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A Robust Method for Finding Nearest-Neighbor
using Hexagon Cells

Abstract—In pattern clustering, nearest neighborhood point
computation is a challenging issue for many applications in the
area of research such as Remote Sensing, Computer Vision,
Pattern Recognition and Statistical Imaging. Nearest neighborhood
computation is an essential computation for providing sufficient
classification among the volume of pixels (voxels) in order to localize
the active-region-of-interests (AROI). Furthermore, it is needed to
compute spatial metric relationships of diverse area of imaging based
on the applications of pattern recognition. In this paper, we propose
a new methodology for finding the nearest neighbor point, depending
on making a virtually grid of a hexagon cells, then locate every
point beneath them. An algorithm is suggested for minimizing the
computation and increasing the turnaround time of the process. The
nearest neighbor query points Φ are fetched by seeking fashion of
hexagon holistic. Seeking will be repeated until an AROI Φ is to
be expected. If any point Υ is located then searching starts in the
nearest hexagons in a circular way. The First hexagon is considered
be level 0 (L0) and the surrounded hexagons is level 1 (L1). If
Υ is located in L1, then search starts in the next level (L2) to
ensure that Υ is the nearest neighbor for Φ. Based on the result
and experimental results, we found that the proposed method has
an advantage over the traditional methods in terms of minimizing
the time complexity required for searching the neighbors, in turn,
efficiency of classification will be improved sufficiently.

Keywords—Hexagon cells, k-nearest neighbors, Nearest Neighbor,
Pattern recognition, Query pattern, Virtually grid.

I. INTRODUCTION

F INDING nearest neighbor points among volume-of-pixels
(voxels) is pertinent computationally challenge issue in

many statistical classification applications. In the searching
of regions-of-interests, segmentation decays an image into
ingredient regions, acquaintance of boundaries, or objects to
be seeking. The level to which decomposition is performed
based on the problem being solved in applications such
as automation inspection using images and interest lies
in analyzing objects’ outlines. These applications currently
suffers due to deplorable computation turnaround time
of traditional nearest neighbor method such as k-nearest
neighbors (k-NN). In k-NN, k depends on the number of
nearest neighbors utilized in the classification while seeking
for the objects. Especially, in remote sensing, user control over
imaging is inadequately restricted due to the choice of image
sensors, for these applications, seeking of boundaries mainly
depends on segmentation. However, efficacy of classification
mainly depends on accuracy of segmentation accuracy.
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Fig. 1. ℵ is the closet to query point Φ in n points 2-D space. In that, Φ
is represented by the small circle with cross inside it, while data points are
represented by the small filled circles.

Optimize the accuracy of k-nearest neighbor classification
based on the weighted distance was presented in [8].
A selective incremental approach for transductive Nearest
Neighbor Classification was proposed by Viswanath et al. [10].
In this paper, we provide a solution to classify the patterns by
using hexagonal searching of neighbors.

We can treat a set of ℵ number of n points in
two-dimensional (2-D) spaces, in that, a point ℵ is a nearest
point to a query point, Φ. This is represented by a cross
encircle enclosed by a circle in Fig. 1. [4]

The proposed method starts in preprocessing phase by
making a virtually grid of a hexagon cells, then locate every
point beneath them. In order to find the nearest neighbor to
a query point Φ, a search on the same hexagon is performed
until Φ is expected to be found. However, if any point Υ is
found while searching, then circular way of seeking is required
for the nearest hexagons. An initial hexagon is called level 0
L0 and the surrounded hexagons is referred as level L1. If any
point Υ is not found in L1 then search is enforced to the next
level L2 in order to ensure that Υ is the nearest neighbor for
Φ, as shown in Fig. 2.

The mathematical model of the proposed method can be
summarized as follows: A given set ℵ has n number of points
in 2-D space. It is represented by small filled circles as shown
in Fig. 1, and a query point Φ which is denoted by small circle
with cross inside. The problem is to find the nearest Φ, from
the points ℵ (i = 1, 2, 3. . . n) by starting from initial point ω.

