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Abstract—Safety analysis for multi-agent systems is complicated
by the, potentially nonlinear, interactions between agents. This paper
proposes a method for analyzing the safety of multi-agent systems by
explicitly focusing on interactions and the accident data of systems that
are similar in structure and function to the system being analyzed. The
method creates a Bayesian network using the accident data from
similar systems. A feature of our method is that the events in accident
data are labeled with HAZOP guide words. Our method uses an
Ontology to abstract away from the details of a multi-agent
implementation. Using the ontology, our methods then constructs an
“Interaction Map,” a graphical representation of the patterns of
interactions between agents and other artifacts. Interaction maps
combined with statistical data from accidents and the HAZOP
classifications of events can be converted into a Bayesian Network.
Bayesian networks allow designers to explore “what it” scenarios and
make design trade-offs that maintain safety. We show how to use the
Bayesian networks, and the interaction maps to improve multi-agent
system designs.

Keywords—Multi-agent system, safety analysis, safety model.

[. INTRODUCTION

S the popularity of multi-agent systems increases so too

does the number of agents interacting with humans in a
variety of different industrial settings. Many of these, such as
industrial robots, air traffic control and nuclear control systems
are safety critical. A safety critical system is a system that can
cause unintended harm, regardless of whether or not there is a
system failure. That is to say that a safety-critical system can
cause unintended harm just by operating normally as well as in
the case of a system failure. Accidents are events that result in
the type of harm that we wish to avoid. The analysis of such
events forms part of the accident investigations where causes
are associated with each contributory event. The events, causes,
circumstances and timelines associated with accidents
constitute the accident data.

Software agents cannot harm or physically injure people
without some form of physical interaction. Software by itself
does not do this kind of harm; however, once it is controlling a
physical machine or some other device then the story is very
different. A physical agent when interacting with humans can
cause this kind of harm and accidents involving physical agents
are well documented [12].

To reduce the likelihood of accidents, we propose a design
theory that quantifies the accident likelihood using accident
data from similar accidents in the past and a system ontology
that captures the taxonomy of components and processes
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making up the type of system being analyzed. In more
traditional forms of safety analysis, frameworks such as
HAZOP [13] are used to identify hazards and assign a level of
risk to each hazard. Hazards are those situations or states of a
system immediately preceding an accident, for example, a
hazard is a lighted match in a room where a flammable gas is
leaking. The hazard becomes an accident if a certain event, or
events, occurs while in the hazardous state, but that event need
not occur and then we are left with an incident and not an
accident. In the case of a match in a room with leaking
flammable gas, then an accident occurs if the flame from the
match comes into contact with the gas, but if the lighted match
is extinguished before coming into contact with the flammable
gas then the accident has been averted, and we are left with an
incident - a lighted match in a room with leaking flammable gas
- but no harm.

Our assumption is that most accidents are not new and that
the data from accidents can be systemised and reused. Our
method attempts to make use of this assumption by using the
PhySys system ontology [10] to structure the safety analysis for
a specific system, generalize the accident data for that system.
A key feature of multi-agent systems [1] is the interaction
between agents to achieve system-wide goals. However, from a
safety perspective the interaction between agents a major
concern for safety. Our method addresses the issue of
interactions between agents directly through Interaction Maps
and Bayesian networks and uses this analysis to generate the
safety requirements.

II.RELATED WORK

Generally, agent-oriented software engineering
methodologies consider safety concerns as non-functional
requirements (NFR) [1]-[3].
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Fig. 1 Proposed MAS safety analysis
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A number of papers suggest different architectural
approaches to constructing systems that meet and handle these
NFRs. In [4] a method for identifying all of the system modes
(e.g. start up, shut down, maintenance) for an embedded system
in a systematic way is proposed. They then propose a method
for capturing safety requirements by examining the different
system modes. In [5] a multi-agent framework is proposed that
translates safety concerns into actions once a hazard is
encountered.

Failure mode and effects analysis (FMEA) is a hazard
analysis method that is based on identifying how component
failures lead to system hazards. A number of multi-agent
systems analysis methods have been proposed based on FMEA.
In [6] a multi-agent structure to manage hazards based on
FMEA analysis is proposed, while [7] proposes a multi-agent
system using a language based on FMEA to self-management
system failures. Although we may observe some similarity
between the UML-like expressions in [7] and our own
Interaction Maps (defined below), the language in [7] tries to
capture a much wider range of system behaviors while
interaction maps deliberately limit themselves to focus on
behaviors influencing safety. Another approach is that taken in
[9] which uses temporal logic to formalize agent behaviors, and
to explore behaviors that may lead to hazards.

