A PWM Controller with Multiple-Access Table Look-up for DC-DC Buck Conversion

Steve Hung-Lung Tu, and Chu-Tse Lee

Abstract—A new power regulator controller with multiple-access PID compensator is proposed, which can achieve a minimum memory requirement for fully table look-up. The proposed regulator controller employs hysteresis comparators, an error process unit (EPU) for voltage regulation, a multiple-access PID compensator and a low-power-consumption digital PWM (DPWM). Based on the multiple-access mechanism, the proposed controller can alleviate the penalty of large amount of memory employed for fully table look-up based PID compensator in the applications of power regulation. The proposed controller has been validated with simulation results.

Keywords—Multiple access, PID compensator, PWM, Buck conversion.

I. INTRODUCTION

WITH the proposition of system-on-a-chip (SOC) concept and its applications, built-in power management functions become highly desirable [1]–[3]. Among them, digital power regulator controllers play an important role in the design of dc-dc conversion due to their flexibility, programmability, and low sensitivity to noise interference.

Since the digital controller is used in an inherently analog regulating loop, A/D converters have been also employed in the controller as the interface [4]-[5], in which an n-bit A/D converter can increase the conversion speed and enhance the resolution. However, due to the non-linearity and highcomplexity of the delay-line A/D converter, an analog comparator and an EPU were suggested to act as the function of the A/D converter [6], which simply uses the feedback error signal as the input of the EPU state machine to adjust the system output voltage. Due to the inherent simplicity, it may reduce a certain degree of system complexity and of course, power consumption. Moreover, a fully table look-up approach for the controller were proposed in [5], in which the operation results of the PID compensator and the DPWM were pre-calculated and stored in a memory. The input data to the compensator is treated as the address to access the memory and the memory output is a 1-MHz clock signal with variable duty cycle. The approach can take advantages of the memory usage in a SOC system due to their regular operation characteristic.

Steve H.-L. Tu is with the Department of Electronic Engineering, Fu Jen Catholic University, Taipei, 24205 Taiwan (tel: 886-2-29052427; fax: 886-2-29042638; e-mail: s.tu@ieee.org).

C.-T. Lee is with the Department of Electronic Engineering, Fu Jen Catholic University, Taipei, 24205 Taiwan (e-mail: 496506298@mail.fju.edu.tw).

According to the report in [5], however the direct implementation of the approach can lead to a problem in the memory requirements.

In this paper, we propose a multiple-access mechanism to achieve a minimum memory requirement for fully table look-up based PID compensators. In turn, a fully table look-up based controller can be proposed, which is especially suitable for SOC implementation.

II. THE PROPOSED REGULATOR ARCHITECTURE

The proposed regulator controller is shown in Fig. 1, which comprises two analog comparators with and without hysteresis characteristic, an EPU, a multiple-access table look-up based PID compensator and a DPWM. V_{ref} is the reference voltage employed to compare with the regulated output voltage $v_{out}(t)$ and yields a 2-bit Error voltage bus with four possible binary values 2'b00 / 2'b01 / 2'b10 / 2'b11 from the comparators. The output of the Error voltage bus is sent to the EPU which develops an error signal e(n) ranging from -4 to +4 to represent the output regulated voltage tuning range $-(\Delta v_{out})_{max}/2$ to $+(\Delta v_{out})_{max}/2$ [4]. V_q is defined as the resolution of the output regulated voltage, which is equal to $(\Delta v_{out})_{max}/8$. The compensated signal d(n) is ranging from 1 to 254. The DPWM develops Duty(t) which is a signal of 1 MHz with d(n)/256 duty cycle. According to Duty(t) and all internal parameters, the converter develops the regulated output voltage $v_{out}(t)$ and the operation of the controller iterates until $v_{out}(t)$ is equal to V_{ref} .

