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 
Abstract—Relief demand and transportation links availability is 

the essential information that is needed for every natural disaster 
operation. This information is not in hand once a disaster strikes. Relief 
demand and network condition has been evaluated based on prediction 
method in related works. Nevertheless, prediction seems to be over or 
under estimated due to uncertainties and may lead to a failure 
operation. Therefore, in this paper a stochastic programming model is 
proposed to evaluate real-time relief demand and network condition at 
the onset of a natural disaster. To address the time sensitivity of the 
emergency response, the proposed model uses reinforcement learning 
for optimization of the total relief assessment time. The proposed 
model is tested on a real size network problem. The simulation results 
indicate that the proposed model performs well in the case of collecting 
real-time information. 
 

Keywords—Disaster management, real-time demand, 
reinforcement learning, relief demand. 

I. INTRODUCTION 

ATURAL disasters kill many people around the world 
every year. Emergency responses in the case of natural 

disaster have to be carried out perfectly to decrease death tolls. 
The effectiveness of an emergency response directly depends 
on the available information relating to the relief demand, 
network condition, and vulnerable population. This information 
unfortunately is not available unless a natural disaster happens. 
In most studies, relief demand is predicted based on previous 
information and regional features. These features include 
structural instability, materials and network reliability [1]. The 
main major concern of researchers in the field of natural disaster 
management is the uncertainty in demand and network 
conditions. This uncertainty and stochastic environment causes 
the prediction methods used for predicting relief demand to be 
over or under estimated, and also a lack of information or 
missing data may affect the prediction accuracy. This 
inaccuracy may lead the emergency response operation to fail, 
resulting in a higher death toll. For this purpose, the aim of this 
paper is assessing real-time relief demand and transportation 
network availability is suggested at the onset of a natural 
disaster. However, the time consuming nature of assessing 
relief demand in such a time sensitive situation may affect the 
immediate emergency response, and thus, the proposed 
dynamic scheduling model provided in this paper addresses the 
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time sensitivity problem by minimizing the total relief 
assessment time. An artificial intelligent and machine learning 
technique is employed to solve this problem dynamically. In 
this proposed model, reinforcement learning and Markov 
decision process is used to formulize the problem. 
Reinforcement learning is an unsupervised learning technique 
that allows an agent chooses an action in a stochastic 
environment and obtains a reaction from that environment. By 
experiencing different scenarios in a stochastic environment, 
that agent learns how to react in an unexpected condition. The 
main question that the proposed model is will address in this 
paper is: How can the assessment process be scheduled to 
improve the information available during the emergency 
response process to minimize a time consuming operation? The 
implementation of the proposed model shows that the real-time 
demand and network information can be obtained as soon as 
possible at the onset of a natural disaster. 

II. RELATED WORKS 

Demand prediction has a challenging point in the uncertainty 
of relief demand information in large scale natural disasters. 
Many researches proposed time series and autoregressive 
models to predict dynamic relief demand [2]. Sun et al. [3] 
proposed a fuzzy rough set approach for emergency demand 
prediction to overcome the inaccuracy and incomplete 
information. These models commonly use historical 
information to forecast time varying demand. Lack of 
information, missing historical values, unreliable and outlier 
information of relief demand may place its pattern recognition 
into certain troubles; therefore, time-series based models seem 
to be unsuitable for real-time demand. Sheu [4] considered that 
the real-time demand information such as the number of 
survivors and missing people comes from diverse sources in the 
affected region. Although his model considers information 
reliability and accuracy by using frequently updated 
information, an accurate and reliable assessment process, 
especially for transportation infrastructure availability, is still a 
problem. 
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There are a few studies that have considered optimization in 
urban relief assessment operations. Huang et al. [5] introduced 
the assessment routing problem and proposed a continuous 
approximation approach to solve it. Considering the time 
sensitivity of emergency response, the time consuming 
assessment relief operation can increase the death toll. Beside 
relief demand, critical transportation links are important in 
emergency response; this increases the uncertainty in disaster 
logistics. Edrissi et al. [6] proposed an emergency reliability 
measure that incorporates both zonal travel time and the level 
of supply and demand in each zone. They also proposed a 
heuristic algorithm to solve real size network. Their research 
showed that an increase in investments in the network 
improvement reduces the death toll more than a higher budget 
increment. Fiedrich et al. [7] have introduced a dynamic 
operation model that finds the best assignment of resources to 
the affected zone. Rennemo et al. [8] considered a three stage 
mixed integer programing model for emergency response 
planning containing the opening of local distribution facilities, 
initial location of supplies and last mile distribution of aid. This 
model considers vehicle availability, the infrastructure state and 
demand uncertainty. Cavdur et al. [9] minimized the total 
distance traveled, the unmet demand and the total number of 
facilities. They allocate facilities by considering the potential 
difficulties to access the supplies. Their model considers relief 
distribution in the second stage with minimization of total travel 
distance and unmet demand. They customized a scenario-based 
approach to evaluate the sensitivity of the model to 
uncertainties. Nevertheless, the five scenarios they prepared 
may not be sufficient compared with the capability of life span 
training dynamic scenarios which are proposed in this paper. 

