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A Robust Controller for Output Variance Reduction
and Minimum Variance with Application on a

Permanent Field DC-Motor
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Abstract—In this paper, we present an experimental testing for
a new algorithm that determines an optimal controller’s coefficients
for output variance reduction related to Linear Time Invariant (LTI)
Systems. The algorithm features simplicity in calculation, general-
ization to minimal and non-minimal phase systems, and could be
configured to achieve reference tracking as well as variance reduction
after compromising with the output variance. An experiment of DC-
motor velocity control demonstrates the application of this new
algorithm in designing the controller. The results show that the
controller achieves minimum variance and reference tracking for a
preset velocity reference relying on an identified model of the motor.

Keywords—Output variance, minimum variance, over-
parameterization, DC-Motor.

I. INTRODUCTION

THE external disturbances is the pivotal factor that
deteriorates performance of a feedback control Linear

Time Invariant (LTI) system [1], [2]. Therefore, optimal
disturbance rejection was the focus of researchers to design
addresses optimal disturbance rejection [3].
Minimum Variance (MV) appears as a result of optimal
disturbance rejection, which was early studied in the valuable
work of [4], [2]. MV regulation only applies to plants
having a discrete-time model with stable zeros. Generalized
Minimum Variance (GMV) came to the scene in treating
plants with unstable zeros. It is an extension to the existence
MV strategy [2].Literatures of Generalized variance are well
investigated in early work of [5], [6], [2]. Recent literatures
can be found in the work of [7]
Linear Quadratic Gaussian (LQG), in other hand, was
introduced to overcome problems encounters in GMV
account [8], [9]. However, LQG control scheme exhibits
heavy calculation load [8], [4] in addition to no guaranty to
the conventional desired gain and phase margin [10]
The objective of this paper is to design an algorithm
that calculates the coefficients of a minimum variance
controller that overcomes limitation of MV and GMV,
features fast calculated coefficients comparing with LQG
preparatory setting, in addition to robustness against system
pole locations. The controller also can track a reference
set-point. The concept is based on over-parameterization
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of polynomials using Diophantine Equation and Sylvester
Theorem. Early adoption of the same concept is found in [11],
which consists of developing a single structure controller that
track reference signal of LTI system in addition achieving
variance reduction on the output. [11] assumed always a
unity characteristic equation and assumes heuristically that
the developed algorithm reduces the output variance after
a careful tuning to a weighting matrix. In this paper, we
overcome the assumption of unity characteristics equation by
working with any prescribed characteristics equation given
by the user. [12] proves analytically that an over-extending of
parameter of its proposed controller to infinity, the variance
reduction tends to a variance of an LQG controller.
The approach of the work is to adopt, as mentioned
earlier, Diophantine equation in order to calculate the over-
parametrized coefficients for controller of an ARMAX model.
The minimum variance for a general system output that may
includes unstable poles is analytically derived. The result
is truncated which yields to a dual Diophantine Equations
problem, that both can be over-parameterized. This step is
essential in overcoming complexity of calculating the H2

norm of the minimum variance. The calculated polynomial
that minimizes the H2 norm of the first over-parameterized
polynomial minimizes also H2 norm of the second, which
yields to the solution. The proof is realized by introducing
a sub-optimal solution and analytically proving that its
over-parameterized H2 norm converges to zero. This causes
to the optimal solution to converge to minimal as well, as
the optimal H2 norm is sandwiched by the sub-optimal norm
from above.
In order to achieve a dual objective (i.e. variance reduction
and reference tracking), an incorporating of an integrator
to the controller raises slightly the variance, but establishes
a reference tracking with zero steady-state error. Such
advantages compromises the variance as it will be shown
in the results that variance increase is not significantly
comparing with the minimum variance in addition taking
into account the simplicity of the algorithm that develops the
controller. Recent similar work can be found in [3]
The results are obtained from applying the controller on a
permanent field DC-motor speed control. A certain reference
point of speed was applied to the system. The results are
divided into two parts; reference point tracking and variance
reduction. The controller achieves minimum variance after
extending the controller with a higher order. The results also
shows the incorporation of the integrator inside the controller
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raises the variance slightly while maintaining the steady state
error to zero.

