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Abstract—Fixed-point simulation results are used for the

performance measure of inverting matrices by Cholesky

decomposition. The fixed-point Cholesky decomposition algorithm 

is implemented using a fixed-point reconfigurable processing 

element. The reconfigurable processing element provides all

mathematical operations required by Cholesky decomposition. The 

fixed-point word length analysis is based on simulations using 

different condition numbers and different matrix sizes. Simulation

results show that 16 bits word length gives sufficient performance

for small matrices with low condition number. Larger matrices and

higher condition numbers require more dynamic range for a fixed-

point implementation. 

Keywords—Cholesky Decomposition, Fixed-point, Matrix

inversion, Reconfigurable processing. 

I. INTRODUCTION 

THE VLSI implementations of digital signal processing

algorithms usually require the usage of fixed-point

arithmetic for the sake of chip area, operation speed, and 

power consumption. The word-length and scale factor

determination is important for harvesting the benefits of the

fixed-point implementation. Several researches have been 

conducted for optimizing the used signal word-length, with

the purpose of hardware implementation costs minimization

and optimization time reduction [1]. At the same time, the

progress of wireless telecommunication technologies and 

several new emerging applications have imposed flexibility

requirements to telecommunication equipments. Future

wireless cellular base stations should be able to use advanced

receiver structures like multiuser detection [2] and higher data 

rates with new emerging multi-antenna systems [3].

These facts are posing more stringent requirements to

design processes and design tools, due to the fact that design

lead times will be limited by design and verification time.

Also design’s non-recurring engineering (NRE) cost roughly

doubles when moving from one silicon process to a new one,

with the major part of the NRE cost increase coming from

higher mask costs. The higher total development cost has 

raised the desire for reconfigurable architectures [4]. 

During the past years, reconfigurability has raised a major

interest for both research and industry. Most of the

commercial coarse grain reconfigurable integrated circuits are 

capable of typical arithmetic and logic operations, and they

are having a mesh or array architecture [5]. These

reconfigurable chips do not offer optimum solutions for 

algorithms requiring division and square root operations, e.g.

as needed for Cholesky decomposition.

The focus of this paper is fixed-point implementation of 

matrix inversion using Cholesky decomposition. We made

our first considerations over this problem in [16], where we 

have shown that a fractional word length 16-bits is enough

for inverting small and medium size matrices with acceptable

errors. In [17] direct and iterative methods for matrix

inversion was considered. A coarse grain reconfigurable

processing element for future base stations equipment

implementation has been proposed in [18].  In the current

paper we combine our research work in a common

framework and we consider the performance of

reconfigurable processing engine for matrix inversion.

The paper is organized as follows: some related research 

results and comments on the need for matrix inversion are

given in Section II. The matrix inversion using Cholesky

decomposition and the matrix condition number are described

in Section III. Section IV introduces the used reconfigurable

processing element architecture and its capabilities. In

Section V we describe how the system performances are 

being measured, and several results are given. We conclude

our work in Section VI.  This last section shortly presents our

future research intentions in this field.

II. RELATED RESEARCH

The need for matrix manipulation appears often in science

and engineering. Many well-known algorithms, arising in

signal processing, communications, parameter optimization,

include the problems of solving linear systems of equations

(LSE) or matrix inversion (MI).  Because these two problems

are related, sometimes one is used to solve the other.  We

note that this is not an efficient way to solve them. E.g., if we

assume that MI is computed using Gaussian elimination with

partial pivoting (GEPP), computing the solution as x=A-1b,

requires 2n3 flops, while by applying GEPP directly to the

original LSE system requires only 2n3/3. Furthermore, not

only that the inversion approach for solving LSE is 3 times
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slower, but it is also much less stable. Most numerical

analysts avoid the usage of matrix inversion [6]. This is

because inversion is usually more expensive, and less stable.

However, there exist practical situations when the

computation of the matrix inverse is needed. This happens,

for instance, for Wiener and Kalman filtering. Also, all

similarity transformations use explicit inverses. Other

examples are in statistics [7], some eigenvalue-related

problems [8], or super-conductivity computation [19].