There is a pool of research using relief demand information 
for emergency response and operations. Minimizing the 
number of fatalities is the main aim of search and rescue 
operations. Chen and Hooks [10] routed urban search and 
rescue teams using multistage stochastic programming based on 
the column generation method. Their objective was the 
maximization of the total number of survivors. 

Delivery of relief to the affected region is the final stage of 
the disaster relief chain. Therefore, different extensions of the 
vehicle routing problem have been modeled due to dynamic 
time varying relief demand to solve this problem in previous 
researches. Wohlgemuth et al. [11] proposed dynamic 
optimization for the pickup and delivery problem in 
consideration of varying travel times, link availability and 
unknown demand. Ozdamar et al. [12] also developed a 
solution to the last mile pickup and delivery problem. The 
hierarchical optimization model that they proposed has the goal 
of minimizing total travel time. They used hierarchically 
clustered nodes for routing with respect to vehicle and supply 
availability. In this model, the optimal allocation for cluster 
centers is found and then the routing problem within each 
cluster’s sub-network is solved. A sound review of routing 
problems solved to deliver goods and services within disaster 
affected regions has been presented by Luis et al. [13]. 

Different objective functions have been taken into account in 
the logistic operation. Barbarosoglu and Arda [14] used the total 

cost of deliveries with respect to satisfying all demands. An 
integrated multi commodity network and vehicle routing 
problem to model mixed pick-up and delivery is proposed by 
Ozdamar and Demir [15]. Yi and Kumar [16] also proposed an 
ant colony optimization to minimize the sum of unsatisfied 
demands on all commodities as well as the unsaved people in 
each node. Ahmadi et al. [17] considered road destruction 
probability and standard relief time for humanitarian logistic 
operations. They develop multi-depot location routing problem 
to minimize the total distribution time of humanitarian relief. 
They considered the standard amount of relief goods needed for 
each person and proposed a variable neighborhood search 
algorithm. Their model was tested in large scale GIS data. This 
model showed that the standard relief time window and link 
failure increases the penalty cost of unsatisfied demand. 
Therefore, humanitarian logistic needs a higher number of local 
depots and vehicles, rather than commercial logistics. 
Minimization of transportation cost, minimization of 
unsatisfied demand and minimization of unserved injured 
people are the three conventional objective functions in disaster 
response research. These objectives do not have same priority 
in practice. Najafi et al. [18] proposed a multi hierarchical 
objective robust optimization model that manages the logistics 
of both commodities and the injured population in the response 
phase. Huang et al. [19] also integrated resource allocation with 
emergency distribution. The point comes from their model is 
considering the lifesaving effectiveness, human suffering and 
fairness in the objective function. 

The common attitude of all these researches is that they all 
involve dynamic time varying relief demand in emergency 
response. These models mostly used dynamic programing to 
handle dynamic demand; however, the real value of this 
demand is not clear until the responder arrives in the affected 
area. 

