
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:11, 2011

1658

 

 

  
Abstract—The ultimate goal of this article is to develop a robust 

and accurate numerical method for solving hyperbolic conservation 

laws in one and two dimensions. A hybrid numerical method, 

coupling a cheap fourth order total variation diminishing (TVD) 

scheme [1] for smooth region and a Robust seventh-order weighted 

non-oscillatory (WENO) scheme [2] near discontinuities, is 

considered. High order multi-resolution analysis is used to detect the 

high gradients regions of the numerical solution in order to capture 

the shocks with the WENO scheme, while the smooth regions are 

computed with fourth order total variation diminishing (TVD). For 

time integration, we use the third order TVD Runge-Kutta scheme. 

The accuracy of the resulting hybrid high order scheme is comparable 

with these of WENO, but with significant decrease of the CPU cost. 

Numerical demonstrates that the proposed scheme is comparable to 

the high order WENO scheme and superior to the fourth order TVD 

scheme. Our scheme has the added advantage of simplicity and 

computational efficiency. Numerical tests are presented which show 

the robustness and effectiveness of the proposed scheme. 

 

Keywords—WENO scheme; TVD schemes; smoothness 

indicators; multi-resolution 

I. INTRODUCTION 

HE present work is concerned with the numerical 

solution of the hyperbolic conservation laws. It is well 

known that the exact solutions to such equations may 

develop discontinuities in finite time, even when the initial 

condition is smooth, so that one needs to consider weak 

solutions. A successful method should compute such 

discontinuities with the correct position and without spurious 

oscillations and yet achieve a high order of accuracy in the 

regions of smoothness. Harten [1] introduced the total 

variation diminishing (TVD) schemes modified by many 

others. A fourth order total variation diminishing (TVD) 

scheme is presented in [1]. The main property of the TVD 

scheme is that it can be second order (or higher) and 

oscillations-free across discontinuities. Moreover, TVD 

schemes are very accurate in smooth parts. The disadvantage 

of the TVD schemes is that they avoid oscillations near 

discontinuities by locally reverting to first order of accuracy 

near discontinuities and extrema and are therefore unsuitable 

for applications involving long-time evolution of complex 

structures, such as in acoustic and compressible turbulence. 

The high order weighted essentially non-oscillatory (WENO) 

schemes are designed for this purpose. The WENO schemes 

were originally proposed by Liu et al [3], and have been 

improved by Jiang and Shu [4]. The motivation of this article  
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is to combine the cheap fourth order TVD scheme [1] with 

the more expensive seventh order WENO scheme (k = 4) [2] 

to produce a fourth order accuracy inboth smooth parts and 

near discontinuities which is less expensive and therefore 

saves more CPU time. The expensive WENO scheme is used 

only near discontinuities and the fourth order TVD scheme is 

used in smooth parts. To distinguish between those regions 

we use a more efficient multi-resolution technique presented 

in [8]. The resulting scheme ensures that fluxes at grid points 

around discontinuities will always be computed by a WENO 

scheme; whereas smooth tendencies will not suffer any 

unnecessary extra damping because they will be treated by a 

TVD scheme. The rest of the article is organized as follows. 

Section 2 briefly reviews the WENO scheme [2]. In Section 

3, we describe the fourth order TVD scheme [1]. The multi-

resolution algorithm is discussed in Section 4. In Section 5, 

we present the hybrid scheme. Numerical results for one and 

two dimensional examples are presented in Section 6. 

II. THE SEVEN-ORDER WENO SCHEME 

Now, we will describe the WENO finite difference scheme 

for one dimensional scalar hyperbolic conservation law. 

( )t x
U f u 0, , 0x t∞+ = − < < ∞ ≥ , ( ) ( )0

u x,0 u x=  (1) 

The semi-discrete finite difference formulation of (1) in a 

uniformly spaced grid is 

( )( ) ( )
j 1 1 j

j j
2 2

f fu t x L ud dt
+ −

 
= − − ∆ = 

 

        (2) 

Where x∆  is the grid size, ( )ju t  is the solution within the 

stencil 
j 1 1

2 2

I , ,  
j j
x x

− +

 
=  

 

and the numerical flux 

( )1

2

, ,
j r j s

j
f f u u− +

+
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with r and s, integer parameters defining the set of values 

used for the computation of the flux ( )f u .  