There are a variety of methods for matrix inversion, usually

classified as direct and iterative. Direct methods are 

distinguished by the fact that they find the correct solution in

a finite number of operations. Iterative methods are

characterized by an initial estimate of the solution, and a

subsequent update of the estimate based on the previous

estimate and some error measure.  In general, iterative

methods do not obtain an exact solution in finite time, but

they converge to a solution asymptotically. Iterative

algorithms are sometimes preferred, especially in problems of 

medium/large size, due to smaller storage requirements and 

efficiency of computational time.

Parallel algorithms for matrix inversion and related

problems (LSE, matrix multiplication, determinant) were 

initially parallel implementations of traditional serial 

algorithms [9]. Later, the advances in the area of parallel

computation brought about the development of algorithms

with the purpose of better exploiting parallelism [10] [12]. In 

practice, the most used algorithms for solving LSE are 

Gaussian elimination with pivoting, block Gaussian

elimination, and their modifications. These are direct

algorithms; in finite number of arithmetic operations (flops)

they performed exactly, with no errors. Most of the used 

direct algorithms for dense matrices of size n n fit the

following pattern: there are O(n) steps, each requiring O(n2)

work, for a total work estimate of O(n3).

We must mention that there exist direct algorithms that

solve LSE and related problems (MI, matrix multiplication,

determinant) in less than O(n3) operations. Some progress has

been made to develop sequential matrix multiplication

algorithms with time complexity O(n ), with 2< <3.

Unfortunately, these algorithms are impractical. The

difficulties arise from two different directions. Firstly, they

require just too many processors to be realistic. Secondly,

these methods suffer from numerical instability (e.g., given 

by large overhead constants hidden in the big-O notation).

Because of these reasons, these fast algorithms had negligible 

impact on practical computations. In fact, most of the existing 

literature on parallel algorithms, considers only the standard

sequential algorithm for deriving a parallel one. A 

supplementary current reason is the fact that the crossover

values of n at which these fast algorithms start to beat

standard methods are exceedingly high.

On distributed memory processors it was shown that we 

need O(n3/p+log(p/n2)) time on a hypercube with p

processors, where n2 p n3 [13]. Matrix multiplication can

be done in constant time on a reconfigurable mesh with n4

processors [14]. But, such implementations, though very fast,

are far from cost-optimal for medium and large size matrices.

To obtain efficient parallelism on distributed memory

systems, a more powerful communication mechanism is 

required. Recently, fiber optical busses have emerged as 

promising networks [15]. It was shown that for all 1 p n

with p being the number of processors on a linear array with a 

reconfigurable pipelined bus system we need O(n /p + n2/p2/

log p) time. For O(n ) processors we need O(log n) time.

The parallel variants of the sequential Gaussian elimination

algorithm for matrix inversion are using O(log2n) parallel

time and a very large but polynomial in n processor bound

[10] [12]. On a distributed memory machine, the parallel

version of Gaussian elimination has the parallel run time and 

the required number of processors of O(n). On a systolic 

array with n(n+1)/2 cells, the execution time is 3n, while on a 

ring with n/2 processors is 2n  (  is the required time for the

processors in the ring to communicate with each other) [11]. 

III. MATRIX INVERSION USING CHOLESKY 

DECOMPOSITION

Given a factorization PA = LU, two ways to evaluate A–1

exist: as A–1
=U–1×L–1×P, and as the solution of UA–1=L–1×P.

These methods generally achieve different levels of

efficiency on high-performance computers, and they 

propagate the rounding errors in different ways. The quality 

of an approximation Y  A–1 can be assessed by looking at the

right and left residuals, AY — I and YA — I, and the forward 

error, Y – A-1.

Suppose we perturb A  A + A with | A| |A|; thus,

we are making relative perturbations of size at most  to the

elements of A. If Y = (A+ A)-1 then (A + A)Y = Y(A + A) = 

I, so that 

YAYAIAY    (1) 

AYAYIYA     (2)

and, since (A + A)–1 = A–1 – A–1 A A –1 +  ( 2),

).( 2111 OAAAYA (3)

These bounds represent “ideal” bounds for a computed

approximation Y to A– 1, if we regard  as a small multiple of

the unit round off u. For triangular matrix inversion,

appropriate methods do indeed achieve (1) or (2) but not

both, and (3). It is important to note that neither (1), (2), nor

(3) implies that Y + Y = (A + A)-1 with and that is, Y need 

not be close to the inverse of a matrix near to A, even in the 

norm sense. Indeed, such a result would imply that both the

left and right residuals are bounded in norm by

(2 + 2) A Y  and this is not the case [7].