II. OUTPUT VARIANCE AND EXTENDED CONTROLLERS

A linear single-input single-output system represented by an
autoregressive moving average with auxiliary input ARMAX
model is represented in figure (1). A(z−1) and B(z−1) are
polynomials, which represent the plant’s transfer function
numerator and denominator respectively. The noise model is
represented with C(z−1) and A(z−1) as e(t) is a source of
white noise. The signals are expressed in discrete time t. [4]
A servo-controller described with G(z−1) and F (z−1) are the
controller’s transfer function numerator and denominator re-
spectively. H(z−1) is the feed-forward term and it is normally
chosen to give a good set-point tracking. In this paper, H(z−1)
is normally chosen so that the overall DC gain for the closed
loop system is unity.

r(t) � H �
−
� � z−d B

A
�G

F
�
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+ �

C
A

�e(t)

y(t)

Fig. 1: ARMAX model

The characteristics equation of the system (i.e. the denomina-
tor of the closed loop transfer function) is denoted by T (z−1)
and is described in (1)

T (z−1) = A(z−1)F (z−1) + z−dB(z−1)G(z−1) (1)

equation (1) has a unique solution if

nf = nd + k − 1 and ng = ng − 1 (2)

F0(z−1) and G0(z−1) are the minimal order for the controller
satisfying equations (1) and (2). The set of all controllers that
satisfy equation (1) are given by

F = F0 + z−dBPnP
(3)

G = G0 − APnP
(4)

The operator z−1 has been omitted for simplicity. Polynomial
PnP

in equations (3) and (4) denotes a polynomial of degree
nP that is used to extend the original solution of F (z−1) and
G(z−1) [12]
Using equations (3), (4), (1) and the model of ARMAX model,
it can be shown that

y(t) =
z−dBGH

T
r(t) +

(
F0 + z−dBPnP

T

)
Ce(t) (5)

From equation (5) the output variance is given by

vary = E

(
F0 + z−dBPnP

T
Ce(t)

)2

=
∥∥∥∥F0 + z−dBPnP

T
C

∥∥∥∥
2

L2
(6)

The objective is to minimize the cost function that defines the
output variance, described in equation (6), which is a function
of the coefficients of PnP

.

A. Minimum variance for Minimal and Non-Minimal Phase
Systems

Let polynomial B = B+B−, where B+ and B− denote
the stable and unstable factors of the polynomial respectively.
Polynomial B+

− is the normalized reciprocal polynomial of
B− (i.e B+

− = q−nb+1B∗
−/b0). It is already proven in () that

PnP
= − Q

B+B+
−C

(7)

where polynomial Q is obtained from the Diophantine
equation

RT + z−dQB− = F0B
+
−C (8)

where,
R(0) = 1, deg(R) = deg(B−)+d−1, deg(Q) = deg(T )−1

Expanding the expectation function in equation (6) into two
terms and decomposing the first term of the result into
stable and causal, and unstable and non-causal terms. After
arranging, It can be proven that the minimum output variance
is a function of R. According to [4], the polynomials Q and R
are the solution for the General Minimum Variance problem
GMV. The closed loop system after the application of high
order pole-placement controller becomes

vary =

∥∥∥∥∥
R

B+
−

∥∥∥∥∥
2

L2

(9)

III. ANALYSIS OF REDUCED VARIANCE CONTROLLER
WITH SUB-OPTIMAL SOLUTION

In order to simplify the calculation, [11] neglects the effect
of the characteristics equation, T , in equation (1) and mini-
mized the cost function

J =
∥∥(

F0 + z−dBPnP

)
C

∥∥2

L2
(10)