In preprocessing phase, a virtually grid of a hexagon cells
over ω is drown as shown in Fig. 3a. The located points are
underneath on every hexagon and store them in a linked list
while implementation. The list shows every hexagon with the
points beneath on it and every point which hexagon belongs

Ahmad Attiq Al-Ogaibi, Ahmad Sharieh, Moh’d Belal Al-Zoubi, R. Bremananth



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:1, 2014

46

Fig. 2. Representation of hexagonal space of points to be searched for the
given query point Φ.

to. After that, locate Φ in a hexagon at level L0, then searching
is continued inside boundary of the hexagon. If any point
Υ is found, then searching in surrounded hexagons L1 is
carried out for nearest point to Φ rather than found in the
same hexagon. This is shown in Fig. 3b. If Φ is considered as
matching of query point, then the initial point found in one of
the surrounded hexagons, for example, L1, as shown in Fig.
3c. A search in the remaining hexagons in the same level is
repeated until the next level L2 is made. Our contribution is
to search in two levels of hexagons in order to find the nearest
point for the query point Φ in the set ℵ of data. This is a easier
way than drawing circles and closer to the circle shape than
square, and it is easier way to search than exhaustive method
and speed up the process.

The remainder of this paper is organized as follows. Section
II describes state-of-art techniques related with neighbor
classification and nearest neighbor seeking problems. Proposed

result and analysis based on the benchmark of data set in
term of time and space complexities. Concluding remarks and

II. LITERATURE REVIEW

There are many state-of-art methods which are related with
neighborhood searching and classification problems. Based
on the review of previous literature, we can faction the
neighborhood operation issues by two extensive categories
such as seeking of query points related to its neighbors and
classification based on the previously classified trained set.

In [8], a method was proposed for nearest neighbor
classification rules based on weighted distance. These weights
fixation specific for each unambiguous class, feature set for
the classification and characteristics of the archetype. The
proposed learning algorithms are resulted by minimizing

the Leaving-One-Out-Cross Validation-classification error
(LOOCVCE) of the given training set.

A transductive method was proposed for nearest neighbor
classification through non-spectral or spectral graph minimum
cuts for the rouge patterns [10]. Solution to these issues is
achieved based on the LOOCVCE reverence to base classifiers
such as support vectors machine (SVM), k-NN and others.
A zero LOOCVCE can be achieved through a clustering
method, however it has a less classification efficacy for
diverse noise patterns which are involved in the training
and testing processes. Lawrence et al. proposed a learning
framework for fast retrieval of nearest neighbor points based
k-dimensional tree space-partitioning data structure [4]. In [6],
Nearest neighbor imputation of species-level was proposed
for analyzing ground and remotely sensed data measured
comprehensively across the same forested landscape.

In [12], k-nearest neighbor text classification algorithm
based on fuzzy integral was proposed. The proposed
method avoided independence demand of Dempster-shafter
theory (D-S theory) and enhanced the performance of text
classification.

David et al. [7] described a method to find the closest
match within a database of other such items, which was
a task performed in numerous domains. Image matching,
data mining, and electroencephalogram data analysis are a
few varied examples. They have used the extension of the
concept of Euclidean distance in 2D and 3D space to higher
dimensional space provides an effective comparison of items
in these sorts of domains.

In [11], a method was suggested to find nearest neighbors
using k-nearest neighbors algorithm (k-NN). It adopted in
the development of a general methodology, neighborhood
counting, for devising similarity functions. In order to measure
the similarity between two data points, all neighborhoods
are considered to cover both data points. Neighborhood
can be defined for different types of data for multivariate
data and derived a formula for such similarity, called
neighborhood counting measure (NCM). The NCM was tested
experimentally in the framework of k-NN. In the experiments,
the NCM consistently outperforms a mixture of Euclidean and
Hamming distances (HEOM). The NCM has a computational
complexity in the same order as the standard Euclidean
distance function. The NCM was proven the sound for
multivariate data experimentally.

In [5], a method proposed for computing the given set
S of points in a metric space with distance function D.
In order to solve the nearest-neighbor searching problem, a
data structure was built for S. So that for an input query
point q, the point s to S that minimizes D(s, q) can be
found rapidly. Several measures of dimension can be estimated
using nearest-neighbor searching, while others can be used
to estimate the cost of the searching with low-dimensional
spaces.