In terms of the error bounds, there is little to choose 

among different methods for inverting matrices. Therefore, 

the choice of the method can be based on other criteria, such

as performance and the use of working storage. These are two

of the reasons why we have chosen the Cholesky

decomposition to implement the matrix inversion.
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A. Cholesky Decomposition

Any nonsingular matrix A(n n) that can be factored in the 

form RTR is positive definite. The converse is also true. We

note that in order to use the Cholesky decomposition the

input matrix should be positive definite. Otherwise, two 

supplementary matrix multiplications are needed (i.e., if B is 

a general dense nonsingular matrix then A = BTB is positive

definite, and B-1 = (BT B)-1 BT = A-1BT).

If A is positive definite, then A can be factored in the form

A = LTL, where L is lower triangular. If, in addition, we 

require the diagonal elements of L to be positive, the

decomposition is unique and is called the Cholesky

decomposition or the Cholesky factorization of A. The used 

algorithm, which uses the same location of A for the result L,

is given in Figure 1. 

Fig. 1 Cholesky-factorization – Matlab Example 

The algorithm proceeds in n stages. At the first stage, the 

first row of R is computed and the (n - 1)×(n - 1) matrix A*

in the southeast corner is modified. At the second stage, the

second row of R is computed and the (n - 2)×(n - 2) matrix in

the southeast corner is modified. The process continues until

it falls out of the southeast corner. Thus the algorithm begins

with a loop on the row of R to be computed.

A second possibility is to work with the upper half of the

array A and compute R = LT. For then the rows of L become

columns of R. 

If A is ill-conditioned, the computed factor L
~

 will not

generally be close to the true factor L; the best we can say is

that
mAO

L

LL
)(

~
, where )(A is the

condition number of matrix A, and m  is the machine

epsilon. In other words, Cholesky factorization is in general

a ill-conditioned problem. It is only the product n

AALL
~~*

, which satisfies the much better error bound

)( mO
A

A . Thus, the errors introduced in L
~

 by

rounding are large but ``diabolically correlated" [9]. This

means that if testing after the Cholesky decomposition the

``true error" is not obtained. Only after the inverse is 

computed, the effect of these errors can be noticed at their 

true values. In other words, for a correct evaluation of the

performances we need to use the forward error and the

residuals.

Given the Cholesky decomposition of A, we solve the

linear system Ax = b by solving the two triangular systems:

LTy = b   and Lx=y.

A triangular system requires ½n2 operations to solve, and 

the two systems together require n2 operations. To the extent

that the operation counts reflect actual performance, we will 

spend more time in the Cholesky algorithm when 1/6n3 > n2,

or when n > 6. For somewhat larger n, the time spent solving

the triangular systems is insignificant compared to the time

spent computing the Cholesky decomposition. In particular,

having computed the Cholesky decomposition of a matrix of

moderate size, we can solve several systems having the same

matrix at practically no extra cost. At the beginning of the

Section II we have deprecated the practice of computing a 

matrix inverse to solve a linear system. Now we can see why. 

A good way to calculate the inverse X = (x1 x2 … xn) of a 

symmetric positive-definite matrix A is to compute the

Cholesky decomposition and use it to solve the systems

Axj = Ij, j = l,2,...,n,

where Ij is the jth column of the identity matrix I. Now if

these solutions are computed in the most efficient way, they

require 1/3n3 additions and multiplications - twice as many as

the Cholesky decomposition. Thus the invert-and-multiply

approach is much more expensive than using the

decomposition directly to solve the linear system [10].