In this paper, we assume the ROADMAP methodology for
developing multi-agent systems from [8]. The major difference
between our approach and previous work is that none of the
methods listed above deal directly with the problem of
generating and assessing safety requirements, while our method
provides a clear and quantitative way of constructing and
assessing safety constraints for MAS. Further, while our
method is based around ROADMAP, it can be easily adapted
to all the methodologies and frameworks for MAS engineering
such as [2].

III. A METHOD FOR SAFETY ANALYSIS IN MULTI-AGENT
SYSTEMS

The proposed method for safety analysis for MAS uses
accident data from previous accidents together with appropriate
systems ontology to quantitatively assess new agent-oriented
system designs for hazards. The types of accidents used in the
analysis are related to the type of system begin developed; for
example, although technology has advanced dramatically for
cars over the years, the types of accidents related to cars has
remained remarkably unchanged throughout this time: front
impact, side impact, rear impact, rollover and fire being the
most common. Changes in automotive technology may have
reduced the incidence or severity of some types of accidents, or
the types of faults may have changed alongside these
technology changes, but ultimately the types of automotive
accidents still involve collisions and fires.

The role of the ontology of the system is to provide a clear
description of how different components work together and
how they interact with each other. Consequently, the system
ontology forms one of the key tools for deducing how system
behavior and interaction leads to accidents. We propose a safety

analysis method for Multi-agent systems that first uses the
system ontology combined with previous accident reports to
create a safety knowledge base. Then we use this safety
knowledge base is used to provide design guidance and safety
analysis for the different agents in the system. With the
information from accident reports as well as any regulations and
legal requirements, our approach aims to provide statistical
constraints for agent designs and the ability for agents to collect
data to improve the knowledge base.

IV.THE SYSTEM ONTOLOGY

The system ontology specifies how things interact in the
given system. Although there are a number of different
ontologies proposed in the field, all of them can generally be
separated into two interdependent sub-ontologies:

1. A Component Ontology; and
2. A Process Ontology.

The Component Ontology defines the main types of
components, or building blocks, of the system and their
properties as well as any relationships between these
components. The Process Ontology defines how different
components interact to perform the system functions on more
temporal dimensions.

In this paper, we adapt a simplified PhySys [10] ontology for
the purpose of exposition, but our method can use other
ontologies as well. The reason an ontology is required is that
accident reports collected in the field about a type of system
come from different machines, models, environments, and
companies. This results in numerous different details between
different accident reports. To use this data effectively to form
accident knowledge we need to generalize it to a common
format, and this is where the component ontology comes in.
Now observe that, at a certain level of abstraction, in any given
process, although it is carried out with different components in
different agents, the fundamental process remains the same if
the kind of system is the same. This can be represented by a
process ontology. We will use process ontologies to represent
the flow of energy in a system. By analyzing the process
ontology and the steps in the abstract process and tying these to
the corresponding events in accident reports, we can unify all
accident reports for a particular kind of system into one
common representation. As an example of this latter idea
consider two different cars. One car uses petrol, while the other
uses a hybrid power source. Although they use different power
sources both of them are governed by the same macro process
ontology - driving a car in this case - in which case collision
events for both types of care can be classified into the same
ontological category at a certain level of generality.

V.USING HAZOP TO GENERALISE DEVIATIONS FROM INTENT

With the generalized processes in the PhysSys ontology we
also need a generalized notion of a deviation from intent,
because, as many common hazard analysis methods suggest, it
is the deviations from intent that lead to hazards. The system of
deviations from intent used in our work comes from HAZOP’s.
Hazard and Operability Studies (HAZOP) is a technique for

2311



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

identifying the hazards of a system by examining deviations
from intent [13]. It is a well-established technique for
Preliminary Hazard Analysis (PHA) whereby a set of guide-
words is used to explore the behavior of a system and the causes
and consequences of the deviations. The guide-words are used
in traditional hazard analysis to prompt the analyst to explore a
particular deviation.