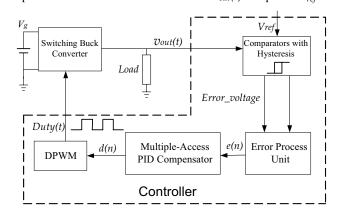


Fig.1. Block diagram of the proposed dc-dc regulator controller. *A. EPU (Error Process Unit)* -

Fig. 2 illustrates the EPU state transition diagram. The mechanism of the proposed EPU can be described as follows. Assuming an iterative signal $v_{out}(t)$ is required to trace another signal V_{ref} and let $Error_voltage$ be the output of the comparators, whose value can be described as follows

$$\begin{aligned} \textit{Error_voltage} &= 2\text{'b00} & \text{if} & \textit{V}_{\textit{ref}} \neg \textit{v}_{\textit{out}}(\textit{t}) \leq -\textit{V}_{\textit{q}} \\ &= 2\text{'b11} & \text{if} & \textit{V}_{\textit{ref}} \neg \textit{v}_{\textit{out}}(\textit{t}) \geq \textit{V}_{\textit{q}} \\ &= 2\text{'b01/2'b10 if} & |\textit{V}_{\textit{ref}} - \textit{v}_{\textit{out}}(\textit{t})| \leq \textit{V}_{\textit{q}} \end{aligned} \tag{1}$$

e(n) is thus the output of the EPU, which indicates the present state of the EPU state machine and it is also proportional to the difference of V_{ref} and $v_{out}(t)$.

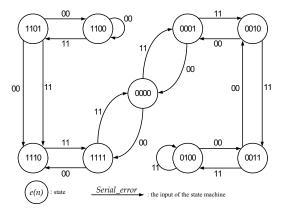


Fig.2. State transition diagram of the EPU.

As the controller starts to iterate, the EPU state machine comes to work depending on the 2-bit input signal $Error_voltage$ from the comparators. If the input signal is 2'b11, then e(n)=e(n-1)+1, else if the input signal is 00, e(n)=e(n-1)-1, otherwise e(n)=e(n-1). Obviously, it can be implemented with a 4-bit register to cover the range from -4 to +4. Table I shows the state transition table of the EPU.

TABLE I STATE TRANSITION TABLE OF THE EPU

Present state	Next state		
	Serial_error=00	Serial_error=11	Serial_error=01/10
Q3 Q2 Q1 Q0	D3 D2 D1 D0	D3 D2 D1 D0	D3 D2 D1 D0
0 1 0 0 (4)	0 0 1 1 (3)	0 1 0 0 (4)	0 1 0 0 (4)
0 0 1 1 (3)	0 0 1 0 (2)	0 1 0 0 (4)	0 0 1 1 (3)
0 0 1 0 (2)	0 0 0 1 (1)	0 0 1 1 (3)	0 0 1 0 (2)
0 0 0 1 (1)	0 0 0 0 (0)	0 0 1 0 (2)	0 0 0 1 (1)
0 0 0 0 (0)	1 1 1 1 (-1)	0 0 0 1 (1)	0 0 0 0 (0)
1 1 1 1 (-1)	1 1 1 0 (-2)	0 0 0 0 (0)	1 1 1 1 (-1)
1 1 1 0 (-2)	1 1 0 1 (-3)	1 1 1 1 (-1)	1 1 1 0 (-2)
1 1 0 1 (-3)	1 1 1 0 (-4)	1 1 1 0 (-2)	1 1 0 1 (-3)
1 1 0 0 (-4)	1 1 1 0 (-4)	1 1 0 1 (-3)	1 1 0 0 (-4)

B. PID Compensator -

The most general control law of the table look-up based

architecture performs the following discrete-time PID control law [7],

$$d(n) = d(n-1) + a \cdot e(n) + b \cdot e(n-1) + c \cdot e(n-2)$$
 (2)

which indicates that the new compensated value, d(n), can be computed with the past compensated value, d(n-1), and the new and past values of the error signal, e(n), e(n-1), and e(n-2). Since a, b, c are constants, the products $(a \cdot e)$, $(b \cdot e)$ and $(c \cdot e)$ can be implemented with look-up table a, table b and table c, respectively. Note that except memories for the look-up tables, we also need three 8-bit adders to compute equation (2). An alternative approach is being the employment of more memories to achieve "fully table look-up" [5], in which a $2^{20} \times 8$ memory is required to implement the table directly.