III. METHODOLOGY 

To evaluate real-time relief demand and transportation 
network conditions, a Markov Decision Process (MDP) model 
is formulated and proposed in this paper. In a MDP model, an 
agent has a set of state S (instance for affected region) and in 
each state there exists a set of actions A (links). In time t, the 
agent is in state ݏ௧ and chooses the action ܽ௧. The environment 
gets reward ݎ௧ሺݏ௧, ܽ௧ሻ and the agent moves to state ݏ௧ାଵ ൌ
,௧ݏሺߜ ܽ௧ሻ. The ݎ௧ and δ are from the environment and are not 
known in advance. The ݎ௧ሺݏ௧, ܽ௧ሻ and ߜሺݏ௧, ܽ௧ሻ depend only on 
the current state and action of the system, and are independent 
from previous actions and states; in this problem, ݎ௧ሺݏ௧, ܽ௧ሻ and 
,௧ݏሺߜ ܽ௧ሻ are probabilistic. This environment is known as the 
nondeterministic Markov decision process. To formulate the 
scheduling problem of relief and network condition assessment, 
suppose T is a set of time epoch of a system. The ܣ௦ is a set of 
action in each state. The initial system state is ݏ଴ ൌ
ሺ1,0,0,0,… ,0ሻ and the final state is ݏூ ൌ ሺ1,1,1,1,… ,1ሻ, the 
final state is the situation in which the agent returns to depot 
after fully serving all demands. The final state is also an 
absorbing state; that is the only available action in this state is 
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staying in it, the notation 1 in ݏ௧ instance for a visited region. 
For example, if choosing an action in state ݏ଴ directs an agent 
to region 3, the next state will be ݏଵ ൌ ሺ1,0,0,1,0,… ,0ሻ. In each 
state, a set of actions is available. These actions are of two 
types. 1- Choosing a link that leads to an unvisited region. For 
example, in state ݏ଴, supposes the agent chooses ܽ଴→ଷ among 
all available actions, this agent may be in region 3 with 
probability of p and may stay in current state with probability 
of 1-p. This means that action ܽ଴→ଷ may not be available due to 
a destroyed link probability. The p can be obtained from 
reliability and risk analysis of transportation roads. The 
transition probability can be defined as: 
 

ܲሺݏᇱ|ݏ, ܽሻ ൌ ൜
,δሺs	݂݅																					݌ aሻ ൌ ᇱݏ

1 െ ,δሺs	݂݅												݌ aሻ ൌ s	
                            (1) 

 
In this study, the reward obtained from the environment is 

defined to be proportionate to the process time of relief 
assessment which contains travel time and working time. The 
agent should learn an optimum policy such as π∶S→A that 
specifies the next action ܽ௧ from state ݏ௧. This could happen 
when the agent maximizes the expected discounted cumulative 
reward during the time horizon of the system. 
 

ሻݏሺ∗ߨ ൌ argmax
௔

ሾܧሾݎሺݏ, ܽሻሿ ൅ ,ݏሺߜሾܸ∗൫ܧߛ ܽሻ൯ሿሿ                 (2) 

 
Assuming the dynamic nondeterministic value for r(s, a) and 

δ(s, a), Q is a recursive function that is defined in (3) to solve 
the maximization problem mentioned in (2). 
 

ܳሺݏ, ܽሻ ൌ ,ݏሺݎሾܧ ܽሻሿ ൅ ߛ ∑ ܲሺݏᇱ|ݏ, ܽሻ௦ᇲ max
௔ᇲ

ܳሺݏᇱ, ܽᇱሻ          (3) 

 
For solving stochastic problems, the enumeration and 

evaluation of all policies is needed. For more details, in the 
remaining section, the Q-learning algorithm proposed by 
Watkins and Dayan [20] is described to solve this optimization 
problem. Reliable optimum policy can be gained by this 
iterative Q-Learning algorithm. 

A. Q-Learning Algorithm 

Function ܳሺݏ, ܽሻ estimates the value that maximizes the 
discounted cumulative reward for each s and a in the first step 
of the algorithm. A matrix ෠ܳሺݏ, ܽሻwith the s and a value is 
assumed to be the approximation of ܳሺݏ, ܽሻ; the ෠ܳሺݏ, ܽሻ fills 
with an initial random value of s and a. In each step, the agents 
look to the state and choose the action a and receive the 
nondeterministic value of ݎሺݏ, ܽሻ and observe the next state 
ᇱݏ ൌ ,ݏሺߜ ܽሻ with probability of ܲሺݏᇱ|ݏ, ܽሻ. The agent updates 
the value of ෠ܳሺݏ, ܽሻ as: 
 
෠ܳሺݏ, ܽሻ ← ሺ1 െ ௡ሻߙ ෠ܳ௡ିଵሺݏ, ܽሻ ൅ ,ݏሺݎ௡ሾߙ ܽሻ ൅ maxߛ

௔ᇲ
෠ܳ௡ିଵሺݏᇱ, ܽᇱሻሿ 

  (4) 
 

௡ߙ ൌ
ଵ

ଵାேೞ೙ሺೞ,ೌሻ
                                      (5) 

 

where n is the steps of algorithm and ௦ܰ೙ሺ௦,௔ሻ is the number of 
visited (s, a) until step n. In this algorithm, the agents do not 
need any information about δ and r to learn the optimum policy. 
It just does the action and observes the reward. 