In this paper, we use the guide-words differently. Instead of
prompting an analyst to explore a behavior, the guide-words
will be used to define the state of a component in the system.
The specific guide-words used to come from [13] and are
summarized in Table I. Another way of classifying deviations
is the deviation type as follows:

1. Temporal (Early, Late),

2. Quantitative (More, Less)

3. Sequential (Before, after)

4. Omission (None, Part of)

5. Commission (Other than, as well as)

The deviation areas can also form the states of a component
but at a higher level than an individual deviation. As an
example, it may not matter whether an action occurs Early or
Late, just that it is out of the temporal order. Further, individual
deviations can be combined to record the fact that more than
one deviation occurred in an event.

TABLEI
HAZOP KEYWORD
Keyword Meaning
None None exist
More More than normal
Less Less than normal
Early Earlier than normal
Late Later than normal
Normal Normal State
As well as There are more than normal
Other than Instead of normal behavior, other behavior occurred

VI. CLASSIFYING ACCIDENTS

Accidents are defined in the safety literature as unintended
events that result in harm or loss [12], [14]. A key assumption
in this work is that accidents are not new. Most, if not all, types
of accidents have occurred before, and therefore knowledge
bases of accidents can be built up and used in safety analysis.
First, however, we need to understand what to classify as an
accident in an accident report. Not all of the information
contained in accident reports will pertain to the accident. An
accident report could contain unrelated information that bears
no causal relationship to the accident, or accident reports may
omit some information pertaining to the cause of the accident.
As aresult, we need to identify what part in which states can be
classified as an accident in accident report data, and the causal
relationship between different nodes/parts that resulted in an
accident.

Accident reports analyze accidents as a chain of events. Such
data can be separated into two distinct parts, core accident
factors and an influence path. The factors involved in the
classification of an event, like an accident, are known as the

Core Accident Factors, while the Influence Path is the sequence
of events leading to the similar situation in the past. For
example, one particular type of car accident is a car head on
collision. For a head on collision to occur, the car is required to
be moving, and an obstacle or another car is required to be in
its path. The state of a component of the car in question, such
as its brake, may well be in a deviant state according to our
HAZOP table. However, there are many different chains of
events that can lead to the same condition. In this example, the
deviations from intent in the states of the car and the other
objects are core accident factors, and event chains that lead to
such an accident are the influence path.

To separate core accident factors from an influence path is a
learning problem in itself. We solve this learning problem by
adopting an Augmented Naive Bayes [11] learning algorithm
augmented with our system ontology. The Augmented Naive
Bayes learning algorithm allows for the relaxing of constraints
on conditional independence while still being able to learn the
architecture of different nodes. It has better accuracy compared
to the Naive Bayes learning algorithm although requires a
longer computation time. The Augmented Naive Bayes
produces the degree of correlation between different factors and
the accident, as well as the structure of different factors related
to each other. System Ontology defines the point of interactions
in the system.

A critical assumption is that an accident can only occur if the
interaction between humans, or other objects that can suffer
harm or loss, and the system is in a deviant state. We can easily
identify these nodes as being among the core accident factors,
while other information in accident reports are a part of the
influence path.

A typical analysis from an accident report is a causal event
chain [15], and this event chain can be represented in many
different ways. Core factors and the influence path capture this
causal event chain in the augmented naive Bayes framework
that we use, but this causal chain learned from a collection of
accident reports will need to be checked against the system and
process ontology to verify that it is possible, and that the
inference engine has not learned an improper connection.
Further, the system ontology to help can be used to guide the
learning process by interpolating steps known to be part of the
system’s behavior (from the process part of the ontology) when
they are missing from an accident report.

VII. USING THE ACCIDENT MODEL

The accident model can be used in one of the folioing ways.
For an existing system, we can use any available accident data
to determine probability distribution functions for accidents.
From the probability function, the likelihoods of accidents can
be predicted and the estimated costs of accidents calculated.

For new systems, we don’t have the data for all of the states
and functions of the system. In this case, we would ideally like
to determine the minimal assumptions necessary for meeting
legal or design requirements. Notice from Table I that we have
stated for all of the deviations from intended normal behavior.
What we do not have in Table I is the normal state, and as a
consequence, we need to add it to our set of component states.
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Our problem, however, is that accident reports contain a great
deal of information on how deviations propagate and the
likelihood of propagation, but contain no information on the
likelihood of staying in a normal state! To determine the
probability of a “normal to normal” transition, we make the
weakest possible assumption that meets the constraints of the
design and legislation. The designer can then quantitatively
optimize the design such that itis better than these minimal
estimates.