In [9], Sun, et al. proposed a way to incorporate the nearest
neighbor search problem based on analysis of algorithms
course. The problem of searching the elements of a set that are
close to a given query element under some similarity criterion
has a vast number of applications in many branches such

methodology is given in Section III. Section IV depicts the

future enhancement are suggested in Section V.
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Fig. 3. (a) Drawing a virtually hexagon cells on ℵ set. (b) Searching in the same Hexagon, if found one we search in surrounded hexagons for nearest point
than found in the same hexagon. (c). If we found the first point in L1 we Search in the remain hexagons in the same level, and all the hexagons in the next
level.

as pattern recognition to textual and multimedia information
retrieval. Many solutions have been proposed in different
areas, in many cases without cross-knowledge. Because of
this, the same ideas have been preconceived several times,
and very different presentations have been given for the same
approaches. They presented some basic results that explain
the intrinsic difficulty of the search problem. Sunil Arya et
al. suggested an optimal algorithm for approximating nearest
neighbor searching in fixed dimension in [2].

In [1], they proposed the idea of using the hexagonal search
space.

From previous review and from our thesis [1], it can be
noticed that all methods used to find the nearest neighbors
are a traditional methods depending on either probability
principals or analytical methods, while the proposed method,
in this research will be forming a new paradigm, depending on
drawings, geometry and computationally a simple calculations.
Based on the result comparisons, we found that the proposed
method will make searching query point in a robust way and
around 20-30% faster than existing methods.

III. THEORETICAL BACKGROUND AND PROBLEM
FORMULATION

The problem of finding the neighborhood center is involved
on image data arbitrary dimensionality. It doesn’t represent
in terms of color or intensity of pixels instead, it is a
structure of related volume-of-pixels (voxels). Region of
voxels dependents on which search is made by the operation.
That is, voxels is either a fixed size square or a cube depending
on the dimensionality of the image data. So that, neighborhood
searching is needed of arbitrary dimension of data structure

to accomplish the center point searching among the neighbor
points. In our paper, we have utilized k-dimensional tree
(kd-trees) data structure for performing exact and approximate
nearest neighbor searching. Bentley J. L. introduced the
kd-trees as a generalization of the binary search tree in higher
dimensions [3]. Each node of the tree is implicitly associated
with a d-dimensional rectangle that is called a cell. The root
node is associated with the bounding rectangle, which encloses
all of the data points. Each node is also implicitly associated
with the subset of data points that lie within this rectangle.
If the number of points associated with a node falls below a
given threshold, called the bucket size, then this node is a leaf,
and these points are stored with the leaf.

Based on the fundamental of kd-trees, we contribute the
method of hexagonal data structure in order to decrease
the turn around time of the each query point over the
d-dimensional space. In our experiments, we utilized a bucket
size of one. Our splitting algorithm is based on the hexagonal
points as stated in Fig. 3. Queries are answered by a recursive
algorithm. In the basis case, when the algorithm arrives at
a leaf of the tree, it computes the distance from the query
point to each of the data points associated with this node. The
smallest such distance is saved. When arriving at an internal
node, it first determines the side of the associated hexagonal
on which the query point lies.

On returning from the seeking, it is to determine that
whether the cell is associated with the other siblings which
is closer to the query point or not. If it is closer to the
query point, then the seeking is repeated. If existence of query
point, then this sibling and leafs are also visited recursively.
When the search returns from the root, the closest point is
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returned. An important observation is that for each query
point, every leaf whose distance from the query point is less
than the nearest neighbor will be visited by the algorithm. In
order to generalization, seeking algorithm is approximated to
the nearest neighbor queries. Let Ψ denote the allowed error
bound. In the processing of an internal node, the further child
is visited only if its distance from the query point is less than
the distance to the closest point so far, divided by 1+Ψ.

A. Construction of Hexagons and Algorithm

In order to construct hexagonal formulation, we model the
neighbors of pixels as illustrated in Fig. 4. It is started by
constructing a hexagonal ABCDEF and specifying the center
of the hexagon.

Step 1. The initial step starts by constructing the hexagon
on 2-D space, as shown in Fig. 4

Step 2. The second step is the preprocessing i.e. going to
the center of the hexagon, and the heads of this hexagon using
equations: (1)-(6) .

