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Abstract—Genetic Algorithm (GA) is a powerful technique for 

solving optimization problems. It follows the idea of survival of the 
fittest - Better and better solutions evolve from previous generations 
until a near optimal solution is obtained. GA uses the main three 
operations, the selection, crossover and mutation to produce new 
generations from the old ones. GA has been widely used to solve 
optimization problems in many applications such as traveling 
salesman problem, airport traffic control, information retrieval (IR), 
reactive power optimization, job shop scheduling, and hydraulics 
systems such as water pipeline systems. In water pipeline systems we 
need to achieve some goals optimally such as minimum cost of 
construction, minimum length of pipes and diameters, and the place 
of protection devices. GA shows high performance over the other 
optimization techniques, moreover, it is easy to implement and use. 
Also, it searches a limited number of solutions.  
 

Keywords—Genetic Algorithm, optimization, pipeline systems, 
selection, cross over.  

I. INTRODUCTION 
ANY optimization problems from the hydraulic 
engineering world, in particular for large pipeline 

systems, are complex in nature and difficult to solve by 
conventional optimization techniques. 

There are three main avenues of this research: genetic 
algorithms (GAs), evolutionary programming (EP), and 
evolution strategies (ESs). Among them, genetic algorithms 
are perhaps the most widely known types of evolutionary 
algorithm today. Recently, genetic algorithms have received 
considerable attention regarding their potential as an 
optimization technique for complex problems and have been 
successfully applied in the area of pipeline system. Well-
known applications include pipeline optimization, pump 
operating, system reliability design, and many others.  

Genetic algorithms (GAs) are receiving increasing 
application in a variety of search and optimization problems. 
These efforts have been greatly aided by the existence of 
theory that explains what GAs are processing and how they 
are processing it, the theory largely rests on Holland's 
exposition of schemata [1]. 

Genetic algorithm is a search algorithm based on natural 
selection and the mechanisms of population genetics [1], [2]. 
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The basic idea of the GA is borrowed from the biological 
process of survival and adaptation. The result is an efficient 
algorithm with the flexibility to search complex spaces such as 
the solution space for the design of a pipe network. 

Genetic algorithm technique requires that the set of decision 
variables should be represented by a coded string of finite 
length [4]. To implement a GA, one codes the decision 
variable set describing a trial solution as a binary or dual string 
or "chromosome". 

Genetic algorithms differ from conventional optimization 
and search procedures [3]. Genetic algorithms probabilistic 
and not deterministic, also it works with a coding of solution 
set, not the solutions themselves. Moreover, it searches from a 
population of solutions, not a single solution. Finally, genetic 
algorithm uses the cost function and doesn’t need derivatives. 

A. Encoding 
The decision variables of a problem are normally encoded 

into a finite length string this could be a binary string or a list 
of integers. 

For example: 0 1 1 0 1 1 0 1 0 or 2 3 4 1 1 4 5 

B. Selection 
Genetic Algorithms are optimization algorithms that 

maximize or minimize a given function. Selection operator 
deserves a special position in genetic algorithm since it is the 
one which mainly determines the evolutionary search spaces. 
It is used to improve the chances of the survival of the fittest 
individuals. There are many traditional selection mechanisms 
used and many user specified selection mechanisms specific to 
the problem definition [5].  

The selection operator mainly works at the level of 
chromosomes. The goodness of each individual depends on its 
fitness. Fitness value may be determined by an objective 
function or by a subjective judgment specific to the problem. 
As the generations pass, the members of the population should 
get fitter and fitter (i.e. closer and closer to the solution). 
Selection is one of the important operations in the GA process. 
Different selection mechanisms work well under different 
situations. Appropriate method has to be chosen for the 
specific problem to increase the optimality of the solution. For 
example, the proportional roulette has been used in many 
problems [6] and it outperformed the other strategies in the 
salesman problem, achieving best solution quality with low 
computing times [7].  

