
F−1E. Obviously, the matrix A is singular. In this example,
the state space dimensions of the descriptor system (15) is
n = 442.

We discretize the 2D instationary Stokes equation with m =
308 to generate another descriptor system

Gẋ(t) = Hx(t) +M2u(t),
y(t) = K2x(t).

Analogously, we can get the singular matrix B = H−1G. Let
C be 442 × 308 random matrices. Elements of C are chosen
from a normal distribution with mean zero, variance one and
standard deviation one.
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For this example, the relative residual of the solution
computed by the Schur method is 6.16 × 10−15.

Example 2. For the second experiment, we consider a
holonomically constrained damped mass-spring system with
g masses as in [31]. The ith mass is connected to the (i+1)th
mass by a spring and a damper and also to the ground
by another spring and damper. Moreover, the first mass is
connected to the last one by a rigid bar and it can be influenced
by a control. The vibration of this system is described by the
descriptor system (15) with the matrices

D1 =

⎡
⎣ I 0 0

0 M1 0
0 0 0

⎤
⎦ , F1 =

⎡
⎣ 0 I 0
K1 H1 −NT

1

N1 0 0

⎤
⎦ ,

where M1 ∈ R
g×g is the symmetric positive definite mass

matrix, K1 ∈ R
g×g is the stiffness matrix, H1 ∈ R

g×g is the
damping matrix and N1 is the matrix of constraints, see [26]
for details. Here, F1 is nonsingular and the matrix A in (1) is
given by A = F−1

1 D1. It is obvious that A is a singular matrix.
In this example, the state space dimensions of the problem is
n = 501.

We consider another holonomically constrained damped
mass-spring system

D2 =

⎡
⎣ I 0 0

0 M2 0
0 0 0

⎤
⎦ , F1 =

⎡
⎣ 0 I 0
K2 H2 −NT

2

N2 0 0

⎤
⎦ ,

to get the singular matrix B = F−1
2 D2 with the state space

dimensions m = 401. Let C be 501 × 401 random matrices.
Elements of C are chosen from a normal distribution with
mean zero, variance one and standard deviation one.

For this example, the relative residual of the solution com-
puted by the Schur method is 7.58 × 10−15.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we give out an algebraic formula of the
solution of a projected continuous-time Sylvester equation, and
propose a Schur method to compute its solution. Numerical
experiments presented in this paper show the Schur method
has high accuracy. Future work should include perturbation
analysis of the projected continuous-time Sylvester equation,
including the condition number and perturbation bounds.
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