In this paper, we will deal more with the second scenario,
which is to imitate an operational statistical model with safety
requirements and calculate its safety constraints. To provide
enough data for a new system, we have the following
assumption: accidents only happen when there are deviations
from intention. We will further assume that the intentions have
been adequately captured in the agent specification. In general,
the environment in which the system operates is difficult to
quantify or model accurately as a separate component, but our
theory takes the environment into account through the
probability distributions of states. In our model, the different
environment states are captured within the probability
distributions in the nodes. For example, it is not possible to have
an aviation disaster if all parts of the plane and the environment
the plane is operating in are in normal states.

Given the assumptions above and the idea that normal to
normal state transitions are defined according to meet external
safety constraints then the ensuring that the design of the new
system is within a given quantitative safety level becomes a
Maximum a Posteriori estimation (MAP) problem [11]. It is
used in our case to estimate the accident probability of the new
system given the data in the accident reports.

VIII. INTERACTION MAPS

An Interaction Map is a graphical representation of how
agents interact to accomplish a task. It is the first step in the
safety analysis and is composed of three different types of

components:

1. Actions

2. Resources
3. Agents

Actions define the external behaviors of that the system can
perform. Resources are materials or signals generated or
requested by actions. Agents are groups of actions and resources
combined together. Although different agent methodologies
propose different ways to identify system functionalities and
groupings of actions, all of them can be represented by an
Interaction Map. Interaction Maps act as the lowest common
denominator to represent system functionalities and the manner
in which different agents interact together.

In this paper, we propose a simple way to construct an
interaction map that can easily be adapted to other
methodologies. The Interaction Map is based on the process
ontology and accident report descriptions. The process
ontology comprises the backbone of how different components
interact together to perform a task. Accident reports outline the
parts of the process ontology that require more attention as they
have been involved in accidents before. An Interaction Map is

a graph with nodes being the constructed by the procedure

below:

1. Write down all the functions in the process ontology; these
become the agent actions;

2. Write down the resources required for the system;

3. Identify which actions act on resources and link these with
an edge;

4. Group similar or related actions together to form an Agent

5. Check if the actions can be broken down into finer actions
for a better representation of the accident

6. Repeat step 4 and 5 until interaction map covers all the
accident cases and agents are grouped in a logical manner

Agents are a combination of actions and resources, the
connection between different actions will be though resources.

IX.CONVERTING THE INTERACTION MAP INTO A BAYESIAN
NETWORK

An Interaction Map is a graphical representation of the
process ontology. Each node in the interaction map is either an
action or a resource that is consumed by, or produced by,
actions. This shows a relationship between different actions and
resources. We can represent the relationship in a statistical
manner. We choose Bayesian Network due to the fact that:

1. Bayesian Networks (BN) have a similar graphical
representation of interaction maps; and

2. Each node in a Bayesian Network contains different states,
same as our interaction map.

However, Bayesian Networks are an acyclic graphical
model, which means that cycles, or loops, are not allowed in the
network while cycles are possible in interaction maps. A
Dynamic Bayesian Network can be used to resolve the cycles in
the Bayesian Network that arise from the cycles in an
interaction map. In essence, each cycle in the interaction map is
‘unwound’ in the Dynamic Bayesian network.

The probability of a state occurring at a node in the Bayesian
Network can be calculated by counting the occurrence of the
state in accident reports. For example, if node Press is in the
state More three times in accident reports, and the total number
of occurrences of node Pressis five times in total, then the
probability of state More occurring is 3/5 in node Press. As we
mentioned before if the state of a given node is missing in
accident reports, then we assume it is in the Normal state in the
initial iteration.

The statistical model built so far is "negative" as it represents
a statistical accident model; it gives the most probable
explanation of what did happen when an accident occurs. To
design an agent system, it will be more useful if we provide a
"positive" model to calculate the limitations of actions and
resources of agents. This can be achieved by defining the
minimum safety level of the system, then combining an
accident model with normal data to form a "positive" statistical
model.

X.THE MATHEMATICAL ARGUMENT

Our method uses accident reports complemented by the
probability of a Normal state occurring. Doing this allows us to
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calculate accident probabilities relative to the normal use of the
system and to use these probability distributions as a guide to
safe system design. The aim is to ensure that the probability of
no accident occurring is greater than or equal to the real world
situation, so designs based on our method will always be
conservatively safe.