The selection mechanisms are shown in Fig. 1. 
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Fig. 1 Selection mechanisms 

 
C. Cross over 
Crossover operator plays an important role in producing a 

new generation. The crossover operator is a genetic operator 
that combines (mates) two chromosomes (parents) to produce 
a new chromosome (offspring). The idea behind crossover is 
that the new chromosome may be better than both of the 
parents if it takes the best characteristics from each of the 
parents. Crossover occurs during evolution according to a user 
definable crossover probability. There is number of cross over 
operators [8], [9] such as: 

1. Single Point Crossover    
11001011+11011111 = 11001111 

 
Fig. 2 Single point crossover  

2. Two Points Crossover   
 

11001011 + 11011111 = 11011111 

 
Fig. 3 Two Points Crossover 

 
 

3. Intermediate (Uniform) Crossover 
11001011 + 11011101 = 11011111 

 
Fig.  4 Intermediate (uniform) crossover 

 
4. Arithmetic Crossover  

11001011 + 11011111 = 11001001 (AND) 

 
Fig. 5 Arithmetic crossover 

5. Heuristic Crossover 

6. Ring Crossover [8]. 
A number of test functions with various levels of difficulty 

has been selected as a test polygon for determine the 
performance of crossover operators [8], A new crossover 
operator and probability selection technique is proposed by 
[10] based on the population diversity using a fuzzy logic 
controller, also the a new cross over operator introduced and 
used in the information retrieval (IR) [11]. 

D. Mutation 
Mutation involves the modification of the value of each 

‘gene’ of a solution with some probability pm, (the mutation 
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probability). The role of mutation in genetic algorithm has 
been that of restoring lost or unexplored genetic material into 
the population to prevent premature convergence of the GA to 
suboptimal solution [12]. 

Bit inversion - selected bits are inverted 
 

11001001 => 10001001 

 
Fig. 6 Mutation process 

E. Implementation the Genetic Algorithm 
1. Determine the initial population of creatures. 
2. Determine the fitness of the population.  
3. Reproduce the population using the fittest parents of the 

last generation. 
4. Determine the crossover point, this can also be random. 
5. Determine if mutation occurs and if so on which creature 

(s). 
6. Repeat from step 2 with the new population until 

condition (X) is true. 
 

 
Fig. 7 Algorithm flowchart 

II. GA EXAMPLE 

 
Fig. 8 The used shapes in the flowchart 

A. Routlee Wheel Selection 
• Let the current generation to be the parents have ݊ 

individuals, each parent has ݈ variables as follows: 
ݐ݊݁ݎܽ݌ ൌ ሾݐ݊ݎ݌ଵ ଶݐ݊ݎ݌ … ݁ݖ݅ݏ        ௡ሿݐ݊ݎ݌ ൌ ݈ ൈ ݊ 

• compute the fitness ( ௜݂) to each individual in the parents  
ܨ ൌ ሾ ଵ݂ ଶ݂ … ௡݂ሿ݁ݖ݅ݏ ൌ 1 ൈ ݊ 

• compute the probability (݌௜)) for each fitness 
 

݅݌ ൌ
݂݅

∑ ݂݅௡
௜ୀଵ

 

 
Then the probability vector is:  
 

ܲ ൌ ሾ݌ଵ ଶ݌ … ݁ݖ݅ݏ௡ሿ݌ ൌ 1 ൈ ݊ 
 

The current generation and the probability are the input to 
the routtlee wheel selection function (rws) as shown in the 
flow chart. [individual] = rws ( parent,P ) 
 

 
Fig. 9 Routlee wheel selection flow chart 

B. Crossover 
The crossover between two parents or two chromosomes 

(prntଵandprntଶ) is the operation of intersection between tow 
chromosomes to obtain new two children (offspring) 
(ofsଵandofsଶ).To do the crossover we need to determine the 
two individuals (prntଵand  prntଶ) to be used as input to the 
cross over function, also we need to determine the cross over 
probability which has to be high (pc ൐ 0.7), and to determine 
the number of bits for each variable in the individual nb for 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:12, 2013

1785

 

 