This algorithm works under two conditions [21]. 
1) The reward should be limited to a value like c as |ݎሺݏ, ܽሻ| ൑

ܿ. 
2) Each pair (s, a) should be evaluated by an agent repeatedly 

and more than once. 
To satisfy condition 2, there is a method called Softmax 

action selection. This method makes an agent choose an action 
with the probability of ݍሺܽ௜|ݏሻ. This probability is defined with 
(6): 
 

ሻݏ|ሺܽ௜ݍ ൌ
௘ೂ
෡൫ೞ,ೌ೔൯/೅

∑ ௘ೕ
ೂ෡ቀೞ,ೌೕቁ/೅

                                         (6) 

 
where T is the counterbalance between exploration and 
exploitation. 

 

 

Fig. 1 Procedure of proposed model 
 
The procedure of the proposed model is illustrated in Fig. 1. 

In the first step of the algorithm, which is called the 
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initialization phase, a scenario is characterized by setting the 
value for r, p, q and network definition. An initial value of 0 
also is defined for the ෠ܳ  matrix. The predefined agents start 
from the depot, which sets the initial state of the system to 
depot. 

Each agent chooses an available link as an action with the 
probability defined in (6). The system immediately obtains a 
reward (or punishment) based on the network condition and 
assessment process time of the next region in which the agent 
is directed to by choosing this action. When the agent arrives in 
the next region with the probability defined in (1), the 
information relating to the relief demand and network 
conditions will be updated. 

If the next state is the final state ݏூ ൌ ሺ1,1,1,1,… ,1ሻ, which 
means all the regions are visited and evaluated, the process will 
be continued until the end criterion satisfied. It means that this 
systems can test a lot of scenarios in the offline mode and use 
the final ෠ܳ  in the online mode as an initial value of ෠ܳ  . 
Otherwise the agent is continuously updating ෠ܳ  and chooses an 
action in the current state. 

After final ෠ܳ  is obtained from the whole process, the 
probability of choosing the optimum action becomes very high. 
Thus, in online mode, this ෠ܳ  can be used in the initial phase, so 
that if the agent encounters an unknown network condition or 
demand level, the ෠ܳ  immediately converges to the Q, and 
therefore, the best actions in each state are revealed to reroute 
the assessment teams. 

In the next section, a real size network of Isfahan province is 
prepared to test the proposed model. 

IV. CASE STUDY: ISFAHAN PROVINCE 

Fig. 2 shows the Isfahan province in Iran, which is divided 
into 47 zones and consists of a total number of 105 cities. 
Isfahan as the capital city is supposed to be the affected region, 
and consists of 14 cities. The instability ratio is provided by the 
average building ages and their construction materials. The 
failure probability of transportation links are also estimated 
using parameters such as the length of the corridor and the 
presence of specific infrastructure such as bridges [22]. In this 
paper, the vulnerable population is defined as the nominal 
demand and Kolmogorov-Simonov Test proved the Gaussian 
distribution of the vulnerable population. For this problem, this 
distribution function is used to generate real-time demand as 
well as rewards. The attribute of this affected region is shown 
in Table I. 

The link information of the affected region in Table II 
consists of the transportation link failure probability and travel 
times. The travel times are obtained from Google Earth. 

One other demand attribute that is needed to generate the 
problem scenario is the probability density functions of on-site 
service times. As it is difficult to acquire this additional required 
data, simulated data were generated from discrete uniform 
distributions for these factors based on limited real information, 
including site locations, building uses and damage severity. 
This model is simulated and coded in MATLAB 2015a using a 
2.40 GHz core i7 laptop with 4 GB RAM. The number of agents 

assessing the relief demand and network condition is set to four. 
Fig. 2 shows that the algorithm is well optimized in the defined 
iteration number. 