Equation (10) can be described as a sum of coefficients squares
of (F0 + z−dBPnP

)C. [11] argued heuristically that the pro-
posed method reduces also the output variance. However, by
neglecting the effect of polynomial T , the method works only
for restricted cases when T = 1. The difficulty for other choice
of T is that the formulation of equation (6) into a set of linear
equations in term of unknown coefficients of polynomial as
proved by [12] is computationally cumbersome. The developed
method here retains simplicity comparing with the algorithm
proposed by [11] and overcomes its limitation. According to
section two, the output variance in (6) is minimized when it
equals to (9)(

F0 + z−dBPnP

T

)
C =

R

B+
−

� ζnζ
(11)

It is important to recall that B+
− is the normalized reciprocal

of the unstable part of polynomial B. Because the derivation
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of the proposed algorithm is relying on equation (11). this
leads to the proposed controller is applicable to non-minimal
phase systems. Polynomial ζnζ

is an approximation of the long
division of equation (11). It is a polynomial with order nζ with
ζ(0) = 1. The output variance can be computed as the sum
of square of coefficients ζnζ

(z−1) . Obviously, it is desired
to minimize these coefficients, because it results minimum
output variance. Specifically, finding the coefficients of PnP

that minimizes equation (6) leads also to minimize the norm∥∥ζnζ
(z−1)

∥∥2

L2
. Arranging (11) to get another Diophantine

equation

Tζnζ
− z−dBPnP

C = F0C (12)

Equation (12) can be reconfigured using Sylvester’s Theorem
into a set of linear equations and with a unique solution. It
is remarkable that once nP is selected, nζ can be selected
from nζ = nP + nb + nC − nT . This extra freedom can be
exploited to reduce

∥∥ζnζ
(z−1)

∥∥
L22 . The design problem can

be formulated as a problem to choose nP greater than its
solution so that PnP

minimizes (6). A proposed algorithm for
synthesizing the controller is introduced.
Let P0 and ζ0 are the minimal order solution to equation (12).
Therefore, the general solution using Diophantine equations is
defined by

PnP
= P0 + Tφ (13)

ζnζ
= ζ0 + B′Cφ (14)

Polynomial B′ represents z−dB and polynomial φ is a polyno-
mial with arbitrary coefficients. According to equations (11),
choosing φ that minimizes the square of L2 norm (14) leads
also to minimize square of L2 norm of (13).
Let φ0 denotes the solution that minimizes the norm in
L2 of (14) and ζ0

nζ
(z−1) is the polynomial ζnζ

(z−1) after
substituting φ0 in (14). Therefore, ζ0

nζ
(z−1) is considered the

minimal square norm in L2 space and the following bound is
valid. ∥∥∥ζ0

nζ

∥∥∥2

L2

≤
∥∥∥ζ1

nζ

∥∥∥2

L2

(15)

Equation (15) is interpreted as the norm of any suboptimal
solution is greater or equal to the norm of the optimal solution
for any order of nζ . The importance of equation (15) will be
clarified in the next section.

A. Convergence of Algorithm for Variance Reduction

Defining the fraction R/B+
− from equation (11) as a sum-

mation series denoted

Jmin =

∥∥∥∥∥
R

B+
−

∥∥∥∥∥
2

L2

=

∥∥∥∥∥
∞∑

n=1

αi

∥∥∥∥∥
2

L2

(16)

where α ∈ R and α0 = 1 therefore, one concludes that the
minimum variance that could be is always one.
The objective is to develop polynomial ζnζ

(z−1), which is
defined in (14) that has its square norm L2 approaches the

optimal norm, ζ0
nζ

of equation (15). Adopting an approach
similar to [12], we define a suboptimal solution of the problem.

ζ0(z−1)
B′(z−1)C(z−1)

=
∞∑

i=0

wiz
−i (17)

Denote B′(z−1)C(z−1) = D(z−1). The infinity series in
equation (17) can be represented by a finite and infinity series
respectively.