In the current WENO schemes, the numerical solutions of 

(2) are advanced in time by means a TVD Runge-Kutta 

method [9] which will be discussed later. The key idea of a k-

th order ENO scheme is to choose one “smoothest” stencil 

{ }r j r j ss x , , x− += … , with s = k − r − 1, r = 0. . K − 1,   (4) 

among the k candidate to avoid spurious oscillations near 

shocks. If the stencil rs  happens to be chosen as the ENO 

interpolation stencil, then the k-th order ENO reconstruction 

of 
1

j
2

f
+

is: j

1
r 1 ri j r ij

j 2
2

k 1

i 0

p x f C f , 
− +++

−

=

 
= = 

 
∑$           (5) 

where
ri

C is the constant coefficients obtained through 

Lagrangian interpolation process. This process is called the 

reconstruction step. WENO is an improved over ENO, for it 
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uses a convex combination of all available polynomials for a 

fixed k. This yields a (2k−1) order method at smooth parts of 

the solution. The flux f j+1∕2of WENO method is defined as 

j

1 r r 1
j j

2 2

k 1

i 0

f w p x
+ +

−

=

 
=  

 
∑ ,               (6) 

The essentially non-oscillatory property is obtained by 

requiring that the weights 
rw  reflect the relative smoothness 

of f: 

r r 0 1 k 1w α / α α α ,  r 0,1, ,  k 1−= + +…+ = … − ,  (7) 

where ( )2
/

r r r
d ISα ε= +  , and the parameter ε  is introduced to 

avoid the denominator to become zero. We take 6ε 10−=   in our 

numerical tests and 
rd  are the optimal weight coefficients 

given by Balsara and Shu in [5]. 
rIS is the smoothness 

measurement of the flux function on the r-th candidate stencil 

rs .For the seventh-order WENO reconstruction (k=4), the 

corresponding smoothness indicators are given by  

( ) ( )
1

1

1, ,
k

lk l

r l i

l

Is u i r k i r xβ
−

=

 = + − + … + ∆ ∑    (8) 

where ( ) ( )1, ,
l

iu i r k i r+ − + … +  denotes the differencing 

approximation of l th order derivative ( )l
iu  by using points

1, ,i r k i r+ − + … + . Because k points are used, the highest order 

approximation of ( )l
iu  is (k-l)-th order interpolation. The 

coefficients 
lβ  can affect the accuracy of the final scheme. For

( ) ( ) 1, ,
l

iu i r k i r+ − + … + , it can always be expressed as a linear 

combination of ( )1i r n i r nu u+ + − + −− .  

III. TVD-FINITE DIFFERENCE SCHEME 

Under In this section, the fourth order explicit TVD 

schemes presented in [1] is reviewed. First let us consider the 

linear case ( )f u au=  in (1) so that ( )'
f u a=  is a constant 

wave speed. The fourth order conservative TVD numerical 

fluxes introduced in [1] have the form: 

( )
1 1 1 0 1 1 1 2 1

2 2 2 2 2

1 1
.

2 2
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    (9) 

where L = −1, M = 1 for c > 0 and L = 1, M = −1 for c < 0. 

Here  c a t x= ∆ ∆  is the Courant number, t is the time step, and

1 1

2

j j
i

j
u u u

+
+

∆ = − , where 

( ) ( )31
20 7 12 12 , A c c= − +  

( ) ( ) ( )2 31
121 24 12 24 ,A c c c= + − −          (10) 

( ) ( ) ( )2 31
122 24 12 24 .A c c c−= + + −            

Here �� and ����are flux limiter functions defined by 
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here iθ  is called the local flow parameter and is defined by 

1 1

2 2

/i
i L i

u uθ
+ + +

= ∆ ∆ ,              (12a) 

and *

jθ is called the upwind-downward flow parameter and 

is given by 
*

1 1

2 2

/
i

i L i M

u uθ
+ + + +

= ∆ ∆ ,              (12b) 

andγ  is defined by 
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For nonlinear scalar problems ( )a a u= , we define the 

wave speed 

1
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Now we redefine  iθ  in (12a) as 

1 1 1

2 2 2

1

2

/
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i
i
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+ + + + ++
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 here c is replaced by
1

2

1

2
ii

t xc a
++

∆ ∆= . 

The numerical flux (9) takes the form 

( )
1 1 1

2 2 2

1

2

1 1 1 1 0 1
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The flux limiter becomes the same (11) with replacing c by 

cj+1∕2.With stability condition CFL ≤ 1, here CFL denotes the 

maximum Courant number over all cells at a given time step. 