coding. 
݁ݖ݅ݏ ଶ and ܾ݊ each hasݏ݂݋ , ଵݏ݂݋ ,ଶݐ݊ݎ݌  ,ଵݐ݊ݎ݌ ൌ ݈ ൈ 1 
ൌ ݎ ܿ݌ሺ݀݊ݑ݋ݎ  ൈ ܾ݊ሺ݅ሻ Compute the nearest integer to the 
values ܿ݌ ൈ ܾ݊ሺ݅ሻ (i.e. the number of bits in each variable to 
crossed over) 
݁ݖ݅ݏof ,ݐ_ݎ ൌ ݈ ൈ 1is a vector used to store the values of ݎ. 
ሺ݅ሻݐ_ݎ  ൌ  ሻ at ሺ݅ሻ in the ሺ݅ሻ locationݎto store the values of ሺ ,ݎ 
in ݐ_ݎ 
de2bi: is to change the values from decimal to binary (code the 
value) with the given number of bits 
bi2de: is to change the values from binary to decimal (encode 
the value) 
ൌ ݌݉݁ݐ :1ሺ1ݔ   equal the bits from 1 to the bit݌݉݁ݐ : ሺ݅ሻሻݐ_ݎ
number ݐ_ݎሺ݅ሻ 
ሾݏ݂݋ଵ, ଶሿݏ݂݋  ൌ ,ଵݐ݊ݎ݌ሺ݋ݔ  ,ଶݐ݊ݎ݌ ܾ݊,  ሻܿ݌

Example of cross over: 
Let: ݐ݊ݎ݌ଵ ൌ ሾ11 105 50ሿ் 
ଶݐ݊ݎ݌         ൌ ሾ22 63 35ሿ் 
ܾ݊ ൌ ሾ5 7 6ሿ் , ܿ݌ ൌ 0.7 
ଵݎ ൌ ሺܾ݊ሺ1ሻ݀݊ݑ݋ݎ ൈ ሻܿ݌ ൌ ሺ5݀݊ݑ݋ݎ ൈ 0.7ሻ ൌ 4 
ଶݎ ൌ ሺܾ݊ሺ2ሻ݀݊ݑ݋ݎ ൈ ሻܿ݌ ൌ ሺ7݀݊ݑ݋ݎ ൈ 0.7ሻ ൌ 5 
ଷݎ ൌ ሺܾ݊ሺ3ሻ݀݊ݑ݋ݎ ൈ ሻܿ݌ ൌ ሺ6݀݊ݑ݋ݎ ൈ 0.7ሻ ൌ 4 
ݐ_ݎ ൌ ሾ4 5 4ሿ் 
݀݁2ܾ݅ሺݐ݊ݎ݌ଵሺ1ሻ, 5ሻ  ൌ  ݀݁2ܾ݅ሺ11 , 5ሻ  ൌ  0     1     0     1     1 
݀݁2ܾ݅ሺݐ݊ݎ݌ଶሺ1ሻ, 5ሻ  ൌ  ݀݁2ܾ݅ሺ22 , 5ሻ  ൌ  1     0     1     1     0 
ଵሺ1ሻݏ݂݋ ൌ ܾ݅2݀݁ ሺ0     1     0     1     0ሻ ൌ 10 
ଶሺ1ሻݏ݂݋ ൌ ܾ݅2݀݁ ሺ1     0     1     1     1ሻ ൌ 23 
݀݁2ܾ݅ሺݐ݊ݎ݌ଵሺ2ሻ, 7ሻ  ൌ  ݀݁2ܾ݅ሺ105 , 7ሻ  

ൌ  1     1     0     1     0     0     1 
݀݁2ܾ݅ሺݐ݊ݎ݌ଶሺ2ሻ, 7ሻ   ൌ  ݀݁2ܾ݅ሺ63 , 7ሻ                   

ൌ  0     1     1     1     1     1     1 
ଵሺ2ሻݏ݂݋ ൌ ܾ݅2݀݁ ሺ1    1    0    1     0    1    1ሻ ൌ 107 
ଶሺ2ሻݏ݂݋ ൌ  ܾ݅2݀݁ ሺ0    1    1     1     1    0    1ሻ ൌ 61 
݀݁2ܾ݅ሺݐ݊ݎ݌ଵሺ3ሻ, 6ሻ  ൌ  ݀݁2ܾ݅ሺ50 , 6ሻ  

ൌ  1     1     0     0     1     0 
݀݁2ܾ݅ሺݐ݊ݎ݌ଶሺ3ሻ, 6ሻ  ൌ  ݀݁2ܾ݅ሺ35 , 6ሻ  

ൌ  1     0     0     0     1     1 
ଵሺ3ሻݏ݂݋ ൌ ܾ݅2݀݁ ሺ1     1     0     0     1     1ሻ ൌ 51 
ଶሺ3ሻݏ݂݋ ൌ ܾ݅2݀݁ ሺ1     0     0     0     1     0ሻ ൌ 34 
ଵݐ݊ݎ݌ ൌ ሾ11 105 50ሿ் 
ଶݐ݊ݎ݌ ൌ ሾ22 63 35ሿ் 
ଵݏ݂݋ ൌ ሾ10 107 51ሿ் 
ଶݏ݂݋ ൌ ሾ23 61 34ሿ் 