B. Inverting a Triangular Matrix  

After the decomposition is done, computing the inverse of

a triangular matrix and multiplying it with its transpose can 

do computing the inverse. The used algorithm computes the

columns of X=L-1 in reverse order and it is shown in Figure 2. 

for j = n:-1:1, 

    X(j,j) = 1/L(j, j);

    for k = j+1:n

        for i = j+1:n 

            X(k, j) = X(k, j) + X(k, i)*L(i, j); 

        end; 

    end; 

    for k = j+1:n

        X(k, j) = -X(j, j)*X(k, j); 

    end; 

    end; 

for j = 1:n, 

   if j > 1; 

      A(j:n, j)= A(j:n, j) - A(j:n, 1:j-1)*A(j, 1:j-1)';

   end; 

   A(j:n, j)=A(j:n, j)/sqrt(A(j, j));

end;

Fig. 2 Inverse of a triangular matrix – Matlab example

C. The Condition Number 

In most of the numerical analysis literature, the

complexity and stability of numerical algorithms are usually

estimated in terms of the problem instance dimension and of a

‘condition number’. The complexity of solving an n n linear

system Ax=b is usually estimated in terms of the dimension n

(actually the input size is n(n+1)) and of the condition

number. The condition number (with respect to the 2-norm)

of a matrix A with respect to inversion is defined as

1)( AAA .
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Although it looks like you need to compute a matrix

inverse to compute the condition number, there are reliable

ways of estimating it from the LU decomposition [9].

There exist a set of problems instances with (A)=  and 

in most cases it makes no sense to attempt solving them.

There are also problem instances (in our case, matrices) close 

to the locus of the degenerate problem instances. Those will 

have a large condition number, and will be said to be ill-

conditioned. It is generally accepted that ill-conditioned

problem instances are hard to solve. Thus, for complexity

purposes, a problem instance with a large condition number

should be considered ‘large’. Therefore, when considering

problems defined for real inputs, a reasonable measure for the

input size would be n2log2 (A).

Another tradition, derived from classical complexity

theory and pervasive in several branches of literature (such as 

linear programming), is to consider the subset of problems

instances with integer coefficients. Hence the input size is the

number of coefficients times the bit-size of the largest

coefficient in absolute value.

The condition number is always greater than one:

).(1 11 AAAAAI

This means that the condition number is a magnification

constant: the bound of the error is never diminished in

passing from the matrix to the solution.

Suppose that A is rounded on a machine with rounding

unit M, so that ij ), where Mij . If we solve 

the linear system Ãx=b without further errors, we get a 

solution that satisfies 

.)(

~

MA
x

xx

In particular, if M=10-t and (A)= 10k, the solution x~  can 

have relative error as large as 10–t+k. Thus, the larger 

components of the solution can be inaccurate in their (t-k)th

significant figures. Unfortunately, the relative error gives a

good idea of the accuracy of the larger components but says 

little about small components. So, the smaller components

can be much less accurate. This justifies the following rule:

If (A)= 10k expect to lose at least k digits in solving the

system Ax = b. We note that this discussion was done in the

context of solving linear systems just because it is usually 

done in this context in the literature. Because of the 

connection with the matrix inverse, these facts are valid in

this case too, even if the matrix inverse is determined out of

the context of solving linear systems. We also note that a lot

of attention should be paid to properly scaling the given A

matrix. When you get a large condition number, you have to

go back to the original problem and take a hard look to see if

it is truly sensitive to perturbations or is just badly scaled [9].

IV. ARCHITECTURE OVERVIEW

In this section, we briefly introduce the used matrix

inversion engine. The matrix inversion engine has been

implemented using a reconfigurable processing element

illustrated in Figure 3. A detailed complexity analysis for 12

bits implementation is given in [18].
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Fig. 3 Processing Element Architecture

The most complex blocks of the reconfigurable processing

element are the look-up-tables (LUTs), which convert the

element’s input and output data from decimal scale to

logarithm scale and vice versa. Their implementation is based

on compressed read-only memories (ROM) and combination

logic. The architecture of a LUT to compute the base 2 

logarithm of its input, Dec2Log, is given in Figure 4.

The LUTs contain two ROMs, one for coarse value and the

other for fine value of output, implemented as a combinatorial

logic. We have utilized the nature of base of 2 logarithm in

implementing the ROM compression. The base of 2

logarithms from decimal number increases by one when 

decimal number doubles, i.e., the logarithm increases by one 

between any consecutive powers of two. By knowing this, we 

can compress the LUTs having one-to-one value for input

data from 2N-2 to 2N-1-1, where N is the data width of the

input. The rest of the input values have been constructed by

scaling. Figure 5 shows four examples of logarithm behavior

between two consecutive powers of two, each having one 

hundred intermediate steps. By utilizing this feature of the 

logarithm, we can implement any word length without the

need of changing the underlying architecture. The LUT that

performs 2 to power of number (Log2Dec) has a similar

architecture.