IV. MULTI-RESOLUTION ANALYSIS 

The successful implementation of the Hybrid method 

depends on the ability to obtain accurate information on the 

smoothness of a function. In this work, we employ the Multi-

Resolution (MR) algorithms by Harten [7, 10] to detect the 

smooth and rough parts of the numerical solution. The 

general idea is to generate a coarser grid of averages of the 

point values of a function and measure the differences (MR 

coefficients) j

kd  between the interpolated values from this 

sub-grid and the point values them-selves. A tolerance 

parameter MR is chosen in order to classify as smooth those 

parts of the function that can be well interpolated by the 

averaged function and as rough those where the differences 
j

kd  are larger than the parameter MR. We shall see that the 

order of interpolation is relevant and the ratio between 
j

kd of 

distinct orders may also be taken as an indication of 

smoothness. 
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Consider a set of dyadic grids on the form 

{ }: 2 , ,  j j j j

k kV x R x k k Z j Z−= ∈ = ∈ ∈          (17) 

where j identifies the resolution level and k the spatial 

location, as illustrated in Fig. 4. Assume that the solution is 

known on grid jV for     min maxJ j J≤ ≤  and we want to extend it to 

the finer grid 1jV + . Values on the even-numbered grid points 

are known from the corresponding values on the lower 

resolution grid: 

 1

2

j j

k ku u+ = ,                   (18) 

 
Fig. 1 Example of points in a dyadic grid 

 

whereas the function values in the odd numbered grid points 

in 1jV +  are computed using a suitable interpolation scheme, 

based on the known even-numbered grid points. The 

interpolative error coefficient (or multi-resolution 

coefficient), j

kd  is defined as the difference between the 

interpolated value, ( )1

2 1

j j

k
I u +

+
, and the real one, 1

2 1

j

ku
+
+

,  

( )1 1

2 1 2 1 /j j j j

k k k refd u I u u+ +
+ += −             (19) 

refu is a reference value of the dependent variable such that, 

( )1

2 1 ,      0,1, , 2 ,j j

ref ku max u k+
+= = …          (20) 

The calculation of the interpolated values is illustrated for 

the case of odd numbered grid point: 

a- Calculate the face velocity 

( )1 1

2

/ 2j j

k k
k
a a a +

+
= + .              (21) 

b- Calculate the normalized face value 1

2
j
u

+

)
, using the 

SMART high resolution scheme [6], the normalized face 

value is given by 
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c- Calculate the interpolated value: 

( )
( )

( )
1 1 1 1 1

2 2

2 1 2 1

2 2

1

2 1

,   0

,       0

j j j j

k k k
k k

j j j j

k k k
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+ +

+ +
+ +

+
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)
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(23) 

The maximum level of resolution is specified by the user 

so that grid coalescence is avoided in problematic regions 

(typically in this work we used 12maxJ = ). The user also 

supplies the minimum level of resolution, and all the grid 

points pertaining to this level of resolution are always 

conserved throughout the computations (typically in this 

work we set  4maxJ = ). 

V. HYBRID METHOD 

In this section, we describe the hybrid TVD-WENO 

scheme. It is defined as a grid-based adaptive method in which 

the choice of the numerical scheme is determined by the 

smoothness of the solution at each grid point which is 

measured by the multi-resolution procedure mentioned in 

Section 5. The fourth -order TVD scheme is used at those grid 

points where the solution is flagged as smooth in lieu of the 

standard high order WENO scheme. The hybrid scheme is 

summarized in the following steps: 

(1) Assume that the function values j

ku  in the grid jV  at time

1t t= , compute the multi-resolution coefficients j

kd  for 

min maxJ   j  J≤ ≤  from Equation (19). 

(2) A grid point is flagged as non-smooth when j

k
d ε>  (ℰ is 

a tolerance parameter defined by the user): 
j

k

i

1,    d  
flag

0,     

if

otherwise

ε >=


 

 (3) Once the flags are set, a number of neighboring points 

around each flagged points 
ix  , depending on the number of 

the ghost points needed for a given difference scheme and 

WENO scheme, are also flagged to 1. In particular, if 
fn  and 

wn are the orders of the TVD-difference and WENO schemes 

respectively, the number of ghost points required by the 

TVD-difference and WENO schemes are 
f

n 2 and ( )
w

n 21+ , 

respectively. At any given point, say ix  , flagged as non-

smooth, its ( )( )
f w

2r max n , n 1 2= + neighboring points 

{ }i r i i rx , , x , , x− +… …  will also be designated as non-smooth, 

that is, 
j{flag  1 ,  j  i  r,  . . . ,  i  r}= = − + . This procedure avoids 

computing the derivative of the solution by the difference 

scheme using non-smooth functional values. Furthermore, the 

same WENO flag will be used at the Runge-Kutta stages and 

will be updated at the next time step. 