However, due to the correlation between the three consecutive error signals e[n], e[n-1], and e[n-2] of the EPU state machine, the totally 12-bit address can be only have 71 possibilities, which can greatly reduce the memory requirement. The 'multiple-access' mechanism which the table look-up computation can be executed with different stages under the embedded timing as shown in Fig. 3, in which the operation comprises three stages (i) to (iii) and we also require a 4-MHz clock signal where

$$e'(n) \equiv a \cdot e(n) + b \cdot e(n-1) + c \cdot e(n-2)$$
(3)

$$d(n) \equiv d(n-1) + e'(n) \tag{4}$$

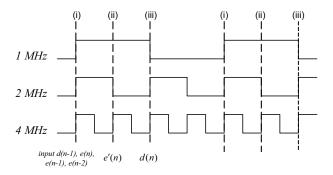


Fig. 3. Operating timing waveforms of the proposed multiple-access mechanism for fully table look-up PID compensator.

In other words, we firstly latch the input data d(n-1), e(n), e(n-1), and e(n-2). At stage (ii), we use the 12-bit address (e(n), e(n-1), e(n-2)) to retrieve 4-bit memory data as the result of $a \cdot e(n) + b \cdot e(n-1) + c \cdot e(n-2)$. Note that the 71 possible permutations only lead to less than 16 possible e'(n), which can be coded with 4-bit data. Finally, at stage(iii) we use the retrieved 4-bit e'(n) and 8-bit d(n-1) as the address to retrieve another memory and obtain d(n), which finishes the table look-up operation. Fig. 4 shows the block diagram of the multiple-access PID compensator.

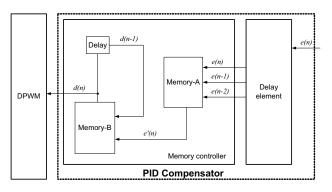


Fig.4. Block diagram of the multiple-access table look-up based PID compensator.

C. DPWM-

The DPWM employed in this paper is based on a hybrid multi-phase/counter approach, which the concept of low-power dissipation is similar to the design described in [4], [8]. Fig. 5 shows the block diagram of the DPWM.

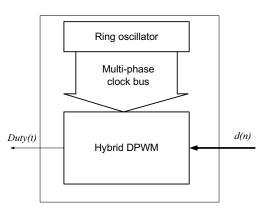


Fig. 5. Block diagram of the DPWM with an embedded ring oscillator.

The multi-phase clock source is generated from an embedded ring oscillator. Note that if the regulator is a functional block in an SOC system, the clock source can be from a differential VCO of the embedded phase-locked loop (PLL), which can provide even more accurate timing leading to more accurate duty ratio.

III. SIMULATION RESULTS

The system simulation has been performed with SIMULINK. Fig. 6 shows the simulation model and the simulation condition is: the input voltage $V_g = 3.3$ V, the output voltage is regulated at $v_{out} = 1.8$ V, the load resistor $R_{load} = 18\Omega$, $L = 98\mu$ H, C = 125nF, in which L and C are employed in the switching buck converter as shown in Fig. 7. The parameters of the PID compensator are: a = 12.5, b = -23.5, c = 11.5 and the sum of equation (2) can be calculated with the Euler's method [9]. Note that the sum can be pre-calculated and stored the values in an external memory.

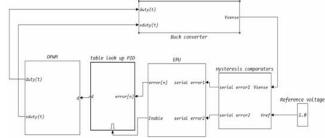


Fig.6. Simulation model of the regulator in SIMULINK.

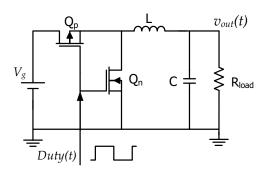


Fig.7. Schematic of the switching buck converter.

Fig.8 shows the steady-state operating waveforms. Obviously, the EPU state e(n) keeps constant at the steady state and also different d(n) value is corresponding to different pulse-width signal Duty(t).

Fig. 8. Steady-state operating waveforms.

Fig.9 shows the load transient response from 100mA to 200mA (load is from 18 Ω to 9 Ω). The upper waveform is the regulated output voltage and the lower waveform is the load current. Fig. 10(a) indicates the line transient response for the case of V_g from 3.3V to 4V. The upper waveform is the regulated output voltage. The line transient response for the case of V_g from 3.3V to 2.6V is shown in Fig. 10(b), where the upper waveform is the regulated output voltage.