The probability of an accident occurring from given accident
data and complemented by estimates of the probability of a
Normal state is given in (1).

R
(R+N)

P(4) = ()
where: R: Number of accident reports (Number of recorded
accidents); N: Normal States.

As aresult, the accident rate is the number of accidents cases
as a proportion of the total number of cases, and we can adjust
the accident rate by adjusting the number of normal states of the
system. The real accident rate is not known as not all accidents
are reported and recorded, and not all reports are combined into
one single source for reference. However, our accident rate
model can be adjusted to meet the minimum desired or legal
requirements and consequently a design based on our model can
be made safer in real life situations.

In the sequel, we give an example to illustrate the idea. For
the simple case of two nodes (A and B) suppose each node has
three states (M, L, N).

From accident reports, we see that only when node B is in
state M will the result be an accident, and only two types of
accidents are possible. Table II shows the counting of state M
in two types of accident.

A B
N £, N
M =5 M
I o I

Fig. 2 Simple example of accident probability calculation

TABLEIT
ACCIDENT REPORT DATA FOR SIMPLE EXAMPLE

Accident Type |
Node State Count
A M 2
B M 2

Accident Type IT
Node State Count
A L 8
B M 8

We can see that there are 10 accident cases, 2 of them are due
to node A in state M while 8 of them are due to node A in state
L. As a result, we know the contribution to an accident of node
As:

o  Ifthe minimum legal requirement is 1 in 100, then to make
it safe we need additional 990 normal cases.

The safety design goal will become:

« Fornode B: State M cannot occur more than 1/100 = 0.01

« Fornode A: State M cannot occur more than 1/500 = 0.002;
State L cannot occur more than 8/1000 = 0.008
From accident reports we can see that node A will affect node
B. As a result, we can assume that by limiting node A, we
achieve the desired safety objection.

XI. AN ONTOLOGY FOR THE INDUSTRIAL PRESS

To demonstrate the methodology in practice, we give an
example of the Industrial Press, first introduced in [14]. Our
Industrial Press model consists of seven internal components
and three external components, where each of these
components may, in turn, contain smaller components. The
components are connected as in Fig. 3.

The flow of energy begins from electrical energy, then
converted into Harmonic motion by motors inside the press to
slide and die, then energy is transformed to deform the material
physically and later more energy is spent to extract the final
product from the press.

XII. AN AGENT-BASED MODEL AND ITS INTERACTION MAP

With the PhysSys ontology combining both a taxonomy of
components and a Process ontology, we can design the press
with the following diagram. Suppose we have two agents, one
is Worker, and the other is Press. There are four actions the
worker agent can perform, namely:

1. Input material

2. Activate Press

3. Received Pressed Signal
4. Extract Product

Those actions are connected to Press agent's action via 4
different materials, they are:
1. Raw material
2. Press Signal
3. Finish press signal
4. Product

An internal material in both agents is the Safety Guard that
prevents unwanted interactions between the two agents at
different times. The Press agent has two actions:

1. Accept Material
2. Press Action

These actions and materials are closely related to the
component and process ontology for press systems. Further,
different materials and actions involving agents are related to
different components and process steps. The interaction map
specifies exactly how the various actions, materials, and agents
interact on a task.

In our case, the interaction begins with a Worker agent that
inputs material into the Press agent who accepts it when it is
ready. Then the worker will activate the press by sending a
‘press’ signal to the Press agent. Once the Press agent has
received the ‘press’ signal, it will activate the stamping action.
After that, a ‘finish press’ signal will be sent to the worker agent
to indicate the press action is completed. Then the worker agent
will extract the product from the press agent, and the pressing
cycle starts again.
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XIII. THE BAYESIAN NETWORK FOR THE PRESS

With the interaction map defined above, we can construct the
following Bayesian Network.

b -
T > W >
Ac

Act_Input Mat_Material

= Mat_PressGuard

Mat_ActivateGuard Mat_PressSignal

Act_Extract

Mat_Product

Fig. 6 Bayesian Network

Relationships between different nodes are governed by the
interaction map stemming from the system ontology. An
immediate result of the use of the system ontology is that we
can predetermine the relationship between different nodes.
Secondly, the probability between different nodes can be
learned from accident reports using the counting technique that
we noted above. We translate accident reports based on
Interaction Maps and assign different states to different nodes
in the system. Consider, as an example, the following case:
Employee #1 was operating a 25-ton L & J full-revolution
mechanical power press. The employee was seated and
stamping parts when a part became stuck in the point of
operation. Employee #1 was reaching in with his right hand
when he stood up and apparently stepped on the foot pedal,
activating the press. His index and middle fingers were
amputated to the first joint, and his ring finger was fractured.