(4) For the grid points flagged zero (smooth), we compute 
1n

ju
+ by solving the ODE (2) using the numerical flux f j+1∕2 (9) 

and the Runge–Kutta scheme. 

(5) For the grid points designated as non-smooth we compute 
1n

ju
+  by WENO scheme. 

VI. NUMERICAL RESULTS 

In this section, two examples are presented to illustrate the 

efficiency and robustness of the proposed scheme. For all 

tests we use a uniform mesh; N denotes the number of cells 

and the exact solution is shown by the solid line and the 

numerical solution by symbols. 

Example 1 (Burgers’ equation) 

This example considers the numerical solution of the 

inviscid Burgers’ equation 
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( )2 2 0
t

x
u u+ =  , ( )

1,  0.5
,0

2,  0.5

x
u x

x

− ≥
= 

<

       (24) 

The breakdown of the initial discontinuity results in a shock 

wave with speed 0.5 and a rarefaction with a sonic point at x 

=0.5. The exact solution consists of rarefaction wave (left) 

and shock wave (right). At 2
3  t=  the rarefaction hits the shock 

and then the solution has a rarefaction wave only. The 

numerical solution is displayed at t =0.4 (before collision of 

the head of the rarefaction with the shock) and t =1.1 (after 

collision). Results are shown in Figure 2, with 62 1+  grid 

points,Multi-resolution tolerance 310ε −=  and CFL=0.45. 

Note that the hybrid method reproduces the exact solution. 

Example 2 (Shock reflection problem) 

Now we test our hybrid scheme on the system of Euler 

equations of gas dynamics 

( ) 0t x
U F U+ =                (25) 

where ( ), ,
T

U u Eρ ρ=  and ( ) ( )( )2, ,
T

F U u u P u E Pρ ρ= + + , 

where ρ  is the density, u  is the velocity, P  is the pressure, 

( )2 2E e uρ ρ= +  is the total energy (sum of internal energy 

and kinetic energy); e  is the specific internal energy 

( ) / 1e P ρ γ= − and   γ is the ratio of specific heats. 

We consider the test problem concerning shock reflection 

in one dimension 0 1x≤ ≤ , governed by Euler equations of 

monatomic gas 5
3γ = with initial data [11]: 

0 0 0,    ,   u u e eρ ρ= = =  

This represents a gas of constant density and pressure 

moving towards   0x= . The boundary  0 x= is a rigid wall and 

exact solution describes shock reflection from the wall. The 

gas is brought to rest at  0x= ,
0 0 01,    1,    3u Pρ = = = ,  and    ( , )e x t is 

chosen such that the pressure jump across the shock equals 2, 

i.e. 
0 4.5e = . Figure 3 illustrates the results at t =0.15 and 

mesh size of 72 1+ grid points with multi-resolution tolerance 
310ε −= and CFL=0.45. We observe that the hybrid scheme 

resolves the discontinuity exactly. 

 
Fig. 2 Solution of Example 1 using the hybrid scheme at t =0.4 (left) 

and t =1.1 (right). 

 

 
Fig. 3 Solution of Example 2 using third-order scheme (left) and 

hybrid scheme (right) at t =0.15 

 

VII. CONCLUSIONS 

We have presented an efficient, accurate and high-

resolution hybrid scheme. In this scheme we use the fourth-

order TVD scheme in the smooth region and the seven-order 

WENO scheme near discontinuities. The numerical solution 

is advanced in time by the third-order Runge–Kutta method. 

The main advantages of the scheme are reduction of CPU 

time and improvement in overall accuracy over the classical 

TVD schemes. This is due to the use of more accurate seven-

order WENO scheme near discontinuities and high-order 

TVD scheme in the smooth region. We use an efficient multi-

resolution technique to detect the discontinuities. This 

scheme is tested and validated by solving one- and two-

dimensional problems. 
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