ζ0 = DWn−1 + z−nVn (18)

where

Vn

D
=

∞∑
i=n

wiz
n−i and Wn−1 =

n−1∑
i=0

wiz
−i

From equation (18), we can relate the term
∣∣Vn(z−1)/D(z−1)

∣∣
as a function of ζ0(z−1) and Wn−1(z−1). Substituting equa-
tions (18) into (14)) with a suboptimal solution P 1

nP
(z−1) =

−WnP yields

ζ1
n1

ζ
(z−1) = z−(nP +1)VnP +1 (19)

= z−(nP +1)D(z−1)
∞∑

i=nP +1

wiz
−(i−nP −1)

The term, n1
ζ , is the order of the polynomial ζ1

n1
ζ
. It is important

to highlight that ζ0 is a stable polynomial. From equation (18),
it is clear that the norm L2 of ζ1

n1
ζ

is a function in nP . Defining

γ = max{|z| : znDD(z−1) = 0} (20)

Let n = nP + 1 and evaluating the term
∣∣Vn(z−1)/D(z−1)

∣∣
for |z| = 1 using Cauchy integral of radius γ′ centered on the
origin, satisfying 1 > γ′ > γ.

∣∣∣∣Vn(z−1)
D(z−1)

∣∣∣∣ =

∣∣∣∣∣∣∣
1

2πj

∮
|z|=γ′

∑∞
i=n wiz

−(i−n)

z − 1
dz

∣∣∣∣∣∣∣
(21)

Recalling that
∣∣∮ f(z)dz

∣∣ ≤ maxz∈C (|f(z)|) LC , where LC

is the circumference of the unity circle and using (18)

∣∣∣∣Vn(z−1)
D(z−1)

∣∣∣∣ ≤ (γ′)n+1

γ′ − 1
max
|z|=γ′

{
ζ0(z−1)
D(z−1)

}
→ 0 n → ∞

(22)
Because the term Wn−1(z−1) is a finite summation and

its Cauchy integral equals to zero. Taking the norm in L2 of
equation (22) and substituting it in equation (19)

∥∥∥ζ1
n1

ζ
(z−1

0 )
∥∥∥2

L2

≤ (γ′)2(n+1)

(γ′ − 1)2
max
|z|=γ′

∣∣∣∣ζ0(z−1)
D(z−1)

∣∣∣∣
2

D2(z−1) → 0

(23)
n → ∞

Equation (23) proves that the norm of the sub-optimal
solution tends to zero as the order of n tends to infinity.
Recalling the lower bound in equation (15), the norm of the
optimal solution tends to zero also as n tends to infinity. It can
be interpreted alternatively if the suboptimal solution tends to
zero for the same nP that goes to infinity. Consequently, the
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optimal solution tends to zero also for the same nP . A suitable
algorithm that is used to design the higher order controller is
presented.

a) Algorithm:
Step 1 Select T to have a desired servo behavior and solve

(1) to obtain the minimal order solution F0 and G0.
Step 2 Solve for the minimal P0 and ζ0 using equation

(12)
Step 3 Select the desired nφ that will give nφ = nP −nT

Step 4 Find φ that minimizes ‖ζ0 + B′Cφ‖2
L2

Step 5 obtain PnP
using equation (13)

Step 6 Form the high order controller using equation (5)

IV. CONTROLLER TESTING ON A DC MOTOR

A permanent magnet DC servo motor with its driver is
utilized in this experiment. The input of the motor is an
analog voltage in the range -10 V to +10 V supplied to the
driver. An encoder, attached to the motor, transmits the speed
pulses to a Frequency to Voltage Converter circuit, in which
the latter produces an analog voltage in the range from 0 to
10 V and represents the feedback signal. An illustration of the
experiment setting is introduced in figure 3 and the real setting
of the experiment is in figure 2.

Fig. 2: DC motor

r(t)

PC
�

−
� � DC motor�Driver

�Encoder�F / V

�

� θ̇

Fig. 3: Diagram of experimental setting

A. ARMAX system Identification

The system identification was achieved using a recursive
algorithm in Matlab software. The experiments was carried
using XPC Target Box device that was programmed with a
sampling rate 60 m sec after careful choice to prevent the

poles to shift to edge of the unity circle in the z-plan.
A parametric model identification type ARMAX model is
according to figure 1. Using AIC, MDL, and Best fit criteria,
the order of the system was estimated. The selection of
the order nC was decided from the best fit analysis to the
validating data set. The best fit was the ARMAX model that
was supported after conducting a residual analysis for the cross
and auto-correlation. The identified model is described using
the shift operator q, that is q−1f(t) = f(t − 1).