 

 

Fig. 2 Affected region in Isfahan province 
 

TABLE I 
ATTRIBUTE OF AFFECTED REGION IN ISFAHAN PROVINCE 

No. City Population Instability Vulnerable 

1 Isfahan 1756126 0.06 105367 

2 Khorasgan 97167 0.1 9716 

3 Baharestan 61647 0.04 2465 

4 Varzaneh 11924 0.17 2027 

5 Ghahjavarestan 7906 0.14 1106 

6 Harand 7108 0.15 1066 

7 Nasrabad 6176 0.15 926 

8 Sejzi 4698 0.15 704 

9 Kohpayeh 4587 0.12 550 

10 Mohammadabad 4549 0.15 682 

11 Nikabad 4303 0.16 688 

12 Hasanabad 4267 0.15 640 

13 Toodeshk 4229 0.15 634 

14 Ejyeh 3481 0.15 522 
 

TABLE II 
ATTRIBUTE OF AFFECTED REGION IN ISFAHAN PROVINCE 

Start node End node Travel time (min) Failure probability

1 2 30 0.15 

1 3 39 0.05 

1 5 32 0.15 

1 27 83 0.00 

2 5 19 0.05 

2 8 23 0.00 

3 10 42 0.00 

3 11 42 0.00 

6 4 27 0.10 

8 9 23 0.00 

9 6 15 0.00 

9 13 14 0.00 

10 7 12 0.00 

10 11 13 0.00 

11 12 34 0.00 

14 6 16 0.10 

14 4 25 0.00 
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Fig. 3 Objective function value in each iteration 
 

The results of the proposed model are shown in Table III and 
Table IV. In the Table III, the values of ෠ܳሺݏ, ܽሻ for each state 
are compared with the deterministic values of Qሺݏ, ܽሻ.  

 
TABLE III 

THE VALUE OF ESTIMATED ෠ܳ  COMPARED TO THE DETERMINISTIC VALUE OF 

 ۿ
Zone ࡽ෡ሺ࢙, ,࢙ሺۿ ൈ૚૙	ሻࢇ  ሻൈ૚૙ࢇ

1 81.419 81.419 
2 79.354 79.351 

3 73.726 73.928 

4 67.21 66.987 

5 65.83 65.834 

6 61.73 61.728 

7 62.36 62.379 

8 55.36 55.3 

9 58.21 57.87 

10 48.12 48.238 

11 44.39 44.41 

12 45.17 45.17 

13 41.36 41.36 

14 39.88 39.878 

 
The percentage of each agent’s failure is indicated in Table 

IV. This failure occurs when an agent encounters an unexpected 
unavailable link. The mean absolute error of the algorithm to 
estimate ෠ܳሺݏ, ܽሻ is also presented in Table IV. The results show 
that the maximum completion time of the assessing process is 
114 minutes. This means that in less than two hours, the real 
time true vulnerable demand and network condition can be 
evaluated with the proposed model. 

 
TABLE IV 

THE RESULT OF PROPOSED MODEL 

Agents Failure (%) MAPE 
Completion 
time (min) 

1 1.36 0.839 114 

2 0.98 0.741 97 

3 1.271 1.05 85 

4 0.87 0.585 73 

 
Although consuming 114 minutes for the assessment process 

may increase the death toll, true information about the network 

conditions and real amount of vulnerable demand can 
significantly decrease the death toll due to a more accurate 
emergency response. To show the impact of true real-time 
demand and network condition, the emergency response 
problem is solved to compare the death toll under the conditions 
of with and without the assessment process. The term ‘nominal 
demand’ is defined to show that the uncertain amount of 
vulnerable demand that is expected to be in affected region. Fig. 
3 shows the effect of the proposed model in reducing the death 
toll. 
 

 

Fig. 4 Comparison of emergency response with and without proposed 
assessing process 

 
As it can be observed from the chart in Fig. 3, the death toll 

decreased due to the availability of true and real-time demand. 
Although the completion time of the emergency response was 
expected to be increased, it was observed that it is less than the 
completion time of an emergency response with nominal 
demand. That is because in nominal demand in which there is 
no certainty in the network condition and vulnerable demand, 
the failure of the emergency process is about 13%. This failure 
rate means that in 13% of all journeys, the emergency 
responders encounter to an unexpected failed transportation 
link or unexpected demand which it takes more time to reroute 
or satisfy that demand. 

V. CONCLUSION 

Although vulnerable demand and transportation network 
conditions in natural disaster management are essential to every 
response process, the true amount of this information is not 
available in-hand until the disaster happens. In this paper, a 
stochastic decision processing model is proposed based on 
reinforcement learning to schedule the real-time assessment 
process of relief demand and network conditions. The results 
showed that although the assessing process takes more time and 
that this may lead to an increased death toll, the entire 
completion time of the emergency response is decreased; this is 
because of the emergency response failure using nominal 
demand and network information. For future researches, the 
integration of emergency response and relief assessment teams 
in a way that they work with each other interactively and 
simultaneously (not consecutively), may lead to a major 
reduction in death tolls. 
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