The use-case is converted into the following where we only
show the deviant states.

Worker agent: Activate = Early;

Extract = More (More than usual)
Press agent:  Press = Early

This set of states will then feed into our Bayesian Network
model to propagate the probabilities through the network.
Classification of accidents is done by assigning an additional
node to the Bayesian network with the accident outcomes as
indicated by the accident reports. As each accident report is a
record of an accident, logically we can express accidents in the
following formula:

(CiaACip A IV(Coa ACop A D)V e 2)

where: Cy, is accident condition A of accident report 1; Cyj is
accident condition B of accident report 1; C,, is accident
condition A of accident report 2. This is the logical summation
of all the conditions of all the reports, and can be simplified due
to the fact that lots of accident reports contain the same accident
condition. Core accident factors can then be identified by the

combine with process and component ontology as those factors

can only occur at interactions involving humans.

With our assumption of not all accident report data are
correct, to verify the data and reduce learning noise, we can
exam accident report data quality by the following:

1. Testif there exists common accident conditions by separate
data sets into learning data and test data, we can build the
model from learning data and measure against testing data
set.

2. Determine how different conditions in the accident report
contribute to the accident, by measuring the accident
contribution of each condition.

In this case, we have a total of 108 accident cases; we use
80% as learning data with the remainder of testing data.
Augmented Naive Bayes learning algorithm allows relaxing
constraints on conditional independence while being able to
learn the architecture of different nodes. It has better accuracy
compared to Naive Bayes learning algorithm although require
more computation time. We use Augmented Naive Bayes
method to perform an unsupervised learning on the accident
data and obtained following: The model learned with sample
data is closely matched with Test data with 95.24% accuracy,
which indicates that our model captures different accident
modes in the accident report.

Mat_ActivateGuard

Act_Extract

Mat_Product

Mat_PressGuard
Mat_PresssS!

Act_Press

Act_Activate

Fig. 7 Augmented Naive Bayes of Accident

The node in the center is accident node, and all the nodes
surrounding it are nodes in the system. The arrow indicates the
parent-child relationship. The thickness of the arrow indicates
the correlation between nodes. Thick arrow indicates the
relationship is positive; while thin indicate the relationship is
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the reverse. The number of the link indicates the weight of
correlation.

From Fig. 8, we can see Agent action Active (Act_Active) is
the parent of Press Signal material (Mat_PressSignal) and Press
agent Press action (Act_Press). This makes sense as the press
signal, and press action will depend on activating press action.

The relationship between them is positive as once you press
the activation button a signal will be sent to the press machine
and a press action will be performed. This also explains why the
relationship between different nodes and accident nodes is
negative as accidents will only happen when a component
deviates from the original. The strength of the correlation is
indicated by the label on the arrow. We can see Activate action
is 100% correlated to Press signal material, so every time when
press button is pushed a signal is sent to the press, while the
press will not perform the Press action correctly every time (as
the correlation is 0.8475).

We can reduce the noise of data by setting a threshold on the
correlation between accidents and nodes in the system. So if the
correlation between a given node and accident is low, then we
argue this node is less related to accidents, and hence require
less monitoring compared to others. Another way to reduce
noise while identifying core accident factors is to combine the
process and component ontology, and only the nodes that are
part of the final section of the fault tree are important. For
example, a worker accidentally activates the press while his
hand still in the pressing area will result in pressing action is
earlier than intend. One of the core accident factors is press in
a deviated state (Early). However the factors that cause the
press in such deviated state is the accident path, in this case, a
worker accidentally presses the button.

In this example, an additional Accident node is attached to
the final Product node. We classify Accident as any deviation
from the normal state of raw material, final product, and press
action. Accidents will only occur if there are body parts in the
press action with raw material or product (deviation of raw
material and product in "As well as" or "Other than" state), and
from the agent point of view, these should be minimized. More
importantly with the classification of any abnormal state as an
accident, this will increase the safety requirement and hence
more straight constraints in agent design.

A. Importing Accident Data

With 108 accident report feed into the Bayesian Network
together with accident classification we mentioned above, we
obtain the following result.