A(q)y(t) = B(q)u(t) + C(q)e(t) (24)

A(q−1) = 1 − 0.8251(±0.01178)q−1

B(q−1) = 0.243(±0.01587)q−1

C(q−1) = 1 − 0.6824(±0.04435)q−1

The choice of our identified ARMAX model that will be used
in the experiment will be with the absolute coefficients (i.e
A(q−1) = 1 − 0.8251q−1, B(q−1) = 0.243q−1, C(q−1) =
1− 0.6824q−1). The candidates controller planned to be used
is

Gc(z−1) =
z−1 − 0.8z−2

1 − 0.4z−1 − 0.92z−2 − 0.48z−3
(25)

The choice of this controller lies on an apparent step response
with zero steady state error. The transfer function of the con-
troller in equation (25) represents the minimal order solution
of F (q−1). The poles of this controller are 1.0, -0.8, -0.6 with
a ‖F0‖2

L2
= 2.2368

V. RESULTS AND DISCUSSION

The implementation of the controller of (25) with the
identified ARMAX model, leads to set two experiments. The
first, is to show the performance for tracking step reference
signal for the candidate minimal order controller, extended
order controller, and extended order controller with integrator
form controller. We apply a reference signal of 2.5V to the
driver of the motor. The results of tracking are illustrated
in figures (4a, 4b, 4c) In this experiment, the minimal order
solution tracks the reference, while the extended controller
achieves the tracking with a steady state error equals to 0.8V.
The extended controller with integrator resets the steady state
error back to zero. The compromise of the extended controller
with integrator instead of extended controller alone is simply
to achieve a reference tracking without a significant loss in the
output variance reduction. figures (5a, 5b, 5c) show the zero-
response with minimal order controller, extended controller
without integral, and extended controller with a forced integral
respectively. The calculated variance of the three cases are
given in table I. The minimal order solution is 1.5402 of vari-
ance. Noticing that the extended order achieves the minimal
variance (i.e. unity variance). The extended controller with
integral raises-up the variance up to 1.2041.

VI. CONCLUSION

A fast calculated controller for output reduce variance of
minimum and non-minimum phase system was introduced
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(a) Minimal orer

(b) Extended order

(c) Extended order with forced integral

Fig. 4: Step response with minimal and extended form of low
order controller

TABLE I: Measured variance

controller’s type F (z−1) var(y)

Minimal order F0(z−1) 1 + 0.4z−1 − 0.92z−2

−0.48z−3 1.7124

Extended order FnF (z−1) 1 − 0.425z−1 − z−2

+0.084z−3 + 0.396z−4 1.0818

Extended order with integral
FnF = F0 +

(
1 − z−1

)
BPnP 1 − 0.425z−1

−0.182z−2 + 0.1716z−3

−0.1686z−4 − 0.396z−5 1.43

in this paper. It was proven in the paper that the intro-
duced algorithm converges to minimum variance with over-
parameterizing the controller’s coefficients.
The paper introduces the application of the new controller on
a real physical system. It was shown that the new controller

(a) Minimal order

(b) Extended order

(c) Extended order with forced integral

Fig. 5: Zero response with minimal and extended form of
controller

features robustness against the identification parameters of the
system. The calculated over-parameterized controller, based
on the new algorithm, works on the result of identification
and achieves minimum variance. This over-parameterized con-
troller was, initially, based on a minimal-order controller,
which achieves certain level of output variance in the ex-
periment. in order to ensure reference tracking for the over-
parameterized controller, an integrator was incorporated in the
controller. The effect of incorporating the integrator raises the
output variance not significantly comparing with the minimum
variance, while realizing reference tracking.
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