The architecture has a fixed latency for the following 

mathematical operations: addition, subtraction, multiplication,

division root and square root. Additional to these operations,

conjugated equations, e.g. C= A/B1/2, can be executed every 

clock cycle with a three clock cycles latency. 
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Fig. 4 LUT Architecture
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Fig. 5 Logarithm values between two consecutive 

powers of two

TABLE I shows the supported arithmetic operations of the

processing element and their implementation having two data

inputs, A and B, and one data output, C. We note that a major

advantage of the used architecture is the implementation of

the logarithmic arithmetic for multiplication and division

through additions and subtractions, and similarly

implementation for square and square root through shifting

operations.

TABLE I PROCESSING ELEMENT EQUATIONS

Function
Mathematical equation in 

used architecture 

Control

command

Square root C=2(log
2

(A)/2) 000
Square C=2(2*log

2
(A)) 001

Multiplication C=2(log
2

(A)+log
2

(B)) 010
Division C=2(log

2
(A)-log

2
(B)) 011

Add C=A+B 100
Subtract C=A-B 101
Conjugated square

root and division 
C=2(log

2
(B)-log

2
(A)/2) 110

The processing element contains the needed set of

arithmetic operations for implementing the Cholesky

decomposition algorithm and for computing the inverse of a 

triangular matrix. Furthermore, the conjugated square root

and one division operation, both required by the Cholesky

decomposition algorithm, can be performed in single clock

cycle.

V. SIMULATION RESULTS

We created a simulation environment for realizing the

analysis of the effect of the used word length over the

performance of the matrix inversion. The base architecture of 

reconfigurable processing element is the same for all word

lengths. For implementing the LUTs, we have used ROM

sizes of 64x17 bits for Dec2Log and 64x14 bits for Log2Dec. 

The inputs and the output of the reconfigurable processing

element are truncated to the reported number of bits.

For implementing the triangular matrix inversion, we have

changed the position of the zero to have a larger number of

effective bits. This scaling does not affect the used word 

lengths. We have assumed that the proposed architecture is a 

hardware (HW) accelerator for the main processor, and that 

the main processor is able to scale down the obtained results

for further processing. The scaling has been implemented by

shifting.

For reporting the results, only the right residual Z= A*Y-

I  has been used, because since our input matrices are

positive definite, the left residual is not needed. The

computation has been considered successful if the 2-norm of

the residual is less than a predefined error level. The used

error levels have been k = 2-k, k = 0,1,…,5. We have also

used the forward error, Y – A-1 , in order to illustrate the

differences between fixed-point and floating-point solutions.

The maximum and the mean values of the forward error are

given.

The results from TABLE II represent the percentage of

successful inverse computations for 100 input matrices,

versus the specified error level. We conclude from these

results that the performance of the matrix inversion engine

decreases with the condition number of the input matrices, as 

we expected. The forward error values for condition numbers

between 200-300 are shown in Figure 6, while the same test

case residuals are presented in TABLE II. We note that in some

cases, even if the forward error is relatively small, the

residual errors are significant. 

We have also analyzed the effect of word length over the

matrix computing engine performance. TABLE III shows the

effect of using different word lengths for the inversion of

16x16 matrices having condition numbers limited to be less 

than 200. The simulation results are percentages of successful 

inverse computations for 100 randomly generated input

matrices versus the specified error level. 

TABLE II. 16 BITS IMPLEMENTATION RESIDUALS FOR 8X8 MATRICES WITH

DIFFERENT CONDITION NUMBERS.

Condition Numbers

Error 0-50 50-100 100-200 200-300

0 100 100 85 40

1 100 82 60 12

2 82 33 9 0

3 14 0 0 0

4 0 0 0 0

TABLE III RESIDUALS FOR 16X16 MATRICES WITH DIFFERENT WORD

LENGTHS.

Error 16 bits 20 bits 24 bits 

0 79 99 100

1 65 85 97

2 28 22 80

3 1 0 25

4 0 0 1

5 0 0 0
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