A = (x+ L, y), (1)

B = (x+ L cos(
π

3
), y + L sin(

π

3
)), (2)

C = (x− L cos(
π

3
), y + L sin(

π

3
)), (3)

D = (x− L, y), (4)

E = (x− L cos(
π

3
), y − L sin(

π

3
)), (5)

F = (x+ L cos(
π

3
), y − L sin(

π

3
)). (6)

Step 3. Then, the hexagon center coordinates is accumulated
to the hexagons list in order to make a search phase. To read
the points under the hexagon, to add it to the points list,
we need to determine the region belong to the hexagon. A
rectangle with (X, Y) dimensions, where X = 2L and Y =
2LSin(π3 ), is created as shown in Fig.5.

Step 4. After the hexagon region is determined, then test the
points beneath it for the black points to add it to the points
list. Create pointers to the hexagon list to determine which
hexagon the points belong and which points belong to the
hexagon. Then, redo these processes every time upon creating
a hexagon, using equations (7)-(10).

Rt = y − Lsin(
π

3
) (7)

Rb = y + Lsin(
π

3
) (8)

Rl = x− L (9)
Rr = x+ L (10)

Step 5. To create the rest of the hexagon cells, the hexagon
center is determined in the first level according the following
equations and the entire process of finding first hexagon level
is represented in Fig.6.

Lx = x (11)

Ly = y − Level(2LSin(
π

3
)) (12)

Fig. 4. Representation of constructing hexagon neighborhood Points
ABCDEF by searching the pixel space in the image.

2 * ( L * Sin 60 )

2 * L

Fig. 5. Depiction of hexagon dimension.

The next step is constructing the other hexagons, locating
the centers and then constructing the hexagons as the
following:

• points from top to right

Level∑
i=0

Lx = Lx +
1

2
L,Ly = Ly + LSin(

π

3
) (13)

• points in the right side

Lx = x (14)
Level∑
i=0

Ly = Ly + 2LSin(
π

3
) (15)

• points from right to bottom
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Level*(2* Lsin60)

i *(1.5 * L)

i *(L Sin60)

Where ( i ) is a
counter from (0)
to ( Level – 1 )

Fig. 6. Representation of first hexagon levels.

Level∑
i=0

Lx = Lx − 1

2
∗ L,Ly = Ly + LSin(

π

3
) (16)

• points from bottom to left

Level∑
i=0

Lx = Lx − 1

2
∗ L,Ly = Ly − LSin(

π

3
) (17)

• points in the left side

Lx = x (18)
Level∑
i=0

Lx = Lx − 1

2
∗ L,Ly = Ly − 2LSin(

π

3
) (19)

• points from left to top

Level∑
i=0

Lx = Lx − 1

2
L,Ly = Ly − LSin(

π

3
) (20)

Based on the proposed method, in the search phase, a
point is chosen from the collected points in 2D space. Then,
the initial hexagon center point has been determined which
belongs to the search space boundary. Initial hexagonal is as
level 0 by calculating the location of the hexagons centers,
and comparing them with other hexagons, and determine the
closest other hexagons, and their levels. The goal is to specify
the nearest neighbor for a given point through searching on
such levels. By searching through level 0, and level 1, if there
is no nearest point, then it will go to the next highest levels
of the hexagonal in the space. If nearest point is found and
this is a required one, then, mark the points and continue the
search space until the end-of-search space is expected. Fig. 7
shows a complete searching on 2-D space.

Searching of three dimensional (3-D) space has been done
by the selecting initial search points x, y, and z. The search
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Fig. 7. A complete hexagonal searching of 2-D space.

Fig. 8. A sample searching for the comparison of Euclidean, city block,
chess board, and hexagonal on 3-D space.

space boundaries are fixed based on the given data set such
as I(x, y, z). Hexagonal transform is performed on the 3-D
space. In the transform, a 3-D distance transform is started
in a center of the hexagonal and process is repeated until the
entire points in the space has been visited. Fig. 8 shows the
comparison result of chess board, Euclidean, city block and
hexagonal distances.

In the chess board distance computation method, a minimum
of different center points are calculated and in the Euclidean,
square root of the square of sum of the distance has been
computed whereas in the city block method sum of the
absolute distance is computed. The distance is computed with
the condition as χ = |x1 − x2| > |y1 − y2| and > |z1 − z2|
and Hexagonal space distance computed as in (21).