Fig. 9 shows the accident probability density function of
different actions and materials of worker and press agent. With
accident probability density function we can determine the most
probable explanation when an accident happened. For example
when an accident happened we can see a possible cause will be
the Product is in As Well as state (indicating that there is more
than just the final product in the press) and that is due to Extract
action of Worker agent is in More state, which is due to Press
action is in Early state and that is due to Activate action of
Worker agent is in Early state.

With accident probability density function it will be valuable
for agents to learn the possible accident state and hence choose
different actions to avoid results in such a state. However, this
accident model is most useful if we combine with actual
probability model of any given agent system.

»
(o] L

Mat_ActivateGuard

Act_Extract Mat_Product Accident

Fig. 8 Bayesian Network with Accident Node
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Fig. 9 Accident Probability based on Accident Report

B. Accident Model Combined with Normal Probability
Model

To study the general behavior of an agent system, we can use
a general probability model of an agent system with minimum
safety requirements to calculate the safety constraints of agent's
actions. For example, if our minimum safety requirement for
this multi-agent press system is 0.5%, then we can use Normal
to normal states of different nodes to represent the normal run
of the system. From the results below we can see that to achieve
0.5% accident rate the Press action can only have a 0.05% of
chances of early, which will form constraints on the agent's
action: e.g. Action “Press” of Press agent have following safety
constraints:
1. Early state must be less than or equal to 0.05%
2. Normal state must be greater than or equal to 99.74%
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Fig. 10 Accident Probability Based on Safety Requirement

With probability density function we can see the effect on
safety levels if the probability of the agent's action is changed.
For example, we want to lower the accident rate by introducing
a light curtain as Press Guard to activate the Press only if the
pressing area is clear from outside intervention, in our case most
likely due to workers loading raw material or retrieving the final
product. If we look at the Pressing Guard of all accident cases,
we can see it either doesn't present or performs below the
intended level (Fig. 11).

Mat_PressGuard

0.01 %i As well as
0.01% i Early
0.01% Late
11.01% _ Less
0.01% More
86.17% None
1.84% Normal
0.93% Other than
0.01% Part of

Fig. 11 Probability Density of Pressing Guard

To reduce the accident from happening we need to lower the
core cause of the accident and in our example only Pressing
action, Raw material and Final product contribute to the core
accident. New press guards can only improve the safety record

by changing the likelihood of deviation states of these core

accident factors. The influence can be expressed in 2 parts:

1. Posterior probability of core accident factors influenced by
a given node

2. Probability density function of the different state of the
given node.

For example, if the light curtain in Normal state can influence
pressing action to lower "Early" state of pressing by 70%, and
Normal state of Light curtain contributes 90% of all the
possibility of the Pressing Guard, then the actual posterior
probability of new press state corrected from "Early" state will
be 70%x90%=64%. And by inserting these data back to our
Bayesian Network model, we can see the Accident reduce to
72.23% if action “Press” reduce “Early” state to 64%. That is
17.39% of reduction of accident rate from the original. These
probabilities will provide guidance and limitations to the design
and allow the designer to have a quick check of which design is
more cost effective to reduce the accident rate. As a result, to
keep safety levels within a given range, it will become an
optimization problem of the Bayesian network.

Our safety model can be continually updated with new data
and accident reports. If the agent system can record their action,
then these data will update the statistical model of their action
and material states. Hence, a new probability of accidents can
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be calculated. Hence, we can constantly adjust the safety
constraints of our system.

Accident
72.23% True
27.77% False
Act_Press
2.22% ] As wel as
64.00% " e Early
222%| Late
222% Less
| s
20.46% Normal
222%) Other than
2.22% Part of

Fig. 12 Accident Probability Changes

XIV.DISCUSSION

In this paper, we have proposed a way to quantify accidents
using previous accident reports by estimating the probabilities
of deviations from intended behavior. This allows us to reuse
information from different accident reports of the same kind of
system but may have a different implementation.

We identify the core accident factors and populate the
accident density function from accident event chains. With this
accident knowledge model, we can provide a quantified
measurement of how safe of a current system if we know the
probability transition function of its components. Else for a new
system, we provide a way to estimate the accident level by legal
requirement and safety level design goal. We show how to use
our accident model to design new components and provide
continued learning. Next step in our work will be to combine
accident data of different systems to estimate the safety level of
anew system.
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