C. Mutation 
The mutation is an operation occurred to the individual 

(chromosome) ሺprnt  which change the value of one bitሺofsሻ. 
To do the mutation in a certain generation, all individuals 
ሺindvtሻ are used as input to the mutation function; also the 
number of bits of each variable ሺnbሻ has to be known, then in 
the function the following are selected randomly: 

1- The individualሺݐ݊ݎ݌ሻ.  
2- The variable in the individualሺݎܽݒሻ.  
3- The bit in the variableሺܾ݅ሻ. 
ሾ ݏ݂݋, ሿ ݊ݎ  ൌ , ݐݒ݀݊݅ ሺݑ݉  ܾ݊ ሻ 

The above function returns the mutated individual and its 
location. 
݁ݖ݅ݏ :ݐݒ݀݊݅ ൌ ݈ ൈ ݊ 
݁ݖ݅ݏ  :ܾ݊ ൌ ݈ ൈ 1 
݁ݖ݅ݏ:ݏ݂݋ ൌ ݈ ൈ 1 
 

 
Fig. 10 Crossover flow chart 
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problems which are highly nonlinear and demanding [19]. 
Djebedjian describe the objective function that focused on 

the cost criteria of network components. While Berge et al. 
presented the water distribution systems optimization by 
selecting the optimal pipe diameters for water hammer 
transients. The optimization method used is the Genetic 
Algorithm (GA) [20]. 

Jung and Karney used both genetic algorithm (GA) and 
particle swarm optimization (PSO) approaches to optimize the 
network system including the transient. The aim is to optimize 
the preliminary selection, sizing and placement of hydraulic 
devices in a pipeline system in order to control its transient 
response. Three simple objective functions are considered: 1. 
to minimize the maximum head; 2. to maximize the minimum 
head; and 3. to minimize the difference between the maximum 
head and minimum head in the system. This study shows that 
the integration of a GA or PSO with a transient analysis 
technique can improve the search for hydraulic protection 
devices in a pipe network [21].  

Berge presents the reliability-based water network 
optimization by selecting the optimal pipe diameters for 
steady state flow and water hammer under hydraulic 
reliability. He used the GA integrated with a hydraulic 
analysis solver, a Monte Carlo simulation program and a 
transient analysis program to improve the search for the 
optimal diameters under certain constraints. The application of 
GA optimization tool to the case study demonstrates the 
capability of the Monte Carlo method and the genetic 
algorithm to find the optimal pipe. The technique of the 
optimal pipe diameter selection is very economical as the 
network design can be achieved without using hydraulic 
devices for water hammer control [22]. 

Jung and Karney investigated the use of optimal design of a 
pipe network considering both steady and transient states. 
They used two global optimization methods, genetic 
algorithms (GA) and particle swarm optimization (PSO), to be 
employed to find the optimal pipe diameters in a system with 
allowance for water hammer conditions. In this application, 
both approaches exhibit similar evolution histories and 
optimal results [23].  

Sarbu used the improved linear model for optimization of 
water distribution networks supplied from one or more node 
sources; according to demand variation has been studied [24].  

Jung applied optimization methods to select the most 
economical set of pipe sizes that will produce the desired 
range of pressures in the network. The rationale behind an 
economical design is that by selecting the smallest possible 
diameter pipe set to minimize overall cost, pressures are 
marginally higher than an acceptable level for the specified 
design loading conditions [25]. 

V. CONCLUSION 
Evolutionary Algorithms (EAs) are a set of probabilistic 

optimization algorithms based on an analogy between natural 
biological systems and engineered systems. 

This paper reviews some works related to genetic 
algorithms operations and focusing on the application of 

genetic algorithms to pipeline system. A simple GA consists 
of three basic operators: reproduction, crossover and mutation. 

GA is globally oriented and generally straighter forward to 
apply in situations where there is little or no a priori 
knowledge about the problem to solve. Because GA requires 
no derivative information and it is stochastic in nature, GA is 
capable almost to find the global optimum. 

GA is robust and has been proven theoretically and 
empirically to be able to efficiently search complex solution 
spaces 
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