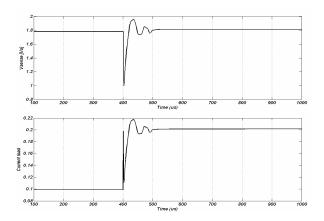


Fig.9. Waveforms of $v_{out}(t)$ and $i_{out}(t)$ for the load transient response.

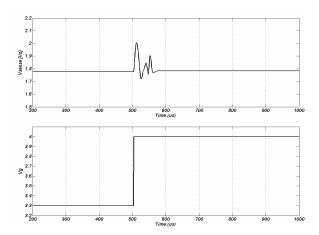


Fig.10(a). Waveform of $v_{out}(t)$ for line transient response (V_g from 3.3V to 4V).

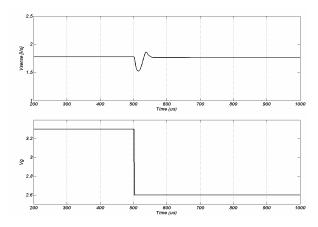


Fig.10(b). Waveform of $v_{out}(t)$ for line transient response (V_g from 3.3V to 2.6V).

The simulated waveform of power-up transient period is shown in Fig. 11. Obviously the convergent time is approximately $90\mu s$.

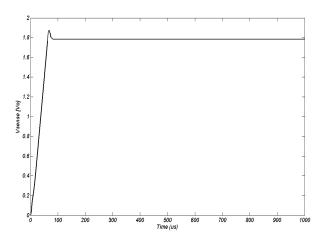


Fig.11. Waveform of $v_{out}(t)$ at the power-up transient.

IV. CONCLUSION

This paper describes a novel DPWM regulator controller based on the proposed multiple-access mechanism. The employment of comparators with hysteresis can stabilize the EPU state transition. Furthermore, the EPU state machine, DPWM, and multiple-access table look-up based PID compensator can be implemented with hardware description language (HDL) and external-access RAM's, which are suitable for single-chip SOC realization.

REFERENCES

- [1] L. Benini, A. Bogliolo, and G. D. Micheli, "A Survey of Design Techniques for System-Level Dynamic Power Management," *IEEE Transactions on Very Large Scale Integration Systems*, vol. 10(2), pp. 299–316, June 2000.
- [2] K. Nowka et al., "A 32-bit PowerPC Syetem-on-a-Chip with Support for Dynamic Voltage Scaling and Dynamic Frequency Scaling," *IEEE Journal* of Solid-State Circuits, vol. 37(11), pp. 1441–1447, Nov. 2002.
- [3] B. Brock and K. Rajamani, "Dynamic Power Management for Embedded Systems," *IEEE International SOC Conference*, Portland, USA, pp. 416–419, Sep. 2003.
- [4] B. J. Patella, A. Prodic, "High Frequency Digital PWM Controller IC for DC–DC Converters," *IEEE Transactions on Power Electronics*, vol. 18(1), pp.438–446, Jan. 2003.
- [5] M. M.-H. Chiu and S. H.-L. Tu, "A Novel DPWM Based on Fully Table Look-up for High-Frequency Power Conversion," *IEEE Asia Pacific Conference on Circuits and Systems*, Singapore, pp. 679–682, Dec. 2006.
- [6] P. J.-W. Huang and S. H.-L. Tu, "A Digital PWM Regulator Based on Serial-Error Correcting Mechanism for DC-DC Buck Conversion," *IEEE Conference on Electron Devices and Solid-State Circuits*, Hong Kong, China, pp. 289–292, Dec. 2005.
- [7] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Boston, MA: Kluwer, 2000, pp. 266–362.
- [8] A. P. Dancy, R. Amirtharajah, and A.P.Chandrakasan, "High-Efficiency Multiple-Output DC-DC Conversion for Low-Voltage Systems," *IEEE Transactions on VLSI Systems*, vol. 8, pp. 252–263, June 2000.
- [9] G. F. Franklin and J. D. Powell, *Digital Control of Dynamic Systems*. Reading, MA: Addison-Wesley, 1998.