Dh =

{
|x1 − x2|+ |z1 − z2|+

√
3− 1|y1 − y2|, ifχ >= η√

3− 1|x1 − x2|+ |z1 − z2|+ |y1 − y2, otherwise .
(21)

Based on searching behavior of these four methods,
hexagonal searching has covered an optimal regions of voxels
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Fig. 9. Time complexity of Search points of diverse methods.

when an active-region-of-interest (AROI) is localized as
compare to other three approaches.

IV. RESULTS ANALYSIS

The proposed method using hexagonal cells has been
implemented in C++ and results analysis were done in Matlab
7. Three different phases of experiments were conducted.
During the first phase, for the same data set, Brute and Circular
methods were tested. The time complexity of the search space
was measured and recorded in the repository. In the second
phase, 2-D Fourier space coefficients were searched and its
distances errors were computed. Discrete cosine space has
been searched using our proposed methodology in the third
phase of experiments.

A. Comparison of Searching Time Complexities

A real number space is formed for searching the points.
In our experiments, multiple of 10 points were searched
with three different methods such as brute force, circular and
hexagonal neighbor searching methods. The turn around time
for entire search space has been observed and depicted in
Fig.9. It reveals that brute force searching requires around
40% less turn around time for 10 number of points whereas
circular method requires around five more times as compare
with hexagonal methods. However, if more points are required
to search as shown in Fig. 9, around 490, then, hexagonal
outperforms other two methods. The search points are a
multiple of tens for each ticks on x-axis and zeros entries
in y-axis mean turn around time less than one second in Fig.
9.

In this experiment, we have done searching of 2-D fourier
coefficients based on the hexagonal approach. Since this
space is a combination of real and complex numbers, in

Center of searching Point

Fig. 10. A sample Hexagonal searching with three query points and
illustration of one query point search set.
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Fig. 11. 2-D Fourier space and its distance errors (a). Illustration of 2-D
Fourier real coefficients (b) Error based on the query point and the distance
of hexagonal computation.

that particularly locating the center point of the query point
is a cumbersome process. However, hexagonal method was
produced ±4 pixels distance errors among Fx coefficients
and ±3 pixels of distance errors in Fx coefficients. A sample
hexagonal searching based on the center point is illustrated in
Fig. 10. This sample real-space was transformed into Fourier
space and then searching was initiated to find the nearest points
of the AROI.

Fig. 11a shows a 2-D Fourier space of the searching points
and their distance errors based on the searching of AROI is
shown in Fig. 11b.

C. Distance error in Discrete Cosine space

Discrete Cosine Transform (DCT) is an important process
of certain kinds of applications in remote sensing, compression
and computer vision hence we have done the experiments

B. Distance error in Fourier space
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Fig. 12. Representation of DCT space and its distance errors (a). DCT space
of a sample search space (b) Error based on the query point and the distance
of hexagonal computation.

on this space of domain that how our proposed method
will perform while seeking the query points. For that, a
collection of sample data set has been transformed into Cosine
frequencies and a set of query points have searched. Fig. 12a
shows a sample DCT search space. 200 Cosine frequencies
points have been taken for searching the query points and
their distance errors were studied. The distance errors were
±0.03 ranges in the Cosine space and shown in Fig. 12b.

V. CONCLUSION

The nearest neighbor searching is an important problem
and deserves more attention because it has wide range of
applications. In this paper, a robust searching method is
proposed based on the hexagonal portrayed. The method was
tested on sample sets with diverse data sizes of images.
Searching of query points was done on three different spaces
as real-space, Fourier space and DCT space. Based on
the experimental results, we found that the Hexagonal-cells
method outperforms other methods in term of turn around
time.

The following conclusions can be made:
Time for both Brute method and circular methods for

searching about the nearest neighbors is increasing as the
number of searched point’s increases.

The time needed in searching about the nearest neighbor
using the Hexagonal Cells method is almost constant, for
the tested samples, and it can be said that it doesn’t depend
strongly on number of points searched.

The time needed in searching about the nearest neighbor for
searched points less than (nearly) 400 is similar in the three
methods.

Future enhancement: It is recommended to create another
method depending on creating another form of searching may
be the pentagon. It is expected that the searching time will be
reduced. Because the time for circular is more, in hexagons

cells it is reduced. In pentagon it is expected to be less, i.e.
as the number of sides of polygon increase the time increase,
if it is known that the circle can be represented as a polygon
with